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Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

ARCHIMEDEAN CLASSES IN AN ORDERED SEMIGROUP II 

TÔRU SAITÔ, Tokyo 

(Received October 7, 1974) 

The terminology and notation of our previous paper [7] are used throughout. In 
particular, we denote by S an ordered semigroup and by ^ the set of all archimedean 
classes of S. 

The original purpose of this paper is to study the behavior of the set product AB 
of two archimedean classes A and В such that A S В and the (5-class in ^é' containing A 
and В is torsion-free. Thus in this note let Л, Б G ^ satisfying these conditions. More­
over we assume A < B. Also let T be the subset of S consisting of all elements x 
such that the archimedean class containing the element x Hes between A and B. 
Then Tis a convex subsemigroup of S, which contains the subsemigroup of 5 gene­
rated by A and B, 

In order to consider the behavior of AB, in this paper we shall construct an 
o-homomorphism of Tinto the ordered additive group of real numbers such that its 
images are negative on A, are positive on В and are zero on T\ [A u B). 

By [7] Theorem 3.5, we have the following 

Lemma 1. A is a negative torsion-free archimedean class and В is a positive 
torsion-free archimedean class of S. Moreover the ô-class Aô of^ consists of just 
two elements A and B. 

Two elements a and b of S are said to form an anomalous pair if either a" < b""^^ 
and b" < a"^^ or a" > b"'^^ and b" > a""̂ ^ for every natural number n. 

Lemma 2. There exists an o-homomorphism w^ of A into the ordered additive 
semigroup of negative real numbers such that two elements of S have the same image 
if and only if they form an anomalous pair. Also there exists an o-homomorphism W2 
of В into the ordered additive semigroup of positive real numbers such that two 
elements of S have the same image if and only if they form an anomalous pair. 

Proof. The second assertion follows from [3] Theorem or [4] Theorem 1. Dually 
we have the first assertion. 
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Lemma 3. Let ae Л and be В. Put 

L[a, b) = {r positive real number; there exist natural numbers p and q such 
that r ^ qjp and a^b'^ e A} ; 

I7(a, b) = -[r positive real number; there exist natural numbers p and q such 
that qjp S r and a^b^eß} . 

Then 

(1) L(a, Ь)Ф D and C/(a, b) Ф D ; 

(2) if reL^a, b) and p and q are natural numbers such that qjp ^ r, then 
Ü^MGA; 

(3) if reU{a,b) and p and q are natural numbers such that r ^ qjp, then 
a^b'^ G В; 

(4) if rGL{a,b), then r'G L{a, b) for every positive real number r such that 
r' < r; 

(5) if r G U(a, b), then r' G U{a, b) for every positive real number r such that 
r < r; 

(6) L{a,b)nV{a,b) = D ; 

(7) if r G L{a, b) and r G U(a, b), then r < r; 

(8) if r is a positive real number such that гф L(a, b) and p and q are natural 
numbers such that r < qjp, then a^b^ G В; 

(9) if r is a positive real number such that r ф U[a, b) and p and q are natural 
numbers such that qjp < r, then a^b'^ G A; 

(10) sup L(a, b) = inf [/(a, b). {This common positive real number is denoted 
by r(a, b)); 

(11) L{a, b) has no greatest element and U(a, b) has no least element; 

(12) for natural numbers p and q, a^b^ G A if and only if qjp < r{a, b), and if 
and only if qjp G L{a, b); 

(13) for natural numbers p and q, a^b^ G В if and only if r{a, b) < qjp, and if 
and only if qjp G U{a, b); 

(14) for natural numbers p and q, a^b'^ ф A и В if and only if r[a, b) is a rational 
number and r(a, b) = qjp. 

Proof, (l) follows from [7] Theorem 2.4. 

