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0. Introduction. In the theory of reflections the following theorems are well known
(HErrLICH [1], 9.1 and 9.2; the basis of the theory of reflections: MiTcHELL [2],
Chap. V, paragraph 5):

Let 2 be a full, replete and reflective subcategory of the category €, R : € — A
a reflector, E : W — @ the inclusion functor and D : M — W a diagram. Then it
holds:

0.1. If (L, Iyr)mepm, is @ limit of E o D, then Le |U| and (L, ly)yepom, is @ limit of D.

0.2. The functor E is a limit preserving functor.

0.3. The functor R is a colimit preserving functor.

In this paper the concept of the reflection is generalized to the concept of quasi-
reflection and 1t is shown that in case of 2 being quasi-reflective, Theorems 0.1, 0.2
and 0.3 hold if we consider only the A-, 1,- and A.-diagrams. (Theorem 0.3 will
change only in the case when the domain of the diagram having a colimit in € is
contained in ‘lI.) In the 3rd paragraph we show that further weakening of the sup-
position concerning the A-, 4,- and 1.-diagrams is in a certain sense impossible.

We recall the fundamental notions and notation: Let € be a category. The class of
objects of € will be denoted by |€|. For X, Y e || the set of morphisms from X to Y
is denoted by (X, Y)g, 1y denotes the identity of X.

By a functor we shall mean a covariant functor. A functor D : IR — € is said to
be a diagram if M is a small category. A pair (L, ’M)qum] is called a lower bound
of a diagram D : M — € if I, € (L, D(M))s for each M € || and if for each M-
morphism f € (M, N)y, the diagram

D(M) D(N)

D(f)

commutes.
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A lower bound (L, IM)MelgJTI is called a limit of a diagram D : 9t — € if for each
lower bound (L, Iy;)y | of D there exists a unique morphism I e (L, L), such that
for each M € |M| we have I, o [ = I},.

The dual notions: upper bound and colimit of D will be denoted by the pair

(1_.11, L)Mewm-

1. Quasi-reflection. Definition. Let 2 be any subcategory of a category € and let
Xe |G| A morphism g € (X, Q) is called an A-quasi-reflection of X if it holds:

(a) Qelu],

(b) for each A €| and each fe (X, A)g there exists at least one morphism
J€(Q, A)y such that the diagram

commutes,

(c) g = 1, for each g € (Q, Q)o such that g . ¢ = q.

If for each X € |(S[ there exists an A-quasi-reflection of X, then A is called a quasi-
reflective subcategory of €.

Evidently, it holds:

1.1. Let ge(X, Q) and ¢ €(X, Q)¢ be U-quasi-reflections of X. Then there
exists a unique isomorphism f € (Q, Q')y such that the diagram

Q
i
9 i
i
X if
q ;
vl
Q

commutes.
1.2. Let f be an isomorphism from X to Y where Ye I‘JI{. Then f is an A-quasi-
reflection of X.

1.3. Examples. a) The full subcategory 2 of all complete spaces in the category €
of all uniform spaces with uniformly continuous mappings is a quasi-reflective sub-
category of €. This subcategory  is not a reflective subcategory of €.
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b) Let € be the category of all (partially) ordered sets with order-preserving maps
and let 2 be the full subcategory of all complete lattices. Then the embedding of
each ordered set X in its Mc Neille completion is an 2-quasi-reflection of X that is
not an -reflection of X.

¢) In the category of all semigroups with homomorphisms, the full subcategory of
all semigroups with identity element is a quasi-reflective subcategory that is not
a reflective one.

d) Similarly, the full subcategory of all ordered sets with the least element of the
category of all ordered sets is a quasi-reflective subcategory in this category that is
not a reflective one.

2. /-Diagram. In what follows 9t will denote a small category, I : It — I the
inclusion functor. For M, € (~m|, M, e [9)2[ we put M, <X M, if there exists a mor-
phism f € (M, M,)yy. The relation < is a quasi-ordering on the set Iim’ A component
of the category M will mean a component of the connection of (||, <) taken as
a full subcategory of M. The inclusion functor from a component & of 9t to M will
be denoted by I (Ig: S — M).

Definition. The category M will be called a A-category if for each component S
of M the diagram I has a lower bound. If the diagram I has a lower (an upper)
bound, we shall call M a A-category (J.-category). A diagram D : M — € will be
called a A-diagram, a Aidiagram, a 1.-diagram, if the category 9t is a A-category,
a A;-category or a A-category, respectively.

Further, let A be a full subcategory of €, E : A — € the inclusion functor and
D :IM — A a diagram.

2.1. Theorem. Let (L, ly)yem; be a limit of the diagram E o D, let D be a }-
diagram’and q € (L, Q)s an N-quasi-reflection of L. Then Land Q are isomorphic
objects in C.

