Czechoslovak Mathematical Journal

Kripasindhu Sikdar
Decompositions of the state space, homomorphisms and products of semigroup

acts
Czechoslovak Mathematical Journal, Vol. 24 (1974), No. 4, 511-521

Persistent URL: http://dml.cz/dmlcz/101270

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101270
http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL

Mathematical Institute of Czechoslovak Academy of Sciences
V. 24 (99), PRAHA 15. 11. 1974, No 4

DECOMPOSITIONS OF THE STATE SPACE,
HOMOMORPHISMS AND PRODUCTS OF SEMIGROUP ACTS

KRIPASINDHU SIKDAR, Calcutta

(Received November 7, 1972)

1. INTRODUCTION

Let S be a (topological) semigroup and X a nonvoid T,-space. Then an act [cf 4,
5, 6], denoted by the pair (X, S), is a continuous function f : X x S — X such that
f(x,s152) = f(f(x, 51), s,) for all xeX and all s,, s, € S. Throughout this paper,
X and S, which are often termed as the state space and the input semigroup, respec-
tively, will refer to an act (X, S) and f(x, s) will be simply denoted by xs.

ForQ+AcXand@+ Tc S, let AT={xs:xeAdandseT}and AT =
={x:xeX and xTn 4 # 0}. An orbit (a point-inverse set) is a set of the form
xS (xS V) for some x € X. An orbit is maximal if it is not properly contained in an
orbit. A minimal orbit and a maximal (minimal) point-inverse set are analogously
defined. An act (X, S)is compact if both X and S are so, and is unitary if x € xS for
each x € X. An act whose orbits, or maximal orbits (point-inverse sets) form a parti-
tion of the state space will be called a quasi-transitive, or disjoint (i-disjoint) act,
respectively. For all other unexplained concepts concerning acts reference is made
to DAy [4].

If Sis a group and XS = X the orbits partition X but if S is merely a semigroup vari-
ous kinds of overlapping of orbits are possible. This paper results from an attempt to
study semigroup acts from the above consideration and results concerning disjoint (and
i-disjoint) acts, quasi transitive acts, how a homomorphism maps a maximal (minimal)
orbit (point-inverse set), or a disjoint (i-disjoint) act onto a similar object, and how
a product of acts inherit similar properties from the component acts, are presented
in Sections 2, 3,4 and 5, respectively. Some of these results were reported in [10].
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2. DISJOINT (I-DISJOINT) ACTS

To start with let us state the following remarks without proof.

Remark 2.1. Let (X, S) be a compact act.

(a) Every orbit is contained in a maximal orbit [cf. 10, 1] and every orbit contains
a minimal orbit. If XS = X, then the family F of maximal orbits form a minimal
cover of X (i.e., UF = X and no sub-family of F has this property).

(b) If the act is also unitary, then xS is a maximal (minimal) orbit iff xS™"" is
a minimal (maximal) point-inverse set. Consequently, statements similar to those
in (a) hold good for maximal point-inverse sets.

Though, in general, an act need not be disjoint, the following is true.

Proposition 2.2. [cf. 10, 1]. Let (X, S) be a compact act. Then there exists a disjoint
act (X*, S) whose homomorphic image is (X, S). Further, if the set Y = {x : xS is
maximal orbit of (X, S)} is closed, then X* is compact.

The following gives several characterizations of disjoint acts.

Proposition 2.3. Let (X, S) be a compact unitary act. Then the following statements
are equivalent.

(1) The maximal orbits form a decomposition of X.

(2) For any distinct pairx, y € X, xS 0 yS # 0 implies that xSTY n ySCD % 0.

(3) For any 0 + A + B = X, AS n BS * 0 implies that AS©" A BSC" % 0.

(4) Each point-inverse set contains a unique minimal point-inverse set.

(5) Each orbit is contained in a unique maximal orbit.

(6) Each maximal orbit is a union of maximal point-inverse sets.

(7) Each maximal orbit is a union of point-inverse sets.

(8) There exists a (unique) equivalence relation on X with closed graph such that
each equivalence class is an orbit.

Proof. (1) = (2) = (3) = (4) = (5). Easy.