(2) Suppose r G L{a, b) and qjp ^ r. Then there exists a positive rational number 
vju such that r ^ vju and a^'b"" G A. By [7] Lemma 2.3, we have a"^b''̂  e A. Since 
^IP й r й /̂w» we have uq S ^P- Hence 

240 



where, if vp — uq = 0, we assume that a""^ "̂  is the empty symbol. Hence, again 
by [7] Lemma 2.3, we have a^b^ e A. 

(3) can be proved in a similar way. 

(4) Suppose r E L{a, b) and r' < r. We take a positive rational number qjp such 
that r' < qjp < r. Then, by (2), we have a^b^ e A and so r' e L(a, b). 

(5) can be proved in a similar way. 

(6) By way of contradiction, we assume there exists r e L{a, b) n U{a, b). Then 
there exist positive rational numbers qjp and vju such that vju ^ ?й Я1Р^ ^"b"" e В 
and a^Me A. But, by definition, qjpe L(a, b) and, by (2), we have a^b"" e A. This 
contradicts the fact that A < B. 

(7) follows immediately from (4) and (6). 

(8) Suppose r Ф L{a, b) and r < qjp. We take a positive rational number vju 
such that r < vju < qjp. Then, by (4), we have vju ф L{a, b) and so a^b"" ф A. Hence, 
by [7] Lemma 2.3, a"^b"^ ф A. First we suppose a"b" e B. Then 

^upj^uq ^ {a"Pb'P)b"'^~'''eB . 

Hence, by [7] Lemma 2.3, we have a^b^ e B. Next we suppose that a^b"" ф В. Then, 
by [7] Lemma 2.3, a^^b*"^ ф В. Let С be the archimedean class containing the element 
a"^b''^. Then, since 

and since a"^b"^ ф A and a^^b'^ ф В, we have A < С < B. By [7] Lemma 5.6, we 
have AS = BÔ = AÔ A BÔ ^ Co, and, by Lemma 1, С ф Bo and so В non ô С. 
Hence, by [7] Theorem 6.1, we have С В ç В. Hence 

and so a^b« e B. 

(9) can be proved in a similar way. 

(10) By (l) and (7), we have sup L(a, b) ^ inï U{a, b). By way of contradiction, 
we assume sup L{a, b) < inf U{a, b). We take positive rational numbers qjp and 
vju such that 

sup L(a, b) < qjp < vju < inf U(a, b). 

Then qjp ф L{a, b) and, by (8), a^b"" e B. Hence vju e U(a, b), contradicting vju < 
< inf U{a, b). 

(11) Suppose ГЕ L(a, b). Then there exists a positive rational number qjp such 
that r ^ qjp and a^M e A. Since a^ e A and A is negative torsion-free, there exists 
a natural number n > 1 such that (a^M)" < a^. First suppose that ab g ba. Then 
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^пр^^щ ^ [a^b^^y < а^ and so 

Hence a"^"^6"^ 6 A. Next suppose that ba ^ дЬ. Then Ь"^а"^ ^ (a^b^)" < a^ and so 

Hence b^'^a"^' ^ e A and so, by [7] Lemma 2.3, we obtain the same result a"P''^b"'^ e A. 
Therefore always we have nqj{np — 1) G L(a, b) with г ^ qjp < nql(np — 1). This 
proves the first assertion. The second assertion can be proved in a similar way. 

(12) First suppose a^b"^ e A. Then qjpe L[a, b), by definition. Next suppose 
qjpe L{a, b). Then, by (11), there exists re L{a, b) such that qjp < r. Hence 

qjp < г ^ sup L(a, b) = r{a, b) . 

Finally suppose qjp < r{a, b). Then there exists г e L[a, b) such that qjp < r. 
Hence, by (2), a^b'' E A. 

(13) can be proved in a similar way. 

(14) follows from (12) and (13). ' 

Lemma 4. (1) Let a e A. Then the positive real number r[a, b) W2(̂ ) i^ determined 
uniquely irrespective of the choice of b e B. 

