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In this paper we shall study polar and polarized graphs. These concepts were
introduced by F. ZiTex [6]. Their importance for the applications of the graph theory
was pointed out by J. CERNY [1] and K. CuLik [2]. The definitions of these concepts
arre to be found in [5].

In a polar graph we can define two special cases of paths, namely homopolar paths
and heteropolar paths.

A homopolar path joining vertices ¢ and b in a polar graph G is a sequence a =
= Uy, €y, Uy, €5y ..., €1, U, = b, where u,,...,u, are vertices, e, ..., e,_, are
edges, the neighbouring elements of the sequence are incident and fori = 1, ..., n — 2
the edges e;, e;, , are incident with the same pole of u;, .

A heteropolar path joining vertices a and b in a polar graph G is defined analo-
gously as a homopolar path, only the edges e;, e;,, are incident with distinct poles
ofu;,,fori=1,...,n—2.

In polarized graphs we shall distinguish SS-edges, NN-edges and SN-edges.
An SS-edge joins southern poles of two vertices, an NN-edge joins northern poles
of two vertices, an SN-edge joins the southern pole of one vertex with the northern
pole of another one.

A homopolar path consisting only of SS-edges (or NN-edges) is called an SS-path
(or NN-path, respectively). A heteropolar path consisting of SN-edges joining a and b
and incident with the southern (or northern) pole of a and the northern (or southern,
respectively) pole of b is called a heteropolar SN-path (or NS-path, respectively)
from a to b.

Two vertices @ and b of a polar or polarized graph G are called X-connected, if
and only if either a = b, or they are joined by an X-path, where X stands for “homo-
polar”, “heteropolar”, *“SS-, “NN-", *“heteropolar SN-" or ‘“heteropolar NS-.
In the last two cases we must care for the ordering of the pair a, b.

The following propositions are easy to prove.
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Proposition 1. The relations of being homopolarly connected and heteropolarly
connected are reflexive and symmetric, but in general not transitive.

Figs. 1 and 2 show graphs in which the pairs a, b and b, ¢ are respectively homo-
polarly or heteropolarly connected, but the pair a, c is not.

Proposition 2. The relations of being SS-connected and NN-connected are equi-
valence relations.

b

b 1
a

Fig. 1. Fig. 2. Fig. 3.

Proposition 3. The relations of being heteropolarly SN- connected and hetero-
polarly NS-connected are reflexive and transitive, but not symmetric.

Fig. 3 shows a graph in which a is SN-connected with b, but not b with a.

We could define also homopolar SN-paths, but we do not intend to study them -
in this paper.

The X-connectivity degree of the vertices a, b in G is the minimal number of vertices
distinct from a, b which must be deleted from G in order that in the resulting graph
the vertices a, b might not be X-connected. Analogously we define the X-edge-
connectivity degree of a, b.

Now we shall prove some analoga of Menger’s theorem [3].

Theorem 1. Let a, b be two vertices of a polarized graph G. Then the maximal
number of vertex-disjoint (up to a and b) heteropolar SN-paths from a into b
in G is equal to the heteropolar SN-vertex-connectivity degree of a and b in G.

Proof. To the graph G let us assign a directed non-polar graph G* so that the
vertex set of G* is the vertex set of G and the edges of G* are all SN-edges of G and
each of these edges is directed so that the vertex with whose northern pole it is incident
in G is its terminal vertex in G*. By this transformation of G into G*, each heteropolar
SN-path becomes a directed path, therefore the maximal number of vertex-disjoint
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(up to a and b) heteropolar SN-paths from a into b in G is equal to the maximal
number of vertex-disjoint (up to a and b) directed paths going from a into b in G*.
According to an analogon of Menger’s theorem due to G. A. Dirac this is equal to
the vertex connectivity degree of a and b in the directed graph G*, i.e. to the minimal
number of vertices distinct from a and b which must be deleted from G* in order
that there might not exist any directed path from a into b. But each of such sets of
vertices (separating sets) is also a separating set in G (i.e. the set of vertices which
must be deleted from G in order that there might not exist any SN-path in G from a
into b) and vice versa, which is evident from the construction of G*. Thus the
assertion is true.

Theorem 2. Let a, b be two vertices of a polarized graph G. Then the maximal
number of edge-disjoint heteropolar SN-paths from a into b in G is equal to the
heteropolar SN-edge-connectivity degree of a and b in G.