Proof. For each component € of 9t the diagram Ig has a lower bound

(S(©). hx)xeje)- Further, there exists a morphism rg €(Q, D(S(€)))y such that
reoq = lge, For Me|S| we put ky = D(hy)ore. Evidently (Q, ky)yem i
a lower bound of D. Therefore there exists g € (Q, L)e such that I o g = k, for
each M € |9|. For M e |M|it holds Iy, = D(hy)  Isey = D(hy)orc o q = kyoq =
= lyogoq, hence gog = 1,. Then (qog)oq = g, hence gog = 1,.

This Theorem implies

Corollary. Let U be a replete, quasi-reflective subcategory of a category €.
Then 2 is product stable (i.e., closed under products) in €.

2.2. Theorem. Let (L, ly)ycan be a limit of ihe diagram D and let D be a A
diagram. Then (L, ly)yciam is a limit of the diagram E o D.

Proof. Let (X, Xp)mejm; be a lower bound of the diagram I. Then (D(X),
D(x»))aejam; is @ lower bound of the diagram D. Hence there exists v e (D(X), L)y
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such that Iy ov = D(X,) for each M e|M|. Since - (velx) = (Iyov)olyx =
= D(xp;) o lx = Iy, it holds vo Iy = 1,.

Let (L, Iyy)mejm, be a lower bound of the diagram E o D. We put u = v o Iy. Then
we have Iyou = (Iyyov)oly = D(xp)oly= Iy If ' e(L, L) and lyyou’ = I
for each M e ||, then we have Iy o u’ = Iy, hence u’ = (veoly)ou’ = vo(lxou’) =
=voly =

2.3. Theorem. Let (Iy;, L)y be a colimit of the diagram E < D, D a A -diagram,
ge(L, Q)s an A-quasi-reflection of L. Then (q o Iy, Q)uepmy is a colimit of the
diagram D.

Proof. Let (xp, X)yejam; be an upper bound of the diagram I : 9 — 9X. Then
(D(xXp1)s D(X))ssepamy is an upper bound of E o D. Hence there exists w e (L, D(X))¢
such that w o [, = D(x,,) for each M € |M|. We have (Iy o w)o Iy = Iy o (woly) =
= Iy o D(x);) = Iy, therefore Iyow = 1,. There exists e (Q, D(X))y such that
Woq =w. We put p=1I,.w. Then we have pog=1I3Woqg=1Iyow =1,
hence (g o p)oq = qo(poq) = q,consequently g o p = 1,. Land Q are isomorphic
objects in €.

3. Some extensions of Mi. Let M be a small category. There exist different symbols
L, Q, P for which L¢ ||, Q ¢ ||, P ¢ |M|. We shall define three categories J =
= J(M), & = K(M) and £ = L(M) such that M is a full subcategory of theirs and
|31 =[] o {L, 0}, |8] = [¢] = [W| v {L, 0, P}.

3.1. The extension J(9). There exist symbols 1,, 15, g, w and I, for each M € |9].
For M e|M| we put (L, M)y = {I,}, (Q, M)y = {[f. w]:fe(N, M)y, Ne|M|},
(M, L)y = (M, Q)3 = 0. Further, we put (L, Q)y = {q}, (L, L)y = {1,}., (0, Q)5 =
= {15}, (0, L); = 0. The symbols 1,, ... are chosen so that it holds X, Y, U, Ve |3
(X, Y)3n (U, V)3 #0=X=U,Y=V.

We shall define the composition - in J in the following way: let M, N, O € I‘:UEI,
fe(M,N)y, ge(N, O)y. Weput folyy=1Iy, go[fiw]=[gcfiw] [fiw]og=
= Iy. The operation o for 1,(1,) will be defined so that 1,(1,) will be the identity
of L(Q).

Let B be a full subcategory of J,
be the inclusion functors.

)

B| = |M| U {0}, andlet E: B > J, 4:M-> B

Clearly:

3.1 (L, Iy is a lower bound of the diagram E - A, q (L, Q)y is a B-
quasi-reflection of L, Land Q are not isomorphic objects in 3.

3.1.2. The following conditions are equivalent:

(a) for each M € || there exists ky € (Q, M)y such that (Q, ky)uem, is a lower
bound of E - A,
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(b) A is a A-diagram,
(C) (L’ IM)Me]»m, is not a limit of the diagram E - A.

Proof. I. If (L, ,M)ME[‘)Rl is not a limit of E - A, then for each M € I‘JJI] there exists
ky € (Q, M)y such that (0, kM)Mel‘JRI is a lower bound of E. A or there exists
N €|M| and for each M e || there exists hy € (N, M)y, such that (N, hy)yepam is
a lower bound of E - A. In this latter case we put ky = [Ay, w]. Then (Q, k) aeqomy
is a lower bound of E o 4. Therefore, it holds (c) - (a).

