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INTRODUCTION

Let X be a real reflexive Banach space with norm | |. We denote by X* the dual
of X and by (v*, v) the dual pairing between v* € X* and ve X.

Suppose we are given a real Hilbert space H with norm | | such that X is con-
tinuously and densely imbedded into H. Identifying H with its dual we get the con-
tinuous and dense imbedding H < X*, and if we H and v € X, the dual pairing
(w, v) coincides with the scalar product of w and v in H.

Further, let ¢ : X — (- 0, + oo] be a convex, lower semi-continuous functional,
® % + 0. Let D((p) denote its effective domain, i.e.

D(p) = {veX: ¢(v) < +oo}.

Let A :X — X* be a (possibly nonlinéar) mapping. We then ask for a function
uelI?0, T; X) (0 < T < o) such that

1) u' + Au + 0p(u)3f fora.a. te[0,T], u(0)=u(T)

where the derivative u’ = du/dt is to be understood in the sense of vector-valued
distributions, f being a given function. In particular, let X be a real Hilbert space,
and let A and B be two linear bounded mappings from X into X*. Under these as-
sumptions we consider the problem of finding a function u € I*(0, T; X) such that

) u" + Au' + Bu + 0p(u')3f foraa. te[0,T],
u(0) = u(T), w'(0)=u'(T).

Both in (1) and (2) d¢ denotes the subdifferential mapping of ¢ (see e.g. [1], [4]).
The existence of a solution to the problem

(1) ' + Mu+ousf foraa. tel[0,T], u(0)=u(T)
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where M is an m-accretive operator in a Banach space with un'formly convex dual,
and = const > 0 has been proved in [1], [3]. The existence of a solution to (1')
for @ = 0 has been established in [3] for M to be the subdifferential mapping of
a convex; lower semi-continuous and coercive functional on a Hilbert space. For
general maximal monotone and coercive mappings M in a Hilbert space the existence
of a weak solution to (1) for @ = 0 has been proved in [4]. In [5], the authors have
studied (1') for t-dependent M. An existence theorem for weak solutions to the
problem (1) for a wide range of nonlinear mappings A can be found in [3].

Some results on the existence of a solution to special cases of (2) have been
presented in [6].

In Section 1 of the present paper we prove the existence of a solution to (1) for 4
to be the sum of a monotone gradient operator and a certain “lower order’ operator.
Our method of proof consists in starting with a weak solution to (1) and proving its
regularity then.

The existence of a solution to (2) is proved in Section 2. Following [1], [3] we
replace (2) by a first order problem to which the theory of [1]—[4] applies
(w > 0). After establishing a-priori-estimates we are able to carry through the
passage to limit w — 0.

SECTION 1
For ve I7(0, T; X) (1 < p < ) we define
T
'[ o(o()di if o(()e L0, T),
0

+o00 otherwise .

D(u) =

@ is a convex, lower semi-continuous functional from I(0, T; X) into (— o, +o0]
(see [3], [4])- Let D(®) denote the effective domain of ®.

Throughout this section we assume that 2 < p < oo and Ave L”'(O, T, X*)
(1/p + 1/p’ = 1) for any ve I?(0, T; X), where (Av) (t) = A4 u(t) for a.a. te [0, T].})

We impose the following additional conditions upon A:

(1.1) A=A, + A, where: A, : X — X* is monotone, there exists a functional
F:X — R! such that A, = grad F, and A, :X — H,

(1.2) Ais pseudo-monotonez) and maps bounded sets into bounded sets;

1) Note that this condition can be verified when imposing certain continuity and boundedness
conditions upon 4.

2) Let X be a real Banach space with dual X*, the dual pairing between X* and X being
denoted by ¢, ). A mapping S : X— X* is called p+eudo-monotone if for any sequence {u;} = X
such that #;—> u weakly in X and lim sup (Suj, u; — uy <0, it follows that {(Su, u — v) <
< liminf (Sui, uj— v) for all v € X.
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(1.3) there exists vy € D(®) with vy e IZ(0, T; X*) and v,(0) = vo(T) such that

T
[f (Av, v — vo) dt + sb(v)] [olZro.rxy = +0 as ve D(®), |v||Lrorxy = .
V]

We then have

Theorem 1. Let the conditions (1.1)—(1.3) be satisfied. Suppose that f = f, + f,
where
fLe (0, T;H), fpf}3eI?(0, T: X¥).

