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1. INTRODUCTION

A topclogical semigroup is a non-empty Hausdorff space together with a conti-
nuous associative multiplication, denoted by juxtaposition (x, y) — xy. When there
is no possible ambiguity we shall simply refer to S as a topological semigroup. If S
contains a zero, that is, an element 0 such that x0 = Ox = 0 for all xe S, S is said
to be a topological semigroup with zero. In this paper, we consider only topological
semigroups with zero and hence we shall use the term‘semigroup’ to mean topologi-
cal semigroup with zero.

If S is a semigroup, an element b of S is called nilpotent if " — 0, that is, if for
every neighbourhood U of 0 there exists an integer n, such that b" e U for all n = n,.
The set of all nilpotent elements of S shall be denoted by N. If N is an open subset
of S, then S is called an N-semigroup. In addition, if S is a compact space, then S
will be called a compact'N-semigroup.

In [2] we studied some properties of compact commutative N-semigroups with
zero and local zeros. The following definition was introduced there. If a € S, the set
of all right topological zero divisors of a is the set Tod,a = {x esS l ax e N}. The
set Tod, a of all left topological zero divisors of a is similarly defined. If S is com-
mutative we shall denote them both by Tod a. We observe that Tod a is always
non-empty since 0 € Tod a. In this paper we shall study the properties of N in terms
of Tod e where e is a non-zero idempotent of S. We shall prove that in fact N is the
intersection of all such Tod e. We shall also show that if e is a non-zero primitive
idempotent of a compact N-semigroup S, then Tod e is an open prime ideal of S.
Finally, we show that in a compact N-semigroup, under some conditions, a nil ideal
is nilpotent, thus transporting the well known Hopkins-Levitzki theorem from ring
theory to compact N-semigroups, with the chain conditions being replaced by com-
pactness.

1y This research was supported by NRC Grant A3026.
2) This research was supported by a Summer Research Grant of the Canadian Mathematical
Congress at Université de Sherbrooke, Québec, Canada.
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2. PRELIMINARIES

We shall use the following notation. Let A be any subset of a semigroup S, and
let a € S. Then

A = topological closure of 4 in S

A = complement of 4 in S

|4] = cardinal number of the set A

J(A) = AU AS U SA U SAS, that is, the smallest ideal of S containing 4

Jo(A4) = the union of all ideals contained in A, that is, the largest ideal contained
in 4 if Jo(4) + 0

R(4) = {xeS [ x" € A for some integer n = 1}

Ia) = { "

K(a) = ﬂ {a' [ i 2 n}, that is, the set of cluster points of the sequence {a"}"

It is well-known that if F(a) is compact, it contains a unique idempotent. Moreover,
K(a) is a group and K(a) = e I'(a) = I'(a) e where e € I'(a) is the unique idempotent
(see [6], pages 22—25).

We recall some definitions and results that we shall need.

Lemma 2.1 (Numakura [4]). The set E of idempotents of S is a closed subspace
of S which is partially ordered under the relation e < f if ef = fe = e, and this
partial order is closed, that is, it has a closed graph. If ef = fe for all e, f€E,
then E is a semigroup and ef is the greatest lower bound of {e, f} relative to <.

Definition 2.2. An idempotent e is called primitive if f> = f € eSe implies that
f = 0orf = e Itis obvious that the non-zero primitive idempotents are the atoms
of the partially ordered set (E*, <), where E* = E — {0}.

Definition 2.3. Two non-zero idempotents e and f of S are said to be orthogonal
if ef = fe = 0. We shall denote this by e L f.

Definition 2.4. An ideal P of S is said to be prime if AB = P implies that A = P
or B ¢ P where A and B are ideals of S. An ideal Q of S is said to be completely
prime if ab € Q implies that a € Q or b € Q, where a and b are elements of S.

Remark. An ideal which is completely prime is prime, but the converse need not be
true. (For a counter example, see [6], page 51.) However, these concepts coincide in

the case of commutative semigroups.
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Theorem 2.5 (Numakura [5]). If S is a compact semigroup with zero, then each
open prime ideal P %= S has the form JO(S - e) where e is a non-zero idempotent
of S. Conversely, if e is a non-zero idempotent, then JO(S — e) is an open prime ideal.

Lemma 2.6 (Numakura [4]). Let S be a semigroup with zero and let a € S. It a"
is nilpotent for some integer n = 1, then a itself is a nilpotent element.