(2) Let b e B. Then the negative real number r[a, b)/wj(a) is determined uniquely 
irrespective of the choice of a e A. 

Proof, (l) Let aeA and b, b' еВ. Let r be an arbitrary positive real number 
such that r < (r(a, b) W2(b))/\V2(b'). Then there exist natural numbers p, q, и and v 
such that r < qvjpu, qjp < r{a, b) and vju < >V2(b)/w2(b'). Hence 

W2(b"^) = V W2{b') < и VV2(b) = W2(b") 

and so b'' < b\ By Lemma 3 (12), we have a''^ e A and, by [7] Lemma 2.3, a^'^b'^" e 
G A. Hence 

and so a^"b'^'' G A. Hence qvjpu e L{a, b') and r e L{a, b'). Hence r S sup L{a, b') = 
= r(a, b'). Therefore 

(r(fl, b) W2{b))lw2{b') ^ r(a, bO 

and so r(a, b) W2(b) ^ г(д, fo') W2(b'). The converse inequality can be proved in 
a similar way. Thus we have the assertion (1). 

(2) can be proved in a similar way. 
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Lemma 5. (1) For a, a e A and b e B, r(a, b) + r{a\ b) = r{aa\ b). 

(2) For aeA and b, W e ß, (1/г(а, b)) + (1/г(а, Ь')) = \\г{а, bb'). 

Proof, (l) By Lemma 4 (2), there exists a negative real number к such that 
r(a, b) = к w'i(a), r(a\ b) = к Wj(a') and r(aa\ b) = к w^(aa'). Hence 

r{aa\ b) = к w\{aa) = k(w^{a) + ^^(a')) = к Wi{a) + /c y^i{a) = 

= r(a, b) + r{a, b) . 

(2) can be proved in a similar way. 

Lemma 6. For aeA and b e В such that ab e A, 1 4- r[ab, b) = r(a, b). 

Proof. Let г e L{ab, b). Then there exists a positive rational number qjp such that 
r ^ qjp and (flb/ Me Л. If ab ^ ba, then a^^^^ ^ a^b^^^ ^ (ab)^ b^ with a^^^^ 
(flb)'̂  b^ e Л and so a^b^^'^e A. Also, if ba й ab, then « '̂̂ ^^ ^ b^ '"^^ ^ (ab)^ b^ and 
so Ы^'^а^ e A, whence, by [7] Lemma 2.3, we obtain again a^b^^^eA. Therefore 

1 + r ^ 1 + {qjp) = (p + q)lp й sup L(a, b) = r{a, b) 

and so 1 + r(ab, b) = sup (1 -f L(ab, b)) ^ r(a, b). By taking an arbitrary element 
in U{ab, b) instead of an element in L(ab, b), we obtain in a similar way that 1 + 
+ r{ab, b) ^ r[a, b). Hence we have the assertion. 

In a similar way, we can prove 

Lemma 7. For aeA and b e В such that ab E ß, 1 + (l/r(a, ab)) = l/r(a, b). 

Lemma 8. (l) Let xe T\[AKJ B) and у e B. Then xy, yx e В and the pairs 
{xy, y} and {yx, y} form anomalous pairs. 

(2) Let X e T\ (A u ß) and у e A. Then xy, yx e A and the pairs {xy, y} and 
{yx, y} form anomalous pairs. 

Proof, (l) Let X be the archimedean class containing the element x. Then, since 
xeT\{A\j B), we have Л < X < ß. By assumption Aô В and so, by [7] Lemma 
4.3, we have By X. Also, by Lemma 1, we have ß non ô X. Hence, by [7] Theorem 
6.1, xy eXB Ç ß and yx e BX ^ ß. Let n be an arbitrary natural number. Since 
x^" e A and y e B, we have x^" < y. First suppose xy ^ yx. Then 

{yxf й ŷ "x̂ " ^ ŷ ""̂ ^ < у 2n + 2 

and so {хуУ ^ (yx)" < y"'^\ By way of contradiction, we suppose {xyf^^ g y". 
Then 

with x" + ^y e XB ^ В and y" e ß . This contradicts [5] Theorem 6. Hence y'' < 
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<{хуУ^^ uiy^y^^' Hence {л:з% у} and {>̂ х, у} form anomalous pairs. In the 
case when yx ^ xy, we obtain the same conclusion in a similar way. 