(5) = (6). Suppose xS is a maximal orbit and {x,S} are all the minimal orbits
contained in xS. We claim that Ux, S = xS. If y € x,S", then x,S < yS < xS.
So y € xS. Conversely, if y € xS, then yS < xS and if y'S is a minimal orbit contained
in yS € xS, then y e ySC D < y'SCH < 5,81,

(6) = (7). Trivial.

(7) = (6). Let xS be a maximal orbit which is a union of point-inverse sets
{x,SC"V}. Let {x*S¢" 1} be all the maximal point-inverse sets in which one or more
of x,8C"1) are contained. We claim that xS = (Jx*S(C" V. Clearly, xS < x*S¢™
which contains some x,SC, as x,8¢ D < xS, xSV < x,8D < x*S(™ . Hence,
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for some se S, xs = x*. Thus x* e xS and for some x; such that x,S¢ "
x* € x;,SC 1 50 that x*SC 1 = x,5C 1 as x*SCV is maximal. Hence, x*S" "

xS,
xS.

n-in

(6) = (1). We first make two observations.

(a) For any two minimal orbits xS and yS, xS n ys*" " % 0 iff xS = yS. For,
if xS N pSCY £ 0, then there exist s, t € S such that xst = y and, hence, xS = yS.

(b) If a maximal orbit xS is a union of maximal point-inverse sets {x,S" "},
then {x,S} are indeed all the minimal orbits contained in xS. For, (a) implies that if yS
is any minimal orbit contained in xS, then ys = x,S"" % 0 for some «, and so
¥S = x,S. '

Now suppose x,S and x,S are any two maximal orbits which intersect. Then there
exists a minimal orbit yS = x;S N x,S and, hence, by (b), yST" = x,;S N x,S.
Let zS™ 1) be a minimal point-inverse set contained in yS™!. Then zS, a maximal
orbit, is contained in x;S N x,S as z € zS" V) and, therefore, zS = x,;S = x,S.

(1) = (8). Defineg = X x X asx ¢ yif xand y are contained in the same maximal
orbit. Then ¢ has the required properties.

(8) = (1). If g is such an equivalence relation then note that each equivalence class
is a maximal orbit. For, let [x] be an equivalence class containing x and suppose
[x] = xS. If xS = yS = [y]. the equivalence class containing y, for some y € X,
then x e yS < [y] implies that xS = [x] < [y]. Then it follows that [y] = [x]
and, hence, xS = yS. Further, as ¢ has closed graph each equivalence class is closed
and, hence, compact.

Remark 2.4. There exist analogous characterizations for i-disjoint acts.

A characterization of acts which are both disjoint and i-disjoint is the following

Proposition 2.5. Let (X, S) be a compact unitary act. Then the following two
statements are equivalent.

(@) (X, S) is both disjoint and i-disjoint.
(b) Each maximal orbit is a maximal point-inverse set and vice-versa.

Proof. (a) = (b). Let xS be a maximal orbit. Then, as (X, S) is i-disjoint, by virtue
of Remark 2.4, if yS is the unique minimal orbit contained in xS, we claim that
xS = ySU Y. If z e xS, then zS € xS and zS contains a unique minimal orbit
which must be yS and, hence, z € ySC™1. Conversely, if z € ySC~V, then yS < z8,
and, hence, as (X, S) is disjoint, by virtue of Proposition 2.3 (5), the unique maximal
orbit in which zS is contained in must be xS. Therefore, z € xS.

"To prove that each maximal point-inverse set is a maximal orbit we can apply
similar arguments.

(b) = (a). Suppose two maximal orbits x,S and x,S intersect and suppose y,;S(" "
and y,S¢" 1) are two maximal point-inverse sets which equal x, S and x,S, respectively.
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There exists a minimal orbit zS < x,S N x,S so that zS < y,SCV N y,S¢n

which implies that both y, and y, are in zS and, therefore, equivalently, V1S =

= y,S = zS as zS is minimal. Therefore, x,S = x,S and, hence, (X, S) is disjoint.
Similarly, it can be shown that (X, S) is i-disjoint.

3. QUASI-TRANSITIVE ACTS

In this section acts for which any two distinct orbits are disjoint are studied.
A semigroup S acts on X point-transitively if xS = X for some x € X, quasi-
transitively if XS = X and for any x, y € X, y € xS implies that x € yS and transi-
tively if xS = X for all x e X.