Proof. We construct a graph G* as in the proof of Theorem 1. Then the maximal
number of edge-disjoint heteropolar SN-paths from a into b is equal to the maximal
number of edge-disjoint directed paths from a into b in G*. Using another analogon
of Menger’s theorem due also to G. A. DIRAC we can prove that this is the minimal
number of edges which must be deleted from G* in order that there might not exist
any directed path from a into b in G*. From the construction of G* it follows that
this is equal to the minimal number of edges which must be deleted from G in order
that there might not exist any heteropolar SN-path from a into b in the resulting
graph, i.e. to the heteropolar SN-edge-connectivity degree of a and b in G.

Theorem 3. Let a and b be two vertices of a polarized graph G. Then the maximal
number of vertex-disjoint (up to a and b) SS-paths connecting a and b in G is equal
to the SS-vertex-connectivity degree of a and b in G.

Proof. To the graph G let us assign an undirected non-polar graph G so that the
vertex set of G is the vertex set of G and the edges of G are all SS-edges of G. Then
any SS-path in G is a path in G and vice versa. The maximal number of vertex-
disjoint (up to a and b) SS-paths connecting @ and b in G is therefore equal to the
maximal number of vertex-disjoint (up to a and b) paths connecting a and b in G.
Using Menger’s theorem, we prove that this is equal to the vertex connectivity degree
of a and b in G, which (as is evident from the construction of G) is equal to the
SS-vertex-connectivity degree of @ and b in G.

Theorem 4. Let a, b be two vertices of a polarized graph G. Then the maximal
number of edge-disjoint SS-paths connecting a and b in G is equal to the SS-edge-
connectivity degree of a and b in G.

Proof. We use again the graph G from the proof of Theorem 3. The maximal
number of edge-disjoint SS-paths connecting a and b in G is the equal to the maximal
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number of edge-disjoint paths connecting ¢ and b in G. Using an analogon of Menger’
number of edge-disjoint paths connecting a and b in G. Using an analogon of
Menger’s theorem due to A. KoTzIG [4], we prove that this is equal to the edge-
connectivity degree of a and b in G, which is (as is evident from the construction of G)
equal to the SS-edge-connectivity degree of a and b in G.

A quite analogous theorem can be proved for the NN-paths.

As we have seen, the analoga of Menger’s theorem for polarized graphs can be
casily deduced from the well-known results on non-polar graphs (directed or un-
undirected). In the case of polar graphs the situation is more difficult.

et us have two heteropolar paths P, P, connecting the same pair of vertices a, b
of a polar graph G. They are called quasi-vertex-disjoint, if and only if, going along
both of them from a to b and incoming into an arbitrary common vertex of P, and P,
different from a and b, we income into distinct poles of this vertex. An example of
such paths is in Fig. 4. P, and P, are called quasi-edge-disjoint, if and only if, going
along both of them from a to b, no common edge of P, and P, is traversed in the
same direction.

Remark. If P, and P, are quasi-vertex-disjoint, they are evidently also quasi-
edge-disjoint.

Theorem 4. Let a, b be two vertices of a polar graph G. Let the maximal number
of pairwise quasi-vertex-disjoint heteropolar paths connecting a and b in G be r,
let the heteropolar vertex-connectivity degree of a and b in G be s. Then

IIA
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and for any r, s satisfying this inequality, a polar graph G and vertices a, b in it

can be found so that the assumption of the theorem is true.

Remark. We do not take poles of a and b into account.

Proof. Let G’ be a polarized graph obtained from G by the following procedure.
If the vertices of G are vy, ..., v,, then the vertices of G’ are v, ..., v,, v}, ..., v,. If

we have two vertices v, v; of G, let the poles of v; be p{", p{®’, let the poles of v;

be pi"’, pi?. If pi" is joined with p{" by an edge, then the northern pole of v} is
joined with the southern pole of v} and the southern pole of v7 is joined with the
northern pole of v}. If p{"" is joined with p{*’ by an edge in G, then the northern pole
of v} is joined with the southern pole of v; and the southern pole of v{ is joined with
the northern pole of v}. If p{*’ is joined with pi"’ by an edge in G, then the southern
pole of v} is joined with the northern pole of v; and the northern pole of v} is joined
with the southern pole of v}. If p{* is joined with p{*’ by an edge in G, then the
southern pole of v; is joined with the northern pole of v} and the northern pole of v}
is joined with the southern pole of v in G'. Now to any heteropolar path P con-