Then there exists a solution u € D(®) to (1) such that
ueC([0, T]; H), u' eI*0,T:H).

Proof. Based on the conditions (1.2), (1.3) we obtain from [3] the existence of
a function u € D(®) n C([0, T]; H) such that

; .
(1.4) J. (v + Au, v — u)dt + B(v) — di(u)gJ'T(f,v—u) dt
0 o
Voe D(®) with v eI?(0, T; X*), v0) = oT).
Moreover, it holds u(0) = u(T).

Let ¢ > 0. We then consider the function

t |
ut) = e "oz, + lJ‘ e y(s)ds, te[0,T]
&

0
where

1 T( 1)/
z, = ——— | ¥7fu(s)ds.
eI RS

In other words, u, solves the problem

u (1) + eul(t) = u(t) foraa. te[0,T], u(0)=u T).
The following properties of u, are readily verified (cf. [3]):
(1.5) d(u,) < P(u) Ve>0;

(1.6) there exists a sequence of reals ¢; (¢; > 0 for j = 1,2,...) such that us, =
weakly in I7(0, T; X) as j — oo.

We insert v = u, in (1.4) and obtain

(1.7) —e.r|u;|2dt - aJ.T(Au, u)dt + d(u,) — P(u) = -—sfr(f, u;)dt Ve~ 0.
o ]

0
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By (1.1),

T T 1/2 T 1/2
_f (Au, uy)dt {J ]Azul2 dt} {f ]u;]2 dt}
0 0 0

for all ¢ > 0. Observing (1.5) one concludes from (1.7) that

T T
J. ,“élz dt = ¢ [l +f (/s u;)dt] Ve >0
0 0

where ¢, = const > 0. Taking into account that

u(t)| < |ulcqo,rrmy Ve >0, Vie[o,T],

and that
[uelro,rix) S €2(1 + [u]liro,mix) YO <e =1

where ¢, = const > 0, we find

T
f (fpou;)dt Sconst YO<e=<1.
1]

J

But the latter estimate together with (1.6) implies that u’ exists and belongs to
(0, T; H).

Let o e D(®) with &' € I?'(0, T; X*), 5(0) = 5(T) be given. Let 0 < 1 < 1. Re-
placing vin (1.4) by (1 — A) u + Af, dividing by A and letting 4 — 0 one obtains

Thus .
2dt <const V0 <e=<1.

’
U,

T T
(18) J(u’+Au, F— u)dt + 0(5) — P(u) ;'f (5 - u)di.
0 0
Let v e D(®). Set, for any & > 0,

t
v(t) = e "w, + 1f e Ve y(s)ds, te[0, T]
€

0
where

1 Copr
W= ————— | e D ys)ds.
d1—e 7)),

Let {¢;} (¢; > 0 for j = 1,2, ...) be a sequence of reals such that v,, - v weakly in
I2(0, T; X) as j — co. Inserting v = v,, in (1.8) and using that lim ®(v,,) > &(v) we
conclude from (1.8) after passing to limit that
T T
j (@ + Au, v — u)dt + &(v) — B(u) gJ. (fiv—u)de.
0 0
Since this inequality is true for any v € D(®) we get the first relation in (1).
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SECTION 2

Let X = V be a real Hilbert space.
Let A and B be linear bounded mappings from ¥ into V* which satisfy the fol-
lowing conditions:

(2.1) (Av, v) = ao||v]|* VveV, a, =const >0;

(2.2) (Bv, v) = Bo|v|* VveV, B, =const >0,
(Bu,v) = (Bv,u) Vu,veV.

We further assume that

(2.3) 09 maps bounded sets into bounded sets .

The aim of this section is to prove

Theorem 2. Let f € I*(0, T; H) with f' € I*(0, T; H) and f(0) = f(T) be given.
Then there exists a function u € C([0, T]; V) such that

(2.4) w'eD(®), u"eIX0, T V¥,

(2.5) fT(u” + Au’ + Bu, v — u')dt + &(v) — d(u’) >
) 0
= IT(f, v—u')dt VYve D(®P),

(2.6) u(0) = w(T), w'(0)=u'(T).

Proof. 1° Approximate solutions. Set X =V x H. X is a Hilbert space with
respect to the scalar product Uy, U,> = (Bu,, u,) + (v, v,) where U; = {u; v;},
u;eV,v;eH (i = 1,2).

We define

D(M) = {{u, v} e V H :ve D(¢), (Bu + Av + d¢(v)) " H * 0},
and

M(U) = {—v, (Bu + Av + dp(v)) N H}

for any Ue D(M) (U = {u, v}).