First, note that an act (X, S) is quasi-transitive iff it is unitary and each orbit is
minimal as well as maximal, and is transitive iff it is point-transitive and quasi-
transitive. Then some characterizations for quasi-transitive compact acts are stated
below.

In what follows let K, E and R stand for the minimal ideal, the set of idempotents
and any minimal right ideal of S respectively and H(e) stand for the maximal sub-
group of S containing e € E.

Proposition 3.1. Let (X, S) be a compact act. Then the following statements are
equivalent.

(1) S acts quasi-transitively on X.

(2) The orbits form a decomposition of X (i.e., the orbits partition X and each
orbit is closed).

(3) R acts unitarily on X.

(4) For each ecK N E, (Xe, H(e)) is a topological transformation group and
U{Xe:eeRNE} =X.

(5) For each x € X, there exists e € R n E such that x = xe.

(6) For each x € X, there exists e e K n E such that x = xe.

(7) K acts unitarily on X.

Proof.

(1) = (2). Trivial.

(2) = (3). For any x € X, x € xS and xS is a minimal orbit. Now xR is a minimal
orbit and xR < xS. So x e xR = xS.

(3) = (4). For any ee K N E, Xe H(e) = Xe eSe = Xe. Se = XRe = Xe. Also
note that XH(e) = Xe. Now X = XR = X(U{H(e):ee RN E}) = U{XH(e) : e
€ERNE} =U{Xe:eeRNE}.

(4) = (5). Since for any x € X, x € Xe for some e € R N E, we then have x = xe.

(5) = (6) = (7). Trivial.
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(7) = (1). Since K = UR, for any x € X, x € xK implies that x € xR for some R
and xR is a minimal ideal and, hence, xR = xS because x € xR implies that xS <
< xRs < xR. Thus, each orbit xS is minimal and S acts unitarily on X. Hence, (l)
follows.

It is worth noting that R (or K) acts unitarily on X iff XR = X (or XK = X)
[ef. 2].

With further restrictions on X or S or both we have a few more results regarding
quasi-transitive acts. Some parts of Propositions 3.2 and 3.3 are similar to results of
STADLANDER [7, 12].

Proposition 3.2. Let (X, S) be a compact act. If either, S is left simple or S?=35
and S is normal, or S acts commutatively on X, then the following statements are
equivalent.

(1) S acts quasi-transitively on X.

(2) For each ee K n E, (xS, H(e)) is a topological transformation group for any
xeX and XS = X.

(3) For each ee K n E, (X, H(e)) is a topological transformation group.

Proof. (1) = (2). Note that H(e) is a compact topological group for each e e K N
N E and, by virtue of our assumptions, for each x € X, xS H(e) = x Se Se = xS%e =
= xSe = XeS = xR = xS. Also XS = X.

(2)=(3). For any eeK nE, note that, X H(e) = (U{xS:xeX})H(e) =
=U{xS:xeX} = X.

(3) = (1). Since for any e € K n E, H(e) acts on X unitarily and so far any x € X,
xS H(e) = xS implies that xS = xS H(e) = xS x Se = x ¢ S = xR = a minimal
ideal. Note that S acts unitarily on X and so (1) follows.

Proposition 3.3. Let (X, S) be a compact act. If either, S is left-simple or S is
normal, or S acts commutatively on X, then the following statements are equivalent.

(1) S acts quasi-transitively on X.

(2) 05 : X = X, o/x) = xs, is a homeomorphism for all seK.
(3) Foranyee K nE, x = xe forall xe X.

(4) o, as defined in (2), is a homeomorphism for some s € K.
(5) For someee K N E, x = xe for all xe X.

Proof. (1) = (2). For each ee KN E, Xe=XeH(e)=XeSe=XeS =
XR = X.

Since (Xe, H(e)) is a topological transformation group for each e € E n K, it follows
that g, is a homeomorphism for each s € H(e) and, hence, for each s € K = (J{H(e) :
teeKnE}
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(2)=(3)=(1). Let ee K n E and s e H(e). Then ¢, is a homeomorphism and
hence X#(e) = X. Therefore, x = xe for all xe X and so, by Proposition 3.4,
S acts quasi-transitively on X.

(2) = (4) = (5) = (1). Trivial.
In the above proposition we established equivalence of the statements (2) and (4)

under the assumption of normality of S or the commutativity of the act. This is,
however, not necessary as we have the following simple result.

