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The aim of this note is to prove a conjecture (MARTINEZ [4]) on products of torsion
classes of lattice ordered groups.

The notion of a torsion class of lattice ordered groups, the binary operation -
(product) and the lattice operations (), V for torsion classes were defined by Martinez
[4]. To each torsion class J and each lattice ordered group G there corresponds
a radical T(G) of G such that T(G) is the greatest convex I-subgroup of G belonging
to the class 7.

Let 7 and 7, (A€ A) be torsion classes. Martinez (loc. cit.) proved that

(1) g . (n}.eA'g-}.) = nleA(‘g—' . g—l)

and conjectured that, for appropriately chosen torsion classes J and J,, the classes
T .(N1ea7 2) and V;ea(F . ;) are distinct. By using the notion of the radical this
conjecture can be formulated as follows:
(%) There are torsion classes 7, 7, (A€ A) and an I-group G such that, if we
denote
Sy = f—(ﬂzem%), &, = ﬂle/\(ﬂ"n%)

and if S,(G) and S,(G) are radicals of G corresponding to the torsion classes &,
and & ,, respectively, then S,(G) is a proper subset of S,(G).

If H is a linearly ordered group and if A is a finite set, then S,(H) = S,(H) (cf.
Lemma 1 below). Thus if (x) is valid then either A is infinite or G cannot be linearly
ordered.

In this note the following assertions will be proved:

(A) There exist torsion classes I, , (Ae A ={1,2,3,...}) and a linearly
ordered group G such that S,(G) is a proper subset of S(G).

(B) There exist torsion classes 7,7, (Ae A = {1,2}) and a lattice ordered
group G such that Sy(G) is a proper subset of S(G).
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Each variety of lattice ordered groups is a torsion class. In [4] there are given
some examples of torsion classes that are not varieties. The natural question arises:
how many torsion classes exist that fail to be varieties? We shall show that the family
of torsion classes with this property is very large. To each ordinal « we can assign
a torsion class 7, such that 7, is not a variety and for any two distinct ordinals
, B we have 7, # 75 (moreover, if B < «, then 7, is a proper subclass of 7).

1. PRELIMINARIES

For the terminology, cf. BIRKHOFF [1] and FucHs [2]. We use the additive notation
for the group operation, though we do not suppose it to be abelian. Let G be a lattice
ordered group and let K(G) be the system of all convex I-subgroups of G partially
ordered by inclusion. Then K(G) is a complete lattice; for {H;} = K(G) the lattice
operations in K(G) are denoted by NH; and VH,.

For the sake of completeness, let us recall the following notions and results {cf.
[4])- Let 7 =+ 0 be a class of lattice ordered groups such that

(i) if Ge 7, then each homomorphic image of G belongs to J;
(ii) if G € 7, then each convex I-subgroup of G belongs to J;
(iii) if G is an I-group and {H;} < K(G) such that each H; belongs to J, then VH,
belongs to 7. Then J is called a torsion class of lattice ordered groups.
Let ¢ be the class of all lattice ordered groups and let T: % — % be a mapping
such that, for each G e ¥, the following conditions are fulfilled:
(iy) T(G)is an Il-ideal of G;
(ii;) T(4) = A n T(G) for each convex I-subgroup 4 of G;
(iidy ) if ®: G - H is an onto -homomorphism, then (T(G)) ® = T(H).
Under these assumptions T is said to be a torsion radical. The I-ideal T(G) is the
T-radical of the I-group G. There is a one-to-one correspondence between torsion
classes and torsion radicals that is given by the following rule. If J is a torsion class
and G is a lattice ordered group, then the corresponding T-radical of G is the join VH;
of all convex I-subgroups H; of G belonging to 7. Conversely, if T'is a torsion radical,

then the corresponding torsion class 7 is the class of all I-groups G such that T(G) =
= G.

