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ON A PARTIAL COMPLEX STRUCTURE
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Let M?® = % be a real hypersurface. ¥2 being identified with %2* endowed with
an endomorphism J : #* — #* satisfying J?> = —id., we get, on M3, a structure
consisting of a field of tangent planes ,, = T,(M>) n JT(M?) and the restrictions
Jm 1 T = T, of J to 7,5see [3] and [4] respectively. Such a structure is called the
partial complex structure. An attempt to solve the equivalence problem for the struc-
tures of this type has been made by E. CARTAN [1]; unfortunately, his treatment is not
a very clear one. In what follows, I am going to present a more simple method for
solving the mentioned problem.

Let M be a 3-dimensional manifold; in what follows, all the considered manifolds
and maps are supposed to be of class C*.

Definition. Let G be the group of matrices of the type

() « =0
ﬁ a0 5 a,ﬂ,'Y:(S,(PE%; (a2+ﬁz)¢4:0
Y o

A G-structure B; on M is called a partial complex structure.
Let (v, v5, v3), (Wy, W2, w3) be two sections of Bg over a domain U = M; we have

(2) vy = owy — Bwy, v, = Pwy +aw,, vy = yw; + dw, + ow; .

At each point m € M there are induced a plane 7,, = {v;, v,} and an endomorphism
I T = Ty given by J(v,) = vy, J,(v;) = —v;; obviously, J2 = —id. We are
going to suppose that the field of planes T is non-integrable.

Definition. A vector field v on M is called a t-field if v, €1, for each me M.
A vector field u is called an infinitesimal motion of Bg if: (i) £ v is a t-field for each
tfield v, (ii) J(Lw') = L,(Jv') for each t-field v'; here, £, = [u, v] is the Lie
derivative of v. The structure By is said to be locally transitive if, for each me M
and t e T, (M), there is a neighbourhood U = M of m and an infinitesimal motion u
over U such that u,, = t.
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Our main problem is to determine all locally transitive G-structures. Let (v15 vas v3),
(w1, wa, w3) be two sections of Bg over U = M. Then

©) [01, 2] = av, + ay0, + azvy, [wy, w] = Ayw, + Ayw, + Asws,
[v1 03] = byo; + byv, + by, [wi, ws] = Byw, + Byw, + Byws ,
[02 03] = €10, + o0, + c305, [W2, w3] = Cywy + Cow, + Cawy,

the functions ay, ..., cj, Ay, ..., Cy satisfying the Jacobi identities

4) [on [o2s 03]] + [0, [o3, 0,11 + [03, [01,0,]] =0,
[wi, [wa, ws]] + [wy, [ws, wi]] + [Wa, [w, wo]] = 0.
We get
[ 2] = {08 — vy + (& + B2 A} w, + {v10 + 028 + (0 + B2) Ay} w, +
+ (0% + B?) Aswy =

= (xay + Bay + yaz) w, + (xa, — Pa, + das) wy + pazw, ,

o 03] = () wi + () w, + {00 + (@5 + By) A5 + @By — BoCy} wy =
=()wy + () w, + @byw,,

(v, 03] = () wy + (-) wy + {0,0 + (85 — ay) A3 + BBy + apCy} w, =
=()wi + () w, + pcaws .

From this, we get the existence of sections satisfying a; = 1. Suppose a; = Ay =1,
ie, @ = o + B Let us look for the existence of a section (W, wa, w3) satisfying
A; = A, = B; = C; = 0. This amounts to the existence of o, B, y, 6 such that

vf — v =a + af +y, 20w+ 20,8 + a8 + fy = (@ + p*) by,
i + 0B = at — af + 5, 20,0 + 20,8 + BS — oy = (o« + B ey .

[t is easy to see that this system has (at least locally) solutions such that a? + B* =+ 0.
Let a; = a, = by = c3 = 0, a; = 1 for (vy, v,, v3). From the Jacobi identity (4y),
we get vicq — vby = v,¢; — Vb, = ¢, + by = 0. A t-field v is called special if
the section (v, = v, v, = Jv, v3 = [0, Jv]) has the just described property.

Theorem. Let Bg be a partial complex structure over M. Let v, w be its special
t-fields, and let

(5) [v, [v, Jv]] = av + bJv, [Jv, [v, Jo]] = cv — adv,
(Jo)b +va=0, (Jo)a—ve=0;
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(6) [w, [w, Jw]] = Aw + BJw, [Jw,[w, Jw]] = Cw — AJw,
(JW)B+wA =0, (Jwyd—wC=0;
@) v=oaw — fJw.
Consider the functions
(8) Ji= (v — Jv.Jv)(c — b) + 8[v, Ju]a — 3(c? - b?),
Ja=(v.Jv+ Jv.v)(c = b) + 4[v, Ju] (b + ¢) + 6a(c — b);
Jy and J, be defined similarly. Then:
(i) We have
©) Ji iz =02+ )T+ J3).