Proposition 3.4. Let (X, S) be a compact act such that o, : X — X, o(x) = xs, is
a homeomorphism for some s € K. Then o, is a homeomorphism for all s € K.

Proof. Note that K = J{H(e) : e € K n E} and so, if, for s e H(e), g is a homeo-
morphism, then (X, H(e)) is a topological transformation group. Then, via isomor-
phisms of H(e) and H(f), e, f € E n K [cf. Theorem 1.2.6,9], it follows that (X, H(f))
is also a topological transformation group for all fe K n E. Hence, the assertion
follows.

In Proposition 3.3 we have proved equivalence of quasitransitive acts and acts
where each transition map ¢, : X — X, ¢4(x) = xs, for se€ K is a homeomorphism
under certain hypotheses. The implication from the homeomorphism of ¢’s to
quasi-transitivity of the acts does not demand all these hypotheses. However, the
assumption of g,’s to be homeomorphisms is sufficiently strong and has some implica-
tion towards the algebraic structure of the input semigroup as seen in the following
result.

Proposition 3.5. Let a compact semigroup S act effectively on X (i.e., for s, t e S,
s =+ t implies that for some x € X, xs + xt). Then for each s € S, the transition map
0, X = X, QS(X) = xs, is 1 =1 iff (X, S) is a topological transformation group.

Proof. It is sufficient to verify that under the hypothesis if each g, is 1 —1, then S
is a topological group and x1 = x for all x € X where 1 is the identity in S.

To prove that S is a topological group, by theorem 1.1.15 [9], we need only to show
that S is cancellative. Now if for s, s,,t€ S, s,t = s,t, then xs,t = xs,t for all
xeX, and, as g, is 1—1, xs; = xs, for all x e X. Again, S acts effectively on X,
and hence, s, = s,. Similarly, ts, = ts, implies that s, = s, since xt = x. Thus, S is
cancellative. Further, if 1 is the identity in S, then, as ¢, is 1 —1, it follows that
xs = x for all x € X. Hence, the result follows.

Note that in the above proposition the assumption of effective action can be
dropped if we demand that (X, S/o) should be a topological transformation group
where sgt if xs = xt for all x e X.

There is an analogous result in Day [4] which states that if (X, S) is effective and
compact such that Xs = X for all s € S, then S must be a group.
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There exist somewhat similar results concerning transitive acts [10]. Further, via
a result on point-transitive acts [7, 8, 12] and a result on transitive acts [5, 8] it is
easy to give characterizations of decompositions of a nonvoid T,-space X induced
by a disjoint or quasi-transitive action of a semigroup on it [10]. All these are simple
and, hence, omitted.

4. ON HOMOMORPHISMS OF ACTS

Throughout this section we let h to be a homomorphism from a compact act (X, S)
onto a compact act (Y, S), that is, 1 is a map from X onto Y, which need not be con-
tinuous, such that h(xs) = h(x) s for all x e X and all seS. We investigate how h
maps each maximal (minimal) orbit (point inverse set) or a disjoint (i-disjoint) acts
onto a maximal (minimal) orbit (point inverse set) or a disjoint (i-disjoint) act
respectively. This section is mainly algebraic.

Clearly, h maps an orbit onto an orbit and every maximal orbit yS of (Y, S) is
h-image of some maximal orbit xS of (X, S).

But h-image of a maximal orbit need not be a maximal orbit. However, we have:

Proposition 4.1. h maps each maximal orbit onto a maximal orbit if, for any
xp. X, € X, (1) h(x,S N x,8) = h(x,S) 0 h(x,S), and (2) x; ¢ x,S N x,S implies
that h(x3) ¢ h(x,S N x,5).

Proof. Easy.
Proposition 4.2. h maps each maximal orbit onto a maximal orbit if for any

x;, %, €X, C=h(x)Sh(x;,)S + 0 implies that if C g h(x,)S, then C g
& h(x3) S for some x;3 € X such that x,S < x;S.

Proof. Easy.

Corollary 4.3. If h is 1 —1, then h maps maximal orbit onto a maximal orbit.

Regarding disjoint acts, we have the following two results.