(2) can be proved in a similar way. 

Theorem 9. There exists an o-homomorphism v of T into the additive ordered 
group of real numbers such that 

if x e A, then v(x) < 0; 
if xeT\{A^ B), then v{x) = 0; 
if XE B, then v{x) > 0, 

and, for X, у E T, v(x) = v{y) if and only if either x and у form an anomalous 
pair or X, у E Т\{Л yj B). 

Proof. We define the mapping v of Tinto the set of real numbers by: 

if jc e A, then v(x) = — r(x, b) W2{b) where b E B; 
if XET\{A и B), then v{x) = 0; 
if X G Б, then v{x) = W2(x). 

We remark that it follows from Lemma 4 that, for XE A, v{x) is determined uniquely 
irrespective of the choice o( b E B. Now we show that, for x, y E T ^{^у) = ^W + 
+ v{y) by dividing into the following cases. 

(a) The case when x, у E A: 

In this case xy E A. We take b E В arbitrarily. Then, by Lemma 5 (1), 

v{xy) = -r{xy, b) W2{b) = -{r{x, b) + r{y, b)) W2{b) = 

= - r(x, b) W2{b) ~ r{y, b) W2{b) = v{x) + v{y). 

(b) The case when x, у E B: 

In this case xy E В and, by Lemma 2, 

V{x}^ = W2{xy) = W2{x) + W2{y) = v{x) + v{y) , 

(c) The case when x E A, у E В and xy e A: 

By Lemma 6, we have 

V{xy) = -r{xy, y) W2{y) = - r ( x , y) W2{y) + W2{y) = v{x) + v{y) . 

(d) The case when x E B, у E A and xy E A: 

By [7] Lemma 2.3, we have yx E A and, by (c), v{yx) = v{y) + v{x). Also, by (a), 

v{y) + v{xy) = v{yxy) = v{yx) + v{y). 

Hence v{xy) = v(yx) = v{x) + v{y). 
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(e) The case when xe A, y e В and xy e B: 

By Lemmas 4 (l) and 7, we have 

v{xy) = W2{xy = (r(x, y)/r(x, xy)) W2{y) = (l " г(х, у)) w^Xy) = 

= - r ( x , y) W2{y) + W2{y) = V{x) + V{}^ . 

(f) The case when xe B, у e A and xy e B: 

We have yx e В and, by (e), v(yx) = v[y) + v{x). Also, by (b), v(xy) + v{x) = 
= v{xyx) = v(x) + i;(yx). Hence v{xy) = v(yx) = v{x) + î (y).. 

(g) The case when x e A, у e В and xy e T\[Au B): 

By way of contradiction, we assume r(x, >') > L We take a real number r such 
that 1 < r < r(x, j^). Then r e L(x, y) and so there exists a rational number ^/p 
such that r ^ ^/p and x^y^ e A. Since 1 < r ^ qjp, we have p < q and so 

Hence, by [7] Lemma 2.3, we have xy e A, which is a contradiction. Similarly we 
can prove that r(x, >') < 1 imphes a contradiction. Hence r(x, y) = 1 and so 

v{x) + v{y) = -r{x, y) W2{y) + ^liy) = -^liy) + ^^ziy) = 0 = v{xy) . 

(h) The case when xe B, у e A and xy e T\{A и В): 

By [7] Lemma 2.3, yxeT\{Au B) and, by (g), 

v{x) 4- v{y) = v{y) + v{x) = v{yx) = 0 = v{xy) . 