Il Let (a) hold. Then for each M e |M| there exist N(M)e [M| and fy €
€ (N(M), M)g such that ky, = [ f,,, w]. For X, Ye ||, X < Y we have N(X) = N(Y).
Therefore, for each component & of 9 there exists N¢ such that for S € & we obtain
N(S) = N¢. (Ng, fs)seje) is a lower bound of I : & — M. Hence (b) holds.

I1. The implication (b) — (c) follows from 2.1.

3.1.1 and 3.1.2 imply

3.1.3. Let M be not a A-category. Then there exist a category €, a full, replete
subcategory W of €, a functor D:M — A, Le |(§I, Qe |QI|, ge(L, Q) Iye
€ (L, D(M))s for each M e || with the following properties:

a) (L, ly)yejm is @ limit of diagram E o D (E : A — € is the inclusion functor),
b) q is an N-quasi-reflection of L,

¢) Land Q are not isomorphic objects in €.

3.2. The extension R(‘m) There exist different symbols 1;, 1y, 1p, g, r, s, u, v. For
each M e || let pys, Ty Sy» Ly denote any different symbols. For M e [M| we put
(L, M)g = {In}, (@ M)g = {ra su}s (P, M)g = {pu}, (M, L)g = (M, Q)5 =
= (M, P)q = 0. Further, we put (Q, L)g = {r, s}, (P, Q)¢ = {q}, (P, L)g = {u, v},
(L, Q)¢ = (@, P)g = (L, P)g = 0, (L. L)y = {1}, (2. Q)¢ = {1o} and (P, P)y =
= {1p}. The symbols 1, ... are chosen so that X, Y, U, Ve |R], (X, Y)y n (U, V), *
+0=>X=U,Y=V.

We shall define the composition o of morphisms in & in the following way: let
M,Ne|M|, fe(M,N)g. We put foly =1y, fory =ry, foSy =5y, fopy =
=pwluor =rylyos =Sy, lyott =lyyov=py,rog =uU,5cqg=0,ryoq =
= Sy o q = py. The operation o for 1,(14, 1) will be defined so that 1,(1,, 1,) is
the identity of L(Q, P).

Let B, be a full subcategory of &, |B,| = |M| U {L,Q}, let E:B, > &, B: M —
— B, be the inclusion functors.

Clearly it holds:

3.2.1. g is a By-quasi-reflection of P, therefore B, is a quasi-reflective subcategory
of K. (L, ly)mejm, is not a limit of the diagram E o B. (L, In)mepmy is a limit of the
diagram B iff the diagram B is not a A,-diagram.
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3.2.1 implies

3.2.2. Let M be not a A,-category. Then there exist a category €, a full, replete
quasi-reflective subcategory W of €, a functor D : )
for each M € I‘JJEI so that (L, IM)qul is a limit of the dlagtam D but not a hmzt of
the diagram E o D(E : 9 — @ denotes the inclusion functor).

3.3. The extension (). There exist different symbols 1,, 14, 1,, g, 1, u, v. For
cach M e |M| let Iy, py, gy denote any different symbols. For M e (M| we put
(M, Lo = {lu}, (M, Q)s = {an}, (M, P)g = {pu}, (L M)y = (Q, M)y =

= (P, M)g = 0. Further, (L, Q)¢ = {q}, (L, P)g = {r}, (0, P)¢ = {u, v}, (P, Q)¢ =
=(P,L)g =(Q L)g =0, (L, L)g = {1}, (Q, Q)¢ = {1o}, (P,P)¢ = {1,}. The
symbols 1,,... are chosen so that X,Y,U,Ve|2|, (X,Y)en(U,V)e + 0= X =
=U. Y=V

The composition o for the morphisms of £ is defined in the following way: for
fe(M,N)g, M,N e |M| we put Iyof = ly, pyof = pa» dn of = gy Further, we
put gclyy = gaps Folyy = Papy Uo gy = Vo Qpp = proreachMei‘.)Jl| and uoq =
= v q = r. The operation o for 1,(1,, 1,) will be defined so that 1,(1,, 1,) is identity
of L(Q, P).

Let B, be a full subcategory of €, |B,| = [M| U {P, O}, let E: B, — &, C:M —
— B, be the inclusion functors.

Then the following assertion holds:

3.3.1. ge(L, Q)g is a Bquasi-reflection of L, therefore B, is a quasi-reflective
subcategory of 8.(q o Iy, Q)Me]wu = (qum> Q)Me]sm] is not a colimit of the diagram C.
(s L)Mepml is a colimit of the diagram E o C iff the diagram C is not a A.-diagram.

From 3.3.1 we obtain

3.3.2. Let M be not a A-category. Then there exist a category €, a full, replete
subcategory U of €, a functor D:M — €, Le|€|, Qe|U|, ge(L, Q)s, In€
€ (D(M), L)s for each M € || with the following properties:

a) (ly> L)sejam; is a colimit of the diagram E o D (E : % — € is the inclusion
Sfunctor),

b) q is an A-quasi-reflection of L,
¢) (q Iy, Q)mepm, is not a colimit of the diagram D.
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