necting a and b in G, a heteropolar NS-path P’ in G’ corresponds; if P contains an
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edge v,v; and going from a to b along P we meet v; before vj, then P’ contains that
one from the two corresponding edges in G’ which joins the northern pole of v; or v}
with the southern pole of v} or v}; this edge is determined uniquely for any i and j,
therefore the assigning of paths P’ in G’ to paths P in G is uniquely determined. Now
let us have two heteropolar paths P, P, in G connecting a and b. Let P;, P, be
quasi-vertex-disjoint. If they are vertex-disjoint, then evidently the corresponding
paths Pi, P, in G’ will be vertex-disjoint. Thus let P, P, have a common vertex v;.
Let the vertex of P, (or of P,) immediately preceding v; when going along this path
from a to b v; (or v, respectively). Let the vertex of P, (or of P,) immediately fol-
lowing v; be v, (or v, respectively). Let the poles of v; be pi", p{*’; without loss of
generality let the edge v;v; of P, be incident with p'P. Then v,v, must be incident with
pi*), because P, is heteropolar. As P,, P, are quasi-vertex-disjoint, v,v, must be in-
cident with p'*> and v, with pi". Then P contains the edge joining the northern pole
of v} or v with the southern pole of v; as well as the edge joining the northern pole
of v} with the southern pole of v; or v]. The path P} contains the edge joining the
northern pole of v; or v} with the southern pole of v} as well as the edge joining the
northern pole of v with the southern pole of v,, or v/,. Therefore the common vertex v;
of P, and P, is assigned different vertices v}, v in the paths P} and P,. As any v,
is assigned either v}, or v} (exclusive “or”), we see that P} and P} are vertex disjoint
(up to a and b). If P, and P, are not quasi-vertex-disjoint, we can prove in an analo-
gous way that P} and P} are not vertex-disjoint (their common vertex “traversed
in the same direction” is assigned the same vertex in G’ in both P}, P}). Therefore
the systems of pairwise quasi-vertex-disjoint heteropolar paths connecting a and b
in G are assigned systems of pairwise vertex-disjoint (up to a and b) heteropolar
NS-paths in G’ connecting the pair a’, a” with the pair b’, b” (these vertices are those
corresponding to a and b in G'). Now we identify the two vertices a’, a” corresponding
to a in G’ so that the northern poles of both of them are identified and so are their
southern poles; the resulting vertex will be denoted also by a. The same will be done
for b. The maximal number of pairwise quasi-vertex-disjoint heteropolar paths
connecting a and b in G is equal to the maximal number of pairwise vertex-disjoint
(up to a and b) heteropolar NS-paths connecting a and b in G'. According to Theorem
I this number is equal to the minimal number of vertices which must be deleted
from G’ in order that there might exist no heteropolar NS-path connecting ¢ and b
in the resulting graph. Let such a separating set be S’.

The minimal separating set S (with minimal possible cardinality) between « and b
in G must satisfy |S| < |S’| < 2|S]. The incquality |S’| < |S| cannot hold. because
the set of vertices to which the poles of S’ correspond is evidently a separating set
in G of the cardinality |S[ Also 2|S] < |S[ cannot hold, because the set of all poles
of S is evidently a separating set between a and b in G of the cardinality 2’51. But
now [SI = 5 and, as mentioned above, IS’I = r, q.e.d. Fig. 5 shows the case when
I,r =1, Fig. 6 shows thecase s = 1, r = 2. Ifany r, s are given so that s < r <

2s, we can take 2s — r copies of the graph from Fig. 5 and r — s copies of the

A =
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graph from Fig. 6 and identify the vertices denoted by a in all of them and the vertices
denoted by b in all of them. We obtain a graph in which the maximal number of
pairwise quasi-vertex-disjoint heteropolar paths connecting a and b is r while the
heteropolar vertex-connectivity degree of a and b is s.

b
\
g a
Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8.

Theorem 5. Let a, b be two vertices of a polar graph G. Let the maximal number
of pairwise quasi-edge-disjoint heteropolar paths connecting a and b in G be o,
let the heteropolar edge-connectivity degree of a and b in G be o. Then

602
and for any ¢ and o satisfying this inequality such a graph and vertices a, b exist.