Let o7, # be torsion classes, G € 4. Put
H = A(G/B(G))
and let H,, be the set of all g € G such that g + B(G) € H. Then H, is an l-ideal of G
and the mapping C : 9 — ¢ defined by C(G) = H, is a torsion radical. The cor-

responding torsion class will be denoted by € = o . .
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Let 7, (A € A) be torsion classes. For any G € ¢ we put
P(G) = NTy(G), Q(G) = VTy(G).

Then P and Q are torsion radicals; the corresponding torsion classes will be denoted
by
?=N7;:, @=V7;.

If A, B are torsion radicals corresponding to torsion classes &/ and %, then the
torsion radical corresponding to the torsion class &/ . # will be denoted by 4 . B.
Analogous notations are used for the operations ), V.

2. LINEARLY ORDERED GROUPS
Lemma 1. Let 7,7, (Ae A = {1,2,...,n}) be torsion classes and let G be
a linearly ordered group. Let Sy, S, be as in (x). Then S;(G) = S,(G).

Proof. It suffices to prove the assertion for A = {1, 2}, since then the general
case follows by induction. Thus we have to verify that

@ (T-(Ti 0 T,)) (6) = (T- T) (G) n (T 1) (G).
According to (1),
(T.(Ty " T)) (G) = (T. T) (G) n (T. T) (G) .

Since G is linearly ordered, K(G) is a chain and so we can suppose that
T,(G) € Tx(G)

is valid. Hence
T(G|Ty(G) n T5(G)) = T(G|T(G))
and therefore

(T-(T, A ) (6) = (T. T) (6) 2 (T. T,) (6) ~ (T T3) (6).

Thus (2) is valid.
We need some auxiliary results on linearly ordered groups.
Let-J be a linearly ordered set and let G be an I-group. Assume that, for each

j€J, Ajis an l-subgroup of G such that
(a) the group G is a direct sum of its subgroups 4;;

(b)if0+geG, g=a,+...+a, 0+a,ed,ji)e fori=1,..,n and
j(1) < j(2) < ... < j(n), then g > 0 if and only if a; > 0.
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Under these assumptions G is said to be a lexicographic sum of its I-subgroups 4,

and we write
G = F°Aj (jeJd).

If J = {1,2, ..., n} with the natural order, then we denote
G=A10A20...0An.

Lemma 2. Let J be a linearly ordered set and for each je J let B; be a lattice
ordered group such that if j is not maximal in J, then B; is linearly ordered.
Then there exists a lattice ordered group G = T°A; (j € J) such that A; is isomorphic
to B; for each je J.

This is an easy consequence of [2], p. 41, (d).

Lemma 3. Let H be a convex l-subgroup of an l-group G = I'°4; (je J). For
eachje J, H n A; is a convex l-subgroup of A; and

H=T%A4;nH) (jeJ).

Proof. The first assertion is obvious. Let 0 + g € H and let a; be as in (b) (i =
=1,...,n). Then 2|g| € H and
—2]9[ <a; < 2[g[

holds for i =1, ..., n, hence a; € H. Therefore the conditions (a) and (b) are valid

with G, 4; replaced by H, H n A;.

Lemma 4. Let H be an l-ideal of an l-group G = I'°A; (j € J). Suppose that
each A; is linearly ordered. Then G[H is isomorphic with T°(4;/H n 4;) (j €J).

Proof. Let jeJ. The group H n A4; is a normal subgroup of 4;. According
to Lemma 3, H n A; is a convex [-subgroup of 4;. Thus H n 4; is an l-ideal of 4;
and hence we can construct the factor l-group A4 j/H N A;. Moreover, each l-group
Aj/H n A; is linearly ordered. Hence by Lemma 2, the I-group I'%(4;/H n 4))
(jeJ) = G’ does exist. '

Let j(1),...,j(n) e J, j(1) < j(2) < ... <j(n), and let a; b;e 4;;, (i = 1,...,n),

g=a;+...+a,, g =by+..+b,.
If g — g’ € H, then according to Lemma 3,
a;—bieHn Ay, (i=1,..,n).
Thus the mapping ¢ : G/H — G’ defined by
olg + H =a, + (Hn Ajiyy) + ... + a, + (Hn Ay
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is correctly defined. ¢ is a homomorphism of the group G/H onto the group G'.
If ¢(g + H) = 0, then a; + (H n A4j;)) = H 0 Aj;) and hence a; € H N Aj;, for
i=1,...,n; thus g = a, + ... + a,e€ H. Therefore ¢ is an isomorphism of the
group G onto the group G’.