Lemma 2.7 (Hoo-Shum [2]). If S is a compact commutative semigroup, then the
set N is an ideal of S.

3. NILPOTENT ELEMENTS AND TOPOLOGICAL ZERO DIVISORS

In this section we shall study the set N of nilpotent elements in a compact com-
mutative semigroup S, and give a characterization of this set in terms of the sets
Tod e; where the e; are in E*. Some of the results are closely related to those obtained
in our previous paper [2]. Throughout this section, S will denote a commutative
semigroup.

Lemma 3.1. If S is compact but not nil, then N is the intersection of all the sets
Tod e where e€ E.

Proof. Since S is a commutative semigroup, it follows from Lemma 2.7 that
N = (N Tod e. We now show that () Tod e = N. Let x € () Tod e. Then ex € N for

ecE ecE ecE

all e e E. Since S is compact, it follows that I'(x) is compact, and hence there exists
an idempotent e, € I'(x). Since K(x) = e, I'(x) is a group, it follows that e;x € K(x)
has an inverse y € K(x). Hence applying Lemma 2.7 once more, since N is an ideal
of S, we have e; = (e,x) y € NS = N. This implies that e, = 0, that is, K(x) = [0}.
But K(x) is the set of all cluster points of the sequence {x"};,. Hence x" — 0, that
is, x € N. Therefore N = () Tod e.
ecE

Theorem 3.2. Let S be compact and let E* be the set of all non-minimal idem-

potents of S. Then N = () Tod e.

ecE¥

Proof. Since Tod 0 = S, by Lemma 3.1, we immediately have N = () Tod e.

ecE*

Now let e, e, be idempotents of S and let us suppose that e; < e,, that is, e,e, =
= e,e,; = e,. Then if x € Tod e, we have e,x € N. Thus (eje,) x = e,(e,x) € e, N
< N by Lemma 2.7; thatis, e;x € N, or x € Tod e,. Thus, ife; < e, we have Tod e, =
< Tod e,. This proves the theorem.

n

Corollary 1. If S is compact, then N is a closed ideal of S if and only if for each
e E*, Tod e is a closed ideal of S.
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Proof. If for each e€ E?, Tod e is a closed ideal of S, then by Theorem 3.2 it
follows immediately that N is a closed ideal of S. The converse was proved by us in
[2] and also by A. D. WALLACE in [11].

Remark. We point out that K. NUMAKURA said in [4] that the structure of semi-
groups in which N is not open was not known to him. The Corollary above suggests
that it may be worthwhile for us to consider the sets Tod e when N is not open.

Corollary 2. (Another characterization of compact N-semigroups.) A compact
semigroup S is an N-semigroup if and only if S contains only a finite number of
open ideals Tod e with e € E*,

Proof. Since the intersection of finitely many open sets is open, in one direction,
this results is obvious. The converse was proved by us in [2] and by A. D. Wallace

in [11].

In [2] we proved that S is a compact N-semigroup if and only if E* = E — {0} is
compact. The characterization above is an improvement of our previous result. Also,
in [2] we called a semigroup an A-semigroup if Tod a are all open for every a € S,
and we asked (Colloquium Mathematicum problem P796): if S is an A-semigroup,
is S an N-semigroup? If S is compact and E* is finite, this Corollary gives an af-
firmative answer to this problem.

Corollary 3. If e € E*, then Tod e = R(Tod e).

Proof. Clearly Tod e = R(Tod e). Take y € R(Tod e). Then there is an integer
k = 1 such that y* e Tod e, and hence ey* € N. Since e is an idempotent and S is
commutative, we have (ey)* € N. By Lemma 2.6, it follows that ey € N, that is, y €
€ Tod e. Hence Tod e = R(Tod e).

Remark 1. In general, N is properly contained in Tod e if e is a non-zero primitive
idempotent. However, Tod e need not be the minimal non-nil ideal of S. The next
example due to S. ScHwARz ([8], page 226) shows this.

Example 3.3. Let S be the discrete semigroup consisting of four elements {0, a, e, f}
with the following multiplication table:

. N

I I A
o o] oo o
a!O'OiOa
e | 0 0 | e |0
f o0 a | o | f
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Clearly, e and f are non-zero primitive idempotents of S. The lattice of ideals of S
is given by Figure I. Obviously, Tod f is not the minimal non-nil ideal of S.