Proposition 4.4. i1 maps a disjoint act (X, S) onto a disjoint act (Y, S) if, for any
veY, h™(y) = xA for some xe X and 0 + A < S. '

Proof. Let, if possible, two maximal orbits y,S and y,S of (Y, S) intersect. Then
suppose x;S and x,S are two maximal orbits of (X, S) such that h(x;) S = y;S,
i=1,2. Now, for ye y;Sn.y,S +0, h"'(y) n x;S # 0, i = 1,2. Now note that
as (X, S) is disjoint, h~!(y) = xA for some xe X and 0 + 4 < S iff h™(y) is con-
tained in a unique maximal orbit; and, furthermore, h™!(y) < x,S N x,S which
implies that x;S = x,S. Hence, y,S = y,S.
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Proposition 4.5. The following two statements are equivalent.

(a) (, S) is disjoint and h maps each maximal orbit onto a maximal orbit.
(b) For any two maximal orbits x;S, i = 1,2, of (X, S) Nh(x;) S * O implies
h(x,S) = h(x,S).

Proof. Easy.

Concerning minimal orbits, note that # maps each minimal orbit onto a minimal
orbit, and each minimal orbit of (Y, S) is h-image of some minimal orbit of (X, S).
Therefore, a homomorphic image of a quasi-transitive (transitive) act is quasi-transi-
tive (transitive).

We next consider maximal point-inverse (mpi) sets and homomorphisms.

Propositien 4.6. Every mpi set yS©™1 of (Y, S) is h-image of a union of mpi sets
{x,SC 1} of (X, S) such that h(x,) S = yS.

Proof. Notice that yS(") is an mpi set iff yS is a minimal orbit and there exists
a minimal orbit in (X, S) whose h-image is yS. So, suppose {x,S} are all the minimal
orbits of (X, S) such that h(x,) S = yS. We claim that ySC " = h(x,S ). Note
that h(xS™") < h(x) S© P for any x € X and h(x,S) = yS if h(x,) STV = yS~1.
Therefore, h(x,S™") < ySC" and, hence, Uh(x,S"") = yS™Y. Conversely, let
z € yS™". Then, for some x € X, h(x) = z and there is s € S such that h(x)s = y
and h(x) s S = yS. There exists a minimal orbit x'S < xsS < xS so that h(x'S) <
S h(x)s S = yS. Now x’ = xst for some te S and so x e x’S"". So h(x) = z €
e h(x'SY) = Uh(x,S1).

Proposition 4.7. (Y, S) is i-disjoint iff for any two mpi sets x,S"b, i = 1,2, of
(X, S), NA(x;S") =+ 0 implies that h(x,) S = h(x,) S.

Proof. Only if” part follows from Proposition 4.6.

Conversely, let for any two mpi sets x;,S™", i = 1, 2, of (X, S), Nh(x,S") + 0.
Then Nh(x;) ST + 0 as h(x, STV) = h(x) STV for any x = X. Then, as (Y, S)
is i-disjoint, it follows that NA(x;) S # 0 and, hence, h(x,) S = h(x,) S.

In general, h(xS™") < h(x) SV for any xeX and h(xS‘"") = h(x) SV
iff for any a € h(x) STV, h™'(a) n xS™" 4 0. The following gives a sufficient con-
dition for the latter to happen in case of mpi sets.

Proposition 4.8. h maps each mpi set of (X, S) onto an mpi set of (Y, S) if for any
two mpi sets x;SCV_ i = 1,2 of (X, S), Nh(x;S") % 0 implies that h(x,S"") =
= h(x,S" ).

Proof. Let xS("1 be an mpi set of (X, S). Let h(le(“”) < yS¢™Y an mpi set
in (Y, S) such that h(x) S = yS. Now ySCV = UY{h(x,5 V) : h(x,S) = yS} and,
for any «, B such that h(x,S) = h(x,S) = yS, since 0 + yS = h(x,S") N
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A h(x,SC V), it follows: that h(x,SC ) = h(x;SC"). So, h(xSCV) = ys©™b =
= h(x) SV

Proposition 4.9. Let (X, S) be disjoint. Then (Y, S) is i-disjoint if for any two mpi
sets x;,S " of (X, S) that intersect h(x,S*™V) = h(x,S" V). If h maps each mpi
set onto an mpi set then this condition is also necessary.