Letg € G, g + H + H. There are elements j(1), ..., j(n) € J with j(1) < j(2) <
... <j(n)and 0 % a;€ 4;;, (i = 1, ..., n) such that g = a, + ... + a,. Denote

k=min{ie{l,...,n} :a,none H},
g =a+a,+..+a,.
Then g’ € g + H and hence
olg + H)=a, + (Hn Ajp) + @Gy + (HN Ajgery) + -0 + a, + (H 0 Ajg,).

Let g + H> 0 in G/H. If a, <0, then g’ <0 and g'none H, thus g + H =
=g+ H<O0in G/H, which is a contradiction. Therefore a, > 0 and hence a, +
+ (H n 4;4y) > 0in A;4y/H 0 Ajq. This implies that (g + H) > 0.

Conversely, let ¢(g + H) > 0. Then a, + (H n A;4) > 0 and hence a, > 0.
From this we obtain g’ > 0Oandsog + H=g + H > 0.

Thus ¢ is an isomorphism of the linearly ordered group G/H onto T%(A;[H n A;)
().

If an I-group G is a cardinal sum of its I-subgroups A4; (i € I), then we denote it by
G=7ZA;(iel). Inthecase ] = {1,...,n} wewrite G = 4, ® ... D 4,

The proof of the following lemma is straightforward.

Lemma 5. Let H be a convex subgroup of an l-group G = XA, (iel). Then
H = X(H n A;)(i €I). If H is an l-ideal of G, then G[H is isomorphic to SA,[H n A,.

Let € be a class of lattice ordered groups that is closed with respect to iso-
morphisms. We denote by k(%) the class of all lattice ordered groups that can be
expressed as cardinal sums of lattice ordered groups belonging to %.

Lemma 6. Let € be a class of linearly ordered groups fulfilling (i) and (ii).
Suppose that € satisfies the condition

(iiip) if G is a linearly ordered group, {H;} < K(G) such that each H, belongs
to €, then VH; belongs to €.

Then k(%) is a torsion class.

Proof. Let G € k(%). Then G = 24, (i eI) with 4,€ % for each iel.

Let G’ be a homomorphic image of G. There exists an [-ideal H, of G such that G’
is isomorphic to G/H,. By Lemma 5, G/H, is isomorphic to £4;/4; n H,. Since %
fulfils (i), A;/A N H, € € and hence G’ € k(%).
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Let H be a convex Il-subgroup of G. According to Lemma 5, H = X(H n A,)
(i €I) and obviously H n A; is a convex [-subgroup of 4;. Thus H € k(%).

Now let G be any I-group that need not belong to k(%). Let %, be the class of all
linearly ordered groups. Then k(%,) = 7, is a torsion class (cf. [4]). Hence the
T,-radical T;(G) of G is a cardinal sum

€) Ty(G) = 24; (iely)

of lineraly ordered group A;. Let i €I, be fixed and let B; be the join of all convex
I-subgroups of A; belonging to €. According to (iiiy), B; belongs to % and hence the
I-subgroup

: G, =B, (iel,)

of G belongs to k(%). Since B; is convex in A; for each ieI,, G, is convex in G.
Let H be a convex I-subgroup of G belonging to k(%). Then H € 7, and hence H is
a convex I-subgroup of T;(G). From Lemma 5 and (3) we obtain

H=73(4;nH) (iel,).

Because H € k(%), we have H = 2C; (j € J) with C; € 4. Hence according to Thm.

8, [2].