(i) If j, = j, =0, Bg is locally transitive. For each point m € M, there is its
neighbourhood U = M and special t-fields v over U satisfying

(10) [v.[v, Jv]] =0, [Jv,[v.Jv]]=0.

Choose such a t-field v. Further, choose arbitrary real numbers R,, ..., Rg. Then
there is exactly one field ue %(Bg) over asuitable neighbourhood meU, = U
such that

(11) u, = Ry, + Ry(Jv), + Rs[v, Jv],,
[0, u]n = R4v, + Rs(J0),,
[v. [v, u]]m = Revw + R(JV),, + Rs[v, Jv],,,
[v, [v, [, u]]]m = Rs(J0)w + 2R4[v, Jv],, -

(iii) Let ji + j3 + 0. To each point m € M, there is its neighbourhood U and
exactly two special t-fields v, v' = —v over U satisfying (5) and

(12) ji=1, j,=0.
Bg being transitive, v satisfies
(13) [v, [v, Jv]] = bJv, [Juv,[v, Jv]] = cv;

byce#, 3(*—b)+1=0.

For each vector t€ T,(M), there is exactly one field u € £(Bg) — defined over a suitable
neighbourhood U, of m — such that u,, = t.
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Proof. LetT(M) = T(M) @ i T(M) be the complexification of the tangent bundle

T(M) of M. The bracket operation in TY(M) be introduced, quite naturally, by
(14) [v+ it w+ iw'] = [o,w] = [v,w] + i([v', w] + [o,w]).
In Bg, consider two special sections (v,, v,, v;), (w1, wy, w3) satisfying

(15) [v5, 0] =0y, [o),05] =av, + bo,, [v2, v3] = cv; — av, ;
[wi, w.] = wy, [wy, ws] = Aw, + Bw,, [wy wi] = Cw, — Aw,.
In T(M), consider the vector fields
(16) Vi =vy vy, Vy =0y —ivy, V3 = —2iv,;
Wi=wi+iw,, Wo=w —iwy, W,= —2iw;y .
We get
(A7) [V, Vo]l = Vs, [Vi, V3] =pV, + qV,, [Va, V] = rVy = pVa,
p=c—b, gq=b+c—2ia, r= —(b + ¢ + 2ia),
Vg = =Vip, Vir="V,p;
[w, Wz} = W;, [Wl, W3] = PW, + QW,, [Wz, W3] = RW; — PW,,
P=C-B, Q=B+ C-2i4, R=—(B+ C +2id),
W,Q = —W,P, W,R=W,P.
From (2),
(18) Vi=oWi, Va=oaW,, Viy=uW, + W, + oW, ;
e=a+if, c=a—if, u= -6 +iy), v=56—iy; 00 *+ 0.
Now,
(19) ¢ = go,
(20) Vie= =207, Vo= —pu; Vie=v, Vo =2 lou;
Vap = or — go’R, Vv = oq — 0%Q,
Vi — Vso = gp — ¢%6P, V,v — Vy6 = —op + 0o?P.
It is known [2] that the integrability conditions of (20) imply

(21) ky = 93”K1 » ki = 00°K,
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with

(22) ki = ViVip = 2V3q = 3pq, ky = V;Vyp — 2Vyr + 3pr
and similar definition of K, and K, respectively. We get

(23) ky =i+ iz, ko =jy = ija,

J1 and j, being given by (8). Thus (21) reduce to k1 = ¢°9K; the equation k,k, =
= ¢*¢*K,K, is exactly (9). The equation k, = ¢3g has solutions ¢ + 0 for each
ki + 0; the equation 1 = 3§ has exactly two solutions ¢ = +1. Thus (i) and the
first part of (iii) have been proved.

Suppose j; =j, =0, ie, k; = k, =0, and consider the system (19) + (20),
P = Q =R =0. According to [2], this system is completely integrable, and we
have proved the first part of (ii).

Now, consider the structure Bg, given by a section (v, v,, v;) satisfying

(24) [v1, 2] = v5, [vi, 03] =0, [v2,0] = 0.
Let u € #(Bg),
(25) u = Av, + Bv, + Cv, .

From
[vi,u] =viA. v, + 0,B. v, + (v,C + B)vs,

[v2,u] = ;4. 0, + v,B. v, + (1,C — A) vy,
we get
(26) v A—vB=v,A+0vB=0v,C+B=v,C-A4A=0.
For D := v,A4, E := v,4, we have
(27) v, A
vyB=—E, v,B

D, v,A=E;
D; v uC=—-B, v,C=A4.

I

I

From (275 ),
(28) v;C = 2D ;

the integrability conditions of (27,) + (27,), (27;) + (27.), (275) + (28) and
(275) + (28) are

v34 = v E — v,D, v3B=0v,D+ v,E,
0=2v,D+v3B, 0=20,D— 054
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respectively; for 3F := v,E, 3G := v,E, they become
(29) v34 = 2F; v3B = 2G;
vD= -G, v,D=F; vE=3F, v,E=23G.