It is readily seen that M is monotone in X. Moreover, M is maximal monotone
in X (i.e., equivalently, R(I + M) = X). Indeed, let {g, h} € X be given. Note first
of all that the mapping I + A + B is monotone, hemi-continuous, bounded and
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coercive from V into V*. Since d¢ is maximal monotone from V into 2¥* we get
R(I + A + B + 0¢) = V* (cf. e.g. [1]). Hence there exists an element ve D(0¢)
such that

v+ Av + Bv + 0p(v)2 h — Bg .

Setting v + g = u it follows
u—v= g )
v+ Bu + Av + d¢(v)3 h.
Taking into account that h — v € H we reach the desired assertion.

Thus, setting F = {0, f} for a.a. te[0, T], we obtain from [1]—[4] for any
@ > 0 the existence and uniqueness of a function U e C([0, T]; X)*) which satisfies

(2.7) U(t)e D(M) Vte [0, T], U eL”0, T X),
(2.8) U + MU) + oU5F foraa. tel0,T],
(2.9) U(0) = Y(T).

Equivalently, when writing U = {u, v} we have u e C([0, T]; V), ve C([0, T]; H)
and
o(t)e D(p) Vie[0, T],

[Bu(t) + Av(t) + dp(v(t))] " H + 0 Vie[0, T],

2.7) u'el0, T, V), veL”0,T;H),
(2.8) W —v+ou=0 foraa te[0,T],
(2.8") V' + Av + Bu + 3¢(v) + wv3f foraa. te[0,T],

(2.9) u(0) = u(T), v(0) =o(T).

By (2.7') and (2.8"), ve L*(0, T; V). Setting w = f — v" — Av — Bu — wv for a.a.
te[0, T], we have wedp(v) for a.a. te[0, T] and we I*(0, T; V*). Further,
observing that v is weakly continuous from [0, T] into ¥'*) one easily verifies that
the function ¢ — ¢(v(t)) is integrable on [0, T], i.e. ve D(®). We now infer from
(2.8”) that w € 99(v).

2° A-priori-estimates. From (2.8’) it follows

(2.10) Bu' = Bv — wBu foraa. te[0, T].
3) More precisely, U, should be written to indicate the dependence of the solution on w.
However, for notational convenience, we drop the suffix w.
4) Cf. Lions, J.-L. et Magenes, E.: Problémes aux limites non homogénes et applications, vol. /
(chap. 3, 8.4). Dunod, Paris 1968.
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Since u(0) = u(T) we find
(2.11) fT(Bv, u)dt 20 Yo >0.
Recall that ’ v
(2.12) v+ Ao+ Bu+w+wv=f foraa te[0,T]

where w € dg(v) for a.a. te [0, T] (cf. (2.8”)). Observing (2.11) we conclude from
the latter equality after multiplying by v that

(2.13) [v]| 20,757y < const Yo > 0.

Since w € 0®(v) the hypothesis (2.3) implies

(2.14) IW]izo.ze) < const Ve > 0.

Next, by the aid of (2.13) one easily derives from (2.10) the estimate
(2.15) 4[| L20,7:v) < const Ve > 0.

Let w, = const > 0 be arbitrary, but fixed. We multiply (2.12) by u. Using that

Lv u)dt = I (v, u)dt,

one obtains, for any 0 < w = w,,
T
.[. (Bu, u) dt < [[o] 2o, 7 [#' | 20, 73m0) +
0

+ e|f|exo.mim + [o]exo.rmy + 1Wlexo,ms) [4]2o,mm)
where ¢ = const > 0. By (2.13)—(2.15),
(2.16) [#]| 20,757y < const VO < @ < @, .
Finally, we infer from (2.12) by virtue of (2.13)—(2.16) that
(2.17) 0"l 20,77+ < const YO < @ < @, .

3° Passage to limit. Let {w,,} be a sequence of reals such that 0 < w, < wg
(n=12,..)and w, > O0asn — oo,

From the preceding two sections we obtain for each n the existence of functions
u,€ C([0, T]; V), v,e C([0, T]; H) and w,e L0, T; V*) with u,e L0, T: V),
v, € L*(0, T; H) and w, € d¢(v,) for a.a. € [0, T] such that

(2.18) U, = Uy + ou, =0 foraa. te[0,T],
(2.19) v, + Av, + Bu, + w, + o, =f fora.a. te[0,T],
(2.20) u,(0) = u,(T), v,(0) = v,(T)
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(cf. (2.7")—(2.9")) and, without any loss of generality,
(2.21) u, > u weakly in L}, T;V),
u, > u' weaklyin IO, T;V),
(222) v, > v weakly in X0, T; V),
v, > v weakly in L*0, T; V*),
(2.23) w, > w weakly in X0, T; V*)

as n — oo (cf. (2.13)—(2.17)).