(i) The case when either x e T\[A KJ B) and у e В or x e В and у e Г \ (A u Б): 

Jt follows from Lemmas 2 and 8 (l) that, if xe T\(A KJ B) and у e ß, then 

i;(x>;) = W2{xy) = W2{y) = 0 + W2(.v) = v{x) + t;(>'), 

and, if A' G Б and у e T\(A ^ В), then 

v{xy) = M'2(x};) = W2(x) = W2{x) + 0 = i;(x) + i{y) . 

(j) The case when either xe A and у 6 Г \ (Л u ß) or x e Г \ (/4 u B) and у e ^4: 

Suppose X G A and y e T\{A и B). Then, by Lemmas 2 and 8 (2), we have 
Wi(x) = Wi(xy). Let fe G ß. By Lemma 4 (2), we have r(x, b)/H'i(x) = r(xy, b)/wi(xy). 
Hence r(x, b) = r{xy, b) and so 

K^.v) = ~r{^y, b) W2{b) = - r ( x , b) W2{b) + 0 = L'(x) + v{y). 

The case when x G T \ (A u ß) and y e A can be treated in a similar way. 
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(к) The case when x, v e Г \ (.4 u B): 

Let X, Y and Z be the archimedean classes containing x, y and x>', respectively. 
Then Л < X < В and A < Y < В. Since xy lies between x^ and ]'^, Z lies between X 
and y. Hence A < Z < В and so xy G T \ (Л u Б). Therefore 

i,(x v) = 0 = 0 + 0 = y(x) + v{y). 

This proves that г is a homomorphism of Tinto the additive ordered group of real 
numbers. By the definition of v, v{x) < 0 if x e Л, v{x) = 0 ïï x e T\(A и B) and 
v{x) > 0 if X e B. Also it follows from Lemma 2 that v is order-preserving and г;(х) = 
= v[y) if and only if either x and у form an anomalous pair or x, у e Т\(Л и В). 

Corollary 10. The set T\[A u B) is a convex subsemigroup of S, if it is nonvoid. 

Corollary IL The following conditions are equivalent: 

(1) AB ^ A^ B; 

(2) BA ^ Au Б; 

(3) r(a, b) Ф 1 for every a e A and b e B; 

(4) r{a, b) is irrational for every a e A and b e B. 

Proof. (1) <=> (2) follows from [7] Lemma 2.3. (l) =^ (4). By way of contradiction, 
we assume r(a, b) is equal to a rational number njm. Then, by Lemma 5, we obtain 
r(a'", b") = 1 and so 

v{a"'b") = via"") + v{b") = - r ( a " , b") w^b") + W2(b") = 0 . 

Hence a'"b" ET\{AKJ B), contradicting Condition (l). (4) => (3) is clear. (3) => (1). 
Let a e A and b e B. Then, by Condition (3), r(ö, b) > 1 or r{a, b) < L If r[a, b) > 
> 1, then 

v{ab) = v{a) -f v{b) = -r{a, b) \V2{b) + W2{b) < 0 

and so ab e A. If г(а, b) < ], then 

v{ab) = -r{a, b) W2{b) + W2{b) > 0 
and so ab e B. 

Finally we give an example which shows that there is no restriction for the struc­
ture of the ordered semigroup T\{A KJ B). 

Example. Let U be an arbitrary ordered semigroup and let 5 = Я x (7 be the 
lexicographic product of the ordered additive group R of real numbers and U. 
Then, since R is cancellative, it follows from [6] Corollary 8 that S is an ordered 
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semigroup. Put 

A = {(r, u)eR X U; r <0} , В = {(r, u)eR x U; r >0} . 

Then Л is the least and В is the greatest archimedean class on S. It can be easily 
checked that both A and В are torsion-free, A ô В in ^, and the ordered semigroup 
5 \ (v4 u ß) is o-isomorphic to U. 
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