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0. INTRODUCTION

Every inverse semigroup is canonically (naturally) ordered. In this paper we obtain
some algebraic properties of inverse semigroups using essentially the order structure.

Every ordered set may be immersed into a complete lattice, some infima and
suprema being preserved under such immersion. In Section 1 we consider completions
of inverse semigroups. Every inverse semigroup may be immersed into another inverse
semigroup in which all possible suprema of sets of elements exist. We construct
a “universal” immersion of any inverse semigroup S into a complete inverse semi-
group C(S) with a distributive semilattice (in fact, an infinitely distributive complete
lattice) of idempotents. Properties of C(S) are studied.

Section 1 is of preparatory character to further sections which treat a more tradi-
tional material. Section 2 is devoted to translational hulls of inverse semigroups. The
concept of a densely embedded ideal which was introduced by E. S. LAPIN [16] to
find an abstract characterization of symmetric inverse semigroups has led L. M.
GLUSKIN [7, 8] to creating a theory of translational hulls of semigroups. This theory
is connected with various branches of the theories of semigroups and rings. A survey
of this theory can be found in [21]. It is well known that translational hulls are very
useful in the theory of ideal extensions of semigroups [1, 2,4,9-13,21, 23].

The central problem of the theory of translational hulls is the construction, for
a given semigroup S, of its translational hull Q(S). A general construction of Q(S)
was found by L. M. Gluskin [7, 8]. However, in case when S belongs to a special
class of semigroups one can often simplify the general construction, make it more
explicit (cf. [19—22]).

Inverse semigroups (called also “‘generalized groups”, “pseudogroups”, “grou-
pids”) constitute an important special class of semigroups. The main result of
Section 2 is a description of Q(S) in case when S is an inverse semigroup. However,
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we do not use Gluskin’s construction of Q(S) Instead, we construct an oversemigroup
T(S) of S, this oversemigroup (which is the idealizer of S in C(S)) turns out to be the
largest essential (dense) ideal extension of S, hence, T(S) is isomorphic to Q(S).

Every inverse semigroup is isomorphic to an inverse semigroup of univalent
functions (=one-to-one partial transformations of a set). In case S is an inverse
semigroup of univalent functions, we give an alternative construction for T(S).

We believe the structure of the elements of T(S) to be more transparent than that
of bitranslations. This permits us to obtain numerous properties of translational
hulls of general and special inverse semigroups.

It has been already mentioned that translational hulls are connected with ideal
extensions of semigroups. In Section 3 we describe ideal extensions of inverse semi-
groups in general and of special classes of inverse semigroups. The construction of
T (S) is of key role here: it permits to give a simple description of all dense ideal exten-
sions of S. :

Every inverse semigroup is isomorphic to a subdirect product of a family of sub-
directly irreducible inverse semigroups. Section 4 of the paper is devoted to sub-
directly irreducible inverse semigroups. Every such semigroup is a dense ideal exten-
sion of a [0-]simple subdirectly irreducible inverse semigroup. We give an explicit
construction for all subdirectly irreducible inverse semigroups which possess a non-
zero ideal satisfying the descending chain condition for principal one-sided ideals.
In particular, all finite subdirectly irreducible inverse semigroups are constructed.

All results of the paper can be easily generalized and are applicable to generalized
grouds (=generalized heaps) of V. V. VAGNER.

The main results of the paper were reported by the author at the XXIII-d Herzen
(Gercen) Readings (Leningrad, December 12, 1970), at a meeting of the seminar
“Semigroups” in the Saratov State University (Saratov, December 24, 1970) and at
a meeting of the algebraic seminar in the Kharkov Institute of Radioelectronics
(Kharkov, May 13, 1971) [33].

1. COMPLETIONS OF INVERSE SEMIGROUPS

1.1. Definition. A semigroup S is called inverse if for every s € S there exists an
inverse element s~ (i.e. such an element that ss™'s = s and s™'ss™! = s™') and
such inverse is unique for every s € S.

Equivalent definitions of inverse semigroups can be found in [28, 30, 32].

order relation [37] which is called the canonical order of S. A subset H of an inverse
semigroup S is called minorantly saturated if for every se S and t € H s < t implies
s € H. M(S) denotes the set of all minorantly saturated subsets of S.