Proof. We shall use the graph G’ from the proof of Theorem 4. Let P, P, be two
heteropolar paths connecting a and b in G which are quasi-edge-disjoint. Let v;v; be
their common edge. If going along P, from « to b we come to v; before v;, then going
along P, from a to b we must come first to v;. Let (without loss of generality) this
edge join the pole pi"’ of v; with the pole p$'’ of v;. Then this edge is assigned in P}
the edge joining the northern pole of v; with the southern pole of vj and in P the
edge joining the northern pole of v} with the southern pole of v}, i.e., distinct edges
corresponds to this edge in P} and P,. Thus, analogously to the proof of Theorem 4,
we can prove that P) and P, are edge-disjoint. If P, and P, are not quasi-edge-
disjoint, we can easily prove that P{ and P} are not edge-disjoint (the common edge
of P, and P, traversed in the same direction when going along both from a to b is
assigned the same edge in both P} and P}). Further we can proceed analogously as
in the proof of Theorem 4; instead of vertices we consider edges. The figures cor-
responding to Figs. 5 and 6 in this case are Figs. 7 and 8.

Analogous theorems for vertex-disjoint or edge-disjoint (without “quasi-") paths
do not hold, as counterexamples in Figs. 9 and 10 show. In the graph in Fig. 9 there
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exist no two vertex-disjoint (up to a and b) heteropolar paths connecting « and b,
but after deleting an arbitrary vertex (distinct from a and b) the vertices @ and b
remain heteropolarly connected. An edge analogon of this case is in Fig. 10.

In all figures, vertices of polar graphs are drawn as magnetic needles; the poles of
such a needle denote the poles of a vertex. The vertices of polarized graphs are drawn
also as magnetic needles and the northern poles of vertices are black.

Fig. 9. Fig. 10.

Theorem 6. Let a, b be two vertices of a polar graph G. Let the maximal number
of pairwise pole-disjoint homopolar paths connecting a and b in G be r’, let the
homopolar vertex-connectivity degree of a and b in G be s’. Then

s L2
and for any v and s" satisfying this inequality, such a graph and vertices a, b exist.

Remark. Two paths connecting a and b are called pole-disjoint, if and only if
they have no common pole except for poles of a and b.

Proof. We consider the so-called pole graph of G and denote it by P(G). The
vertices of P(G) are poles of G, the edges of P(G) are edges of G, the incidence is
preserved. (The graph P(G) is non-polar.) In P(G) we identify the two vertices cor-
responding to the poles of a denoting the resulting vertex again by a; we do the same
for b. Then there is a one-to-one correspondence between homopolar paths in G
joining a and b and paths in P(G) joining a and b so that the corresponding paths
have the same edges. To two vertex-disjoint paths in P(G) two pole-disjoint paths
in G correspond and vice versa. In P(G) we can use Menger’s theorem. Therefore the
maximal number of pairwise pole-disjoint homopolar paths connecting a and b
in G is equal to the minimal possible cardinality of a separating set between a and b
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in P(G). Let the separating set of this minimal cardinality be S’. If S is the separating
set between a and b in G of the minimal cardinality, then analogously as in the proof
of Theorem 4 we can prove |S| IS'| < 2|Si, from which the assertion follows.
The example of a graph with ' =1, s = I is in Fig. 11, with ' =1, s' =2 in
Fig. 12. We can combine these graphs as the graphs in Figs. 5 and 6 and so we can
prove the second part of the theorem analogously to Theorem 4.

I A

0
I
Fig. 11. Fig. 12. Fig. 13.

Theorem 7. Let a, b be two vertices of a polar graph G. Then the maximal number
of pairwise edge-disjoint homopolar paths connecting a and b in G is equal to the
homopolar edge-connectivity degree of a and b in G.

Proof. If we use again the pole graph P(G), we can prove this theorem by an
immediate application of the analogon of Menger’s theorem due to A. Kotzig [4].
(The edges of G and P(G) are the same.)

Fig. 13 shows that an analogon of Theorem 6 for vertex-disjoint homopolar paths
instead of pole-disjoint ones does not hold. In this graph there exist no two vertex-
disjoint homopolar paths connecting a and b, but after deleting an arbitrary vertex
the vertices a and b remain homopolarly connected.

The heteropolar connectivity can have an importance in the applications of the
graph theory in the railway traffic. If a polar graph represents a railway network, its
vertices are railway stations and poles of a vertex denote the sides from which trains
come to the station, then two vertices are heteropolarly connected if and only if from
the station corresponding to one of them a train can go without changing the direction
of its motion into the station corresponding to the other vertex.
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