S

TOd/={0,a,e]

Tode={0,a,f (0]
e

N=[0.q}

{of

Figure 1.

Remark. If S is not compact, Theorem 3.2 ﬁeed not hold. This can be seen from the
following example.

Example 3.4. Let S, be the set of all non-negative real numbers with the ordinary
multiplication. Let S, be the set of all integers < —2, the multiplication being the
ordinary multiplication of numbers with a negative sign affixed. Definein S; U S, =
= S a commutative multiplication * by x * y = 0if x € S, y € S, ,while the products
in S; and S, are as above. Then S is a semigroup. Clearly N = [0, 1) and Tod 1 =
=[0,1) U S,. Thus N #+ (N Tod e.

ecE*

Proposition 3.5. Let S be a compact N-semigroup and let e be a non-zero idem-

potent of S. Then

(i) Tod e is a nil ideal of S if there does not exist any non-zero idempotent of S
which is orthogonal to e.
(i) If N is itself a prime ideal of S, then N = Tod e for all non-zero idempotents e.

(i) If Tod e is not a minimal non-nil ideal of S, then Tod e contains a non-zero
primitive idempotent f such that fS ¢ N. Conversely, if f is a non-zero primitive
idempotent in Tod e such that N — fS + 0, then Tod e is not a minimal
non-nil ideal of S.

Proof. The proofs of (i) and (ii) are trivial, and the proof of (iii) is similar to the
arguments of Numakura in [4]. We omit the details.

4. OPEN PRIME IDEALS IN N-SEMIGROUPS

Throughout this section all semigroups under consideration are commutative
compact N-semigroups. Unless otherwise specified, S will be such a semigroup.
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Theorem 4.1. If e is a non-zero primitive idempotent of S, then Tod e is an open
prime ideal of S.

We need the following lemma for the proof.

Lemma 4.2. Let e be a non-zero idempotent of S. If I is an ideal of S which is
not contained in Tod e, then there is a non-zero idempotent f such that fe I — Tod e.

Proof. Let xeI — Tod e and consider the principal ideal J(x) generated by x.
Clearly I'(x) = J(x) = I. Since S is compact, I'(x) is a compact semigroup. Thus
there is an idempotent f € I'(x) < I. Suppose, for an indirect proof, that f € Tod e.
Then we have fe € N, which implies that fe = 0. Thus, by continuity of multiplication,
we have (xe)" - fe = 0. That is xe e N. But this implies that x € Tod e, which is
a contradiction. Hence we conclude that f ¢ Tod e.

We are now in a position to prove Theorem 4.1.

Proofof Theorem 4.1. Since e ¢ Tod e, we have Tod e = Jy(S — e). If Tod e +
#+ Jo(S — e), then by Lemma 4.2, there is an idempotent f e Jo(S — e) — Tod e.
Hence ef =+ 0. Since (ef) e = ef, we have 0 + ¢f < e. But e is a non-zero primitive
idempotent of S. Hence ef = e. Thus ee J(e) J(f) = J(f) = Jo(S — €) which is
a contradiction. Hence Tod e = Jo(S — e). Now, applying the well-known theorem
of K. Numakura (Theorem 2.5), we obtain immediately that Tod e is an open prime
ideal of S.

Corollary 1. If E* consists of non-zero primitive idempotents, then N can be
expressed as the itersection of a family of open prime ideals properly containing N.

Proof. Immediate from Theorem 3.2 and Theorem 4.1.

Remark. In [5] K. Numakura proved that the set N is the intersection of all open
prime ideals of S. His result is clearly strengthened here by considering the ideals
Tod e in place of all open prime ideals.

Corollary 2. Let B, = {x € S| e, € I'(x)} and let e be a non-zero primitive idem-
potent. Then B, is a subsemigroup of S and Tod e is a union of B,, that is, Tod e =

=UB,

Proof. This follows from Schwarz’s results on compact commutative semigroups

[7]-

Corollary 3. Let S be a compact connected N-semigroup. If e € E* then there exists
a compact group lying in the boundary of the set Tod e.
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Proof. Since S is a compact N-semigroup, Tod e is an open ideal of S. Then
Tod e + Tod e. By Lemma 4.2, we can find an idempotent feT_od—e;— Tod e.
Clearly f lies on the boundary Bd (Tod e) for Bd (Tod ¢) = Tod ¢ N (S — Tod e) =
=Toden (S — Tod ). Now let H(e) be the maximal group containing the idem-
potent e. As both Tod e and Tod e are ideals of S. We have H(e) = Bd (Tod e),
completing the proof.