The passage to limit in (2.18) yields u’ = v for a.a. t € [0, T]. Using this we con-
clude from (2.19) after passing to limit that

(2.29) u" + Au' + Bu +w=f foraa. te[0,T].

Further, by (2.21) and (2.22), the conditions (2.20) are preserved when letting n — o0.
Thus

u(0) = u(T), uw'(0)=u'(T).
It remains to show that w € d®(v). To this end, we note that, for each n,

B(u, — u’) = B(v, — v) — w,Bu,,
which implies

(225) I (Buy, v, — v)di = J'(B(v — o) u)dt + o, '[ (Buyy u, — u)dt .

On the other hand, we obtain from (2.19)

T T T T
J (Wn» 0, — v) dt =I (f v, — v)dt +J (vn, v) dt —~J- (4v,, v, — v)dt —
0 0 0

)
T T
——J (Bu,, v, — v)dt — w,,J. (0w v, — V) dt .
0 0
Observing (2.25) one finds
T T ’
lim supf (Was 0, — v)dt < J (v,v)dt =0.
0 0

Since 0@ is maximal monotone the first convergence property in (2 22) (2. 23) and
the latter inequality imply w € 9(v).
Thus, the function u obtained in (2.21) satisfies (2.4)—(2.6).
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Let us finally mention a unilateral boundary value problem in linear viscoelasticity
to which Theorem 2 applies.

Let Q be a bounded domain in R*® with sufficiently smooth boundary I'. Denoting
by u = {u,, u,, u;} the displacement vector in Q, the vibrations of a viscoelastic
body with short memory which occupies the region Q are governed by the system
of equations

(*)

where

62u~ 0 5
l_—_o'i.= i in Q x O,T s i=17223
o o T 211

)

0
_ (0 1)
gi; = a(ij)lekl + agjuaeu,

1 /0ou; . 6uj>
SU =-|— 4+ — s
2\0x; 0x;/

and the coefficients a{}, (s = 0, '1) are assumed to satisfy the following conditions:

a$), is measurable and bounded in Q,

) _ () _ ()
Aijkr = ikl = Aklij >

aieiEa 2 Hotsj for all symmetric tensors {e;;} -

The vector f = {f;, f>, f} represents the given body force.

In order to formulate boundary conditions for u, let n = {n,, n,, ny} denote the
unit outer normal with respect to Q and let

oy = oy nn;,

or = {07y, 013, 613} Where or; = o;mn; — oyn;,
and

Uy = Ujh;, Up = U — Uyh.
Let ge I(I'), g > 0 a.e. on I. We then consider the following boundary con-
ditions: ’
(*) uy=0 on I x[0,T],

0
[arl<g=»—;—tl=0,

on I'x[0,T].

laT|=g=>EMgO:ig—T= —Jlor
t

5) We use the convention that a repeated suffix means summation over 1, 2, 3.
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For introducing the weak formulation of boundary value problem (x), (**), let
W;(R) denote the usual Sobolev space®) and let

V={ve[Wi(Q] :vy=0ae onT}.
We define, for any u,ve V,
a(u,v) = J. aih ga(u) e (v)dx (s =0,1),
2
o(v) =J‘ g|vT| dr.
r

Applying Theorem 2 we get: Let f;€ 120, T; IX(Q)), fieL*0, T; I*(2)) and
J{0) = f{T) (i = 1,2, 3). Then there exists a function ue ([0, T]; V) with y'
€ IX0, T; V) and u” € I?(0, T; V*) such that

T T T
J. (w',v—u)dt +J a®(u, v — u')dt +J~ a®(u', v —u')dt +
0 ]

+ for(p(v) dr — erp(u') dr z J:(f’ v—w)dt

for all ve I2(0, T; V), and u(0) = u(T), w'(0) = u'(T).
We dispense with further details and refer to the book: Duvaut, G. et Lions, J.-L.:
Les inéquations en mécanique et en physique (chap. 3). Dunod, Paris 1972.
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