Proof. It is sufficient to show that any mpi set yS™ " of (Y, S) is a union of orbits.
By Proposition 4.6, yS©" = (Jh(x,S™ ) where x,S are all the minimal orbits of
(X, S) such that h(x,) S = yS. Since (X, S) is disjoint, each maximal orbit xS is
a union of mpi sets corresponding to the minimal orbits contained in xS, and, by the
condition of the Proposition, if xS = Ux,S" ", then x € NxS™") implies that
h(xS) = h(x,S"") for each B. So, if ySCV = Yh(x,S""), from the disjointness
of (X, S) and the condition of the Proposition, it follows that there exist maximal
orbits {x*S} such that Ux*S = Ux,S‘"" and Uh(x*S) = Uh(x,SV) = ys—1
which is a union of orbits.

To prove the other way, suppose (Y, S) is i-disjoint and i1 maps each mpi set onto
an mpi set. Each mpi set of (Y, S) is a union of maximal orbits. Suppose two mpi sets
xS, i = 1,2, of (X, S) intersect. As (X, S) is disjoint, Ux;S'"" < xS, a maximal
orbit. So, Uh(x;S‘™") = h(x) S = yS, a maximal orbit. As (Y, S) is i-disjoint yS
is contained in some mpi set 'S ! and since h(x;S"") = h(x;) S, an mpi set
for i =1,2, it follows that Uh(x;) S©" < y'SC"" and, hence, h(x;)SC"" =
= y'SC1. Thus, h(x,STY) = h(x,S").

5. PRODUCTS OF ACTS

Let (X, S) and (X, S) be two families of acts. The product acts (I1X, TIS;) and
(X, S) are defined in a natural way using coordinatewise operations. In this section
we make note of how does a product of acts inherit a given property P from the
component acts where P may be disjointness (i-disjointness), transitiveness (quasi-
transitiveness) of acts, etc. We first note the following

Proposition 5.1. Let a compact semigroup S act quasi-transitively on X. Then the
equivalence relation R on X defined by xRy if xS = yS is open and has a closed
graph and, consequently, the quotient space X/R is Hausdorff.

Proof. Let A = | xS = X. Then note that 4 = (J xS where 4 is the closure

xeA xed

of A. For, A < |J xS since the action is unitary. Further, if y € 4, then yse 4 for

xed
all s € S since there exists in 4 a net y, — y implies that, by the continuity of act, for
any se S in A the net y,s — ys.
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Then, by Proposition 6 in [p. 54, 3], R is open. That R has a closed graph needs
a standard net argument.

Therefore, by Proposition 8 in [p. 79, 3], X/R is Hausdorff.

Remark 5.2. Let {S;} be a family of compact semigroups. Then TIK ; is the minimal
ideal of TIS; iff K; is the minimal ideal of S; for each i.

Remark 5.3. (I1X, TIS)) is unitary iff (X,, S;) is so for each i.

Proposition 5.4. Let {S,-} be a family of compact semigroups. Then (T1X,, I1S))
is quasi-transitive (transitive) iﬂ'(X,-, S;) is so for each i. Further, in that case,
(TIX /R, TIS)) is isomorphic to (TI(X;/R;), IIS;) where R and R; are the equivalences
of I1X; and X; induced by the quasi-transitive actions of IIS; and S;, respectively.

Proof. The first part for quasi-transitive case follows from Proposition 3.1 and
Remarks 5.2 and 5.3. The second part follows from Proposition 5.1 and corollary
to Proposition 8 in [p. 55, 3].

Proposition 5.5. Let {(X,, S;)} be a family of compact acts.

(1) For each (x;) e IX,, (x;) I1S; is a maximal (minimal) orbit iff each x;S; is so.
(2) (Ix,, I1S)) is disjoint (i-disjoint) iff each (X;, S;) is so.

Proof. Easy.

While (I1X,, I1S,) inherits most of the properties mentioned in the beginning of
this section it is not so for (I1X;, S). In fact, without much restriction on S nothing
can be said. In view of Proposition 3.2, we can only state the following

Proposition 5.6. Suppose a compact semigroup S acts on X, i € J. If either (1) S
is left-simple or (2) S* = S and S is normal or S acts commutatively on X, then S
acts quasi-transitively on TIX; iff S acts quasi-transitively on each X ;.
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