Remark. We observe that the converse of Theorem 4.1 need not be true, that is,
an open prime ideal of S need not correspond to an ideal Tod e for some e € E*.
The following example illustrates this.

Example 4.3. Let S be the teeth of the comb-space with zero qdjoined, thatis, S =
= ({0} u {1/n|n =1,2,...}) x [0.1). The multiplication * defined on S is given by

(1 1) * (x2, ¥2) = (3432, min {y, y,}) .

We easily check that S is a topological semigroup with zero, and that all points
lying on the lines {0} x [0,1) and {1} x [0,1) are idempotents of S. The non-zero
primitive idempotent is the point (1,0) = e. Clearly Tode = Jo(S —¢) = S —
— ({1} x [0,1)) which is an open prime ideal of S. If we consider the idempotent
e; = (1, 1), then for all e € E*, Tod e is not equal to Jo(S — e,).

In general, Tod e need not be a prime ideal. We have the following remark on
finite semigroups.

Proposition 4.4. Let S be a finite semigroup such that N is not equal to Tod e
for all e e E*, then all Tod e must be prime ideals of S if |S| < 4.

Proof. If we want to construct a non-prime ideal Tod e in S, according to Theorem
4.1, we must require that e; to be non-primitive, that is, there is some non-zero idem-
potent g in S such that g < e,;. Moreover, we also observe that for any non-nil
ideal Tod e, there exists always an idempotent f € Tod e such that f L e. Combining
these two facts, one can easily derive that in order to construct a non-prime ideal
Tod e in S, we must require that S contains at least one non-primitive idempotent
and at least three other non-zero idempotents, or require that S contains at least one
non-primitive idempotent, two non-zero primitive idempotents plus at least one other
element. Thus, a non-prime ideal Tod e cannot exist unless ]S| > 5. We omit the
details.

The following example shows how a non-prime ideal Tod e can be constructed in
a semigroup S.
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Example 4.5. Consider the semigroup with the following multiplication table.

0 e | f | g a | ¢
| |

0 0 0 0 o | o o
e | 0 | e e 0o 0o | o0
Vi ! 0 | e f | g | 0 |0
g | 0 |0 v g | 0 0
a 0o | o § 0 i 0 ! 0 | a
¢ ol o 0o | o0 a | ¢

Then N = {0, a}, Tod f = {0, a, c}. Clearly Todf is not prime since e¢ Tod f
and g ¢ Tod f, but eg = 0 Tod f.

Moreover Tod e = {0, g, a, ¢}, Tod g = {0, ¢, a, c}, Tod ¢ = {0, ¢, f, g, a}. Thus
N = Tod f n Tod g n Tod e n Tod c.

We would like to thank Dr. P. N. STEWART here for his comments which lead to
the following:

Theorem 4.6. Let E, be the set of non-zero primitive idempotent s of S. Then

N = () Tod e, where each Tod e is a minimal open prime ideal containing N. Con-
ecEg

versely if P is a minimal open prime ideal containing N, then P = Tod e for some
eeE,.

Proof. We first prove that if P is a minimal open prime ideal containing N, then
P = Tod e for some non-zero primitive idempotent e. Let P be an ideal with this
property, then by Theorem 2.5 we can write P = J(S — ) for some non-zero idem-
potent e. If e is not a non-zero primitive idempotent, then there exists a non-zero
idempotent e; < e such that Jo(S — e;) & Jo(S — ). (See [6], page 119). But then
Jo(S — e;) is an open prime ideal of S, which contradicts to the minimality of P.
Hence e is a non-zero primitive idempotent. Also Tod e = Jo(S — €) = P and Tod e
is an open prime ideal. Thus Tod e = JO(S — e) = P. Now N = () all open prime

ideals = () all minimal open prime ideals = () Tod e. Our proof is completed.
ecEy

Remark. If N itself is non-prime, then the set of all minimal open prime ideals of S
properly containing N can be identified by the set of all non-zero primitive idem-
potents of S.

We now give a new version of the theorem of FAUCETT, KocH and NUMAKURA [1]

Theorem 4.7. Let e be a non-zero primitive idempotent of S. If the intersection of
maximal ideals of S is nil, then the following conditions are equivalent.
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(1) S — Tod e is a disjoint union of groups.
(2) For each element of S — Tod e there exists a unit element.
(3) ae S — Tod e implies that a* € S — Tod e.