1.2. Definition. For s, 1€ S define s < 1 in case s = ss™'t. Then < is a (partial)
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1.3. Definition. Elements s and ¢ of an inverse semigroup S are called compatible
if st™! € E(S) and s~ 't € E(S) where E(S) is the set of all idempotents of S. A subset
H < S is called compatible if the elements of H are pairwise compatible, i.e. if
HH™ ' < E(S)and H"'H < E(S). Here H' = {h™' : he H} and H,H, = {h;h, :
:hy € Hy, hy € H,}.

Equivalent definitions of order and compatibility can be found in [37]. We use
here these equivalent definitions without further notice.

1.4. Definition. Minorantly saturated and compatible subsets of an inverse semi-
group S are called permissible. C(S) denotes the set of all permissible subsets of S.

1.5. Lemma. A product of two minorantly saturated (permissible) subsets is
minorantly saturated (permissible). If H is a minorantly saturated (permissible)
subset, then the same holds for H™1.

Proof. A subset H is minorantly saturated if and only if HE(S) = H. For every
subset H, HE(S) = E(S) H [37]. If H, is a minorantly saturated and H, an arbitrary
subset of S then H,H, E(S) = H, E(S)H, = HH,, ie. H,H, is minorantly
saturated. Analogously, H,H, e M(S). If s <t then s~ < ¢~*. It follows that
H e M(S) - H™' € M(S). Therefore, M(S) is an ideal of the involuted semigroup
P(S) of all subsets of S.

Two elements s and ¢ are compatible if and only if s™* and ¢~ ! are. It follows that H
is compatible if and only if H™! is. Suppose H,, H, € C(S). Then, as we have just
seen, H H, e M(S). Now (H,H,)(H,H,)""' = H H,H;'H;' <« H, E(S)H{' =
= H,H{"' < E(S). Analogously, (H,H,)™* (H,H,) < E(S). It follows that H,H,
is compatible and H, H, € C(S). Therefore, C(S) is an involuted subsemigroup of the
involuted semigroup P(S).

1.6. Definition. If H < S then ¢,(H) = {hh™' : he H} and 1,(H) = {h™*h : he H}.
We call ¢,(H) the first projection and 1,(H) the second projection of H.
Clearly, ¢,(H) U t,(H) < E(S) = 1,(S) = 1,(S) and ¢,(H™") = 1,(H).

1.7. Lemma. ¢,(H) = HH™ ! and ,(H) = H™'H if and only if H is compatible
and HH™'H = H.

Proof. Clearly, ¢,(H) = HH ™" and «,(H) = H™'H for every H = S. If ,(H) =
= HH " and «,(H) = H 'H then HH™' < E(S) and H™'H < E(S), hence H is
compatible. Let hy, hy, hy € H. Then hih;' = hyhy " and hy'hy = h3*hs for some
elements hy, hs € H. Since hy'hs = (hi 'hs) (hy'hs)™ = hi'hsh3 h, < hi'h,
and hyhs' € E(S), we obtain hyhy'hy = hshi'hs = hshs'hs = hshi'h, =
= hsh3'hshi'h, = hshy*hs = hye H, i.e. HH™'H < H. However, H ¢ HH™'H
is valid for every H, since h = hh ™ 'h.



Now let HH™'H = H for a compatible subset H. If hy, h, € H, then h,h; *h, € H,
therefore, hih;' = (hyhy'hy) hy' = (hyhy'hy) ' = (hohi'hy) (hoh'h) e
€ 4;(H), ie. HH™' < 1,(H) and ,(H) = HH™'. Analogously, t,(H) = H™'H.

1.8. Lemma. If H € C(S), then «;(H) = HH™ ' and «,(H) = H™'H.

Proof. Let hy, hy, hye H. Then hih;' e E(S), therefore, hyh;'hs < hye H.
Since H is minorantly saturated, h hy *hy e H,i.e. HH 'H < H and HH™'H = H.
It remains to apply Lemma 1.7.

1.9. Lemma. C(S) is an inverse semigroup.

Proof