The integrability conditions of (27,) + (29,), (27,) + (29,), (273) + (29,), (27,) +
+(292), (295) + (29,) and (295) + (294) being

20,F = 03D, 20,F = v0;E, 20,G = —uv3E, 20,G =D,

v3D = v,F + v,G, v3E = 30,G — 30,F,
we have

(30) v3D=2H; v;E=0; v,F=H, 0,F=0; 06,G6=0, v,G=H

for H := v,F. The integrability conditions of (29,) + (30,), (294) + (30,), (295) +
+ (30,), (29) + (30,), (30;) + (30,) and (305) + (30,) are

20,H = —0;G, 20,H =uv;F, 0,F=0, v3G =0,
v3F = —v,H, v3G =0v,H;
from these, we get
(31) 0;F =0; 0,6=0; 0, H=0, v,H =0.
The integrability conditions of (305) + (31,), (304) + (31,), (305) + (31,), (30¢) +
+ (31,) and (315) + (31,) reduce to
(32) bH = 0.
Thus the system (27)—(32) is completely integrable. For u € #(B;) given by (25),
we get
(33) [v1,u] = Do, — Ev,, [vy, [0y, u]] = —Gv, — 3Fv, — Evy ,
[v1, [v4, [04, u]]] = —3Hov, — 6Fv, ,
this completing the proof of (ii).

Finally, let B; be transitive with j; + j3 + 0. Then they are exactly two special
sections of Bg satisfying j, = 1, j, = 0; let (v, v, v3) be one of them. The functions
a, b, ¢ being now invariants of B, they have to be constants, and we get
=3(c®* = b)) =1, a(c - b) = 0. Because of ¢ — b + 0, a = 0, i.e.,

(34) [v,, 02] =05, [vl, 1)3] = bv,, [uz, v3] = cv, ;
b,ce#, 3(c* - bz) +1=0.
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Let u € #(B;), u being given by (25). From
[vi,u] = v, 4.0, + (v,B + bC) v, + (v,C + B) vy,
[v2, u] = (024 + cC) v, + v,B. v, + (0,C — A) vy,
we get
le—sz=v2A+UIB+(b+c)C=01C+B=sz—-A=0.

For D :=v,4, E:= v,B + bC,

(35) v A=D, v,A=—E — ¢C; vy B=E - bC, v,B=D;
v,C=—-B, v,C=A4.

The integrability condition of (355) and (35) is

(36) v;C = 2D.

The integrability conditions of (35,) + (35,), (35s) + (35,), (35s) + (36) and
(356) + (36) are

v34 + v,E + v,D = ¢B, v;B — v;D + v,E = bA,
20,D + v3B = bA, v3A — 2v,D = cB.

For 3F := v,E, 3G := v,4, we get

(37) vyA = —2F + cB; 0B = —2G + bA ;
0,D =G, 0,0 =—F; v,E=3F, v,E=3G.
The integrability conditions of (35;) + (37,), (35,) + (37,), (355) + (37,), (35,) +
+ (37,), (375) + (37,) and (375) + (37;) are
20,F + vsD=(b+c¢)E, 20,F —v,E = 2D,
20,G + v3;E = 2bD, 20,G + v3D = —(b + ¢) E,
v3sD + v, F + v,G =0, 03E — 30,G + 3v,F = 0.
For H := v,F — bE, they are
(38) vsD = —2H + (¢ = b)E; v;E=2(b—¢c)D;
v F =H+ bE, v,F =14(3b+ 5¢)D;
v,G =%(5b +3c)D, v,G=H — cE.
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The integrability conditions of (37;) + (381), (37,) + (38,), (375) + (38,), (376) +
+ (38,), (385) + (38,) and (385) + (38;) are

(39) 20.H + v,G = (3¢ — 2b) F, 20,H — v,F = (2¢ = 3b) G ;
(40) v3F = —=3(b+2c)G; 0,6 = -3(2b + o) F;
(41) v,H=4(7c —5b)G, v,H = 4(5¢ — 7b) F.

Substituting from (40) and (41) into (39), we get
“2) bF =0, ¢G=0.

Let b % 0 * ¢, i.e., F = G = 0. From (384,5), D = 0. The equations (385,6) imply
(b +¢)E =0; b + ¢ = 0 being impossible because of (34), we have E = 0. We get
H = 0 from (38;). Thus we obtain the completely integrable system

(43) pA= 0, w,d=—cC, v,Ad=cB,

v,B=-bC, v,B= 0, v3B = bA,

v ,C=—-B, v,C= A, v;C =0,
Next, suppose b #+ 0,¢ = 0 (the case b = 0, ¢ # 0 being analoguous). Then F = 0
because of (42,). We get D = 0 and G = 0 from (38,) and (40,) respectively. From

(381,3), v3D + v,F = —H, v,D + 20,F = bE,ie.,E = H = 0. Thus we obtain the
system (43) with ¢ = 0. This proves the second part of (iii) and the Theorem.
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