(4) S — Tod e contains an idempotent and the product of any two idempotents
of S — Tod e lies in S — Tod e.

Proof. The proof uses a result of Schwarz [9]. It is proved there that a prime ideal
of S is a maximal ideal if and only if it contains the intersection of all maximal ideal
of S. Now let M be the intersection of all maximal ideals of S. By our hypothesis,
M is nil. Hence M < N. Since N < Tod e we have M < Tod e. By Theorem 4.1,
Tod e is an open prime ideal; in fact, it is completely prime since S is commutative.
Then, by Schwarz’s result, Tod e is a maximal ideal of S. Hence by the theorem of
Faucett, Koch and Numakura [1], the theorem follows.

Remark. If e is a non-zero idempotent of S, then (3) is always true by Corollary 3
of Theorem 3.2.

5. NIL IMPLIES NILPOTENT

The well-known theorem of Hopkins-Levitzki in ring theory states that if a ring R
satisfies the descending chain condition (ascending chain condition) on its one-sided
ideals, then any nil ideal of R is a nilpotent ideal of R. We show here that under
some conditions, this theorem in ring theory can be transferred to compact N-semi-
groups without assuming the d.c.c. or a.c.c. on its ideals. In this section, the com-
mutativity of S is not assumed.

Remark. In a compact N-semigroup, a nil ideal need not be nilpotent as the fol-
lowing example shows.

Example 5.1. Let S be the unit interval with the usual multiplication. Then I =
= [0, 1) is a nil ideal (nil in the topological sense). However, I is not nilpotent since
I" = I for all integers n = 1.

Theorem 5.2. Let S be a compact N-semigroup. If a non-nilpotent ideal I of S
contains at least one closed non-nilpotent left (right) ideal of S, then I is non-nil.
(This is the Hopkins-Levitzki theorem on compact semigroups.)

The proof requires the use of the following result

Lemma 5.3. Let S be a compact space and let F = {B, | A€ A}be a family of

closed subspaces of S indexed by A.If A is an open subspace of S such that \ B, <
ied

< A, then there is a finite number of B, whose intersection is also contained in A.
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Proof. Since N B, = A we have A" = |J B;. Each Bj is an open subspace of S

reA 2eA
and A’ is compact in S. Thus {B;},-M is an open covering of A’. By the compactness
of A’, there is a finite subcovering of 4’, say {B;}7.,. Hence A’ = |J B; and hence

i=1-
N B, = A.

2=1

A=1

Proofof Theorem 5.2. Let I be a non-nilpotent ideal of S. Let T be the collection
of all closed non-nilpotent left ideals of S contained in I. Now T'is partially ordered
by inclusion and is non-empty by our hypothesis on I. Suppose {7;}“ is a linearly
ordered subcollection of T. Then (T, is non-empty since S is compact. Hence N7,

a

is a closed non-empty ideal of S. We claim that N7, is a non-nilpotent ideal. For if

a

not, then (T, is nilpotent and hence is nil. Hence T, < N where N is the set of all

nilpotent elements of S. Since T, is closed for all @ and N is open, by Lemma 5.3,
we can find finitely many T, whose intersection is contained in N. Since {T,}, is an
inclusion tower, we have T, = N for some o. But since T, is a closed left ideal of S,
by a result of K. Numakura ([5], page 675), T, is nilpotent. This contradiction estab-
lishes our claim. Thus {Ta} has a lower bound, and Zorn’s lemma assures us of the
existence of a minimal closed non-nilpotent left ideal, say L, in I. We have I2 < L,
but since L, is non-nilpotent, we must have I = L, by the minimality of L,. Let .#
be the family of all left ideals J in S such that L,J & O and J < L,. Then .# is non-
empty since L; € /. Since S is compact, applying the above arguments and Zorn’s
lemma, we see that .# has a minimal closed left ideal of S, say J, such that L;J; + 0.
Let 0 & x e J; be such that L,x & 0. Then L;x is a closed left ideal of S, and
L(Lix)=L}x=Lx+0 and Lix < L;J = L,. Hence L;xe.#/. Moreover,
L;x = J; since Lix < J; and J; is minimal. Now let a € L; be such that ax = x.
Then for any integer n = 1 we have a"x = x, which implies that a" +> 0. Since a €
€ L, < I, I is therefore non-nil. This completes our proof.
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