H=Y4,nH nC) (iel, jeJ).
i

Clearly A; " H n C; € %. Thus A; n H 0 C; € B; for each i e I;. Therefore H < G,.
Thus G, is the greatest convex I-subgroup of G belonging to k(%). Hence k(%) is
a torsion class.

3. THE CLASSES 4, AND 7,

We denote by Z(R) the additive group of all integers (all reals) with the natural
linear order. Let %, be the class of linearly ordered groups G that can be writen as

G=A10A20...0An,

where A; is isomorphic to some I-subgroup R; of R for each i e {1, ..., n}. If B; is
a convex [-subgroup of A;, then either B; = {0} or B; = A;. Hence it follows from
Lemma 3 and Lemma 4 that the class %, fulfils the conditions (i) and (ii).

Let G be any lattice ordered group and let a, b€ G. If na < b for each positive
integer n, then we write a < b. For any positive integer n we have:

If Ge%,+1, G¢%, then there are elements a,, d,,...,d,+;€G such that
0<a; <a; <a3 <... <4a,,,; and there does not exist any b € G with a,,, < b.
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Lemma 7. Each class €, fulfils the condition (iiio).

Proof. We proceed by induction on n. Let G be a linearly ordered group. We
denote by S, the set of all convex I-subgroup of G belonging to %,. We have to show
that each system S, has a greatest element.

If card S; = 1, then {0} is the greatest element of S;. Suppose that there is
{0} + 4, €S, and let Be S,. Then we must have 4; = B and hence A4, is the
greatest element of S,.

Assume that the assertion is proved for n; hence there exists the greatest element 4,
of S,. If B < A, for each Be S,,, then the assertion holds for n + 1. Suppose
that Bnon g 4, for some Be€ S, ;. Then B cannot belong to S,, hence there are
elements by, ..., b, ;€B with 0 < b; < b, €... < b,y. If Bj€S,,;, Bjnon =
S B, then B < B, and hence there is b € B; with b,,,; < b; this is a contradiction.
Therefore B is the greatest element of S, .

From Lemma 6 and Lemma 7 we obtain:

Lemma 8. k(%,) is a torsion class for n = 1,2,....

We denote 7 = VK(%,) (n = 1,2,3,..)).

Let P = { P1s Pa2» } be the set of all primes. For each positive integer n let A4,
be the set of all x € R such that

XpiPs .- PpE€EZ.

Then 4, is an I-subgroup of R. For n % m the linearly ordered groups 4, and 4,
are not isomorphic.

Lemma 9. Let 7, be the class of all I-groups G € T o with the following property:
if H e K(G) and if H, is an l-ideal of H, then H|H, is not isomorphic to A,. Then 7,
is a torsion class.

This follows from Lemma 8 and [4], Theorem 2.6.

Let G =T°4; (jeJ ={1,2,3,...}) and let n be a positive integer. From the
definition of G and from the Lemmas 3, 4 and 5 it follows that

@ T(G) =T°4; (j>n).
Thus G/T,(G) e %, < k(%,) = 7, and hence .

(To . T.) (6)=¢6
for each positive integer n. Therefore

(5) Nis1,2... (To Tn) (G) =G.
Moreover we get from (4)
ﬂn-z,z,... Tn(G) = {0} ’

(NT)(6) = {0}
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and thus
(©) (To -NT,) (G) = To(G) -
Let {0} + H be a convex I-subgroup of G. Choose 0 + h € H. We have

[h] = aj0y + @y + oo + Ay 5
a4y # 0fori =1,...,m, j(1) < j(2) < ... < j(n). Then ajy > 0 and hence

=2|h| < a; < 2|h|
for each a; e 4 with j > j(1). Thus
I°4; (j> i) e H.

From this we obtain

K(G)={0} for n=1,2,...,

where K, is the torsion radical corresponding to the torsion class k(%,). Hence

) To(G) = VK,(G) = {0} .
From (6) and (7) we get
®) (T, -NT,) (G) = {0} .

By (5) and (8), the assertion (A4) is valid.
Let 2,(2,) be the class of all lattice ordered groups that are cardinal sums of

linearly ordered groups isomorphic to R(Z). Both 2, and 2, are torsion classes
(cf. [4]). Put 7 = k(%,). Let G = A - (B @ C), where A and B are isomorphic to Z,
and C is isomorphic to R. Then

0:G)=cC, 0,6)=B, T(G)=B®C,
hence G/Q,(G) is isomorphic to 4 - Band G/Q,(B) is isomorphic to A4 » C. Therefore
(T-21)(6) = G =(T.2,)(G),
© (T.0;nT.Q,)(G)=6G.
On the other hand, (Q; n Q,) (G) = {0}, hence '
(10) (T(21n2))(G)=T(G)=BOC+G.

By (9) and (10), the assertion (B) holds.
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4. THE CLASSES R,

Let « > 1 be an ordinal and let J, be an ordered set that is dually isomorphic
to the set of all ordinals less than a. Let A; be a lattice ordered group isomorphic
to Z for each j e J and '

C,=T4, (jel,).

We put C; = {0}. Further let %, be the set of all linearly ordered groups C; with
B < a. Since Z has no convex l-subgroup distinct from {0} and Z it follows from
Lemma 3 and Lemma 4 that the class %, fulfils the conditions (i) and (ii).

Let G be a linearly ordered group. For each ordinal é we shall define by induction
I-subgroups B; and D; of G such that the following conditions are satisfied:

(a,) either B, = {0} or B, is isomorphic to Z;
(a,) Dy is a convex I-subgroup of G and

D; =T°B,;, (jeK,),

where K is a linearly ordered set dually isomorphic to the set of all ordinals f < § -
and ¢ is the corresponding isomorphism.

We put B, = D; = {0}. Assume that y > 1 and that we have defined B;, D; such
that (a,) and (a,) are valid for each § < y. Denote

E, = UD; (5 < y) .
From the condition (a,) we obtain
E,=T°B,; (jekj),

where K9 = K,\ {y} and ¢ has an analogous meaning as ¢ with K9 instead of K.

If B; = {0} for some & with 1 <& <y, then we put B, = {0}. Assume that
B; + {0} for each 1 < 6 < y. If there are [-subgroups H, H, of G such that H is
a convex l-subgroup of G, H, # {0}, H, is isomorphic to Z and

H=H10E7,

then we put B, = H,, D, = H. If such [-subgroups H, H, of G do not exist, we put
B, = {0}, D, = E,. Then the conditions (a,) and (a,) are valid for the ordinal y.
From the construction of D, it follows, that D, is the greatest convex [-subgroup
of G that is isomorphic to some lattice ordered group belonging to %,. Hence ¥,
fulfils the condition (iiiy). Therefore according to Lemma 6, k(%,) is a torsion class.
If « < B are ordinals, then ¢, = %, and hence k(%,) = k(%,). But C; non € %, and
hence, because C, is linearly ordered, C; non € k(%,). Thus k(%) # k(%,).
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Let o > 2 and let 4, B be lattice ordered groups isomorphic to C,, G = A @ B.
Then G € k((g,,). Both A4 and B are linearly ordered and nonarchimedean and hence,
according to [3], there is an I-subgroup C of G such that C cannot be represented
as a cardinal sum of linearly ordered groups. Thus C does not belong to k(%,).
Therefore the class k(%,) is not a variety. If we put 7, = k(%,.), then no torsion
class , is a variety.

References
[11 G. Birkhoff: Lattice theory, Providence 1967.
[2] JI. ®yke: YacTHuHO ymopsmoueHHbIe anrebpaunyeckue cucremsl, Mocksa 1965.
[31 J. Jakubik: Cardinal sums of linearly ordzred groups, Czech. Math. J. 25 (1975), 568—575.
{4] J. Martinez: Torsion theory for lattice ordzred groups, Czech. Math. J. 25 (1975), 284—299.

Author’s address: 040 01 Kosice, Svermova 5, CSSR (Vysoké udeni technické).

585



		webmaster@dml.cz
	2020-07-03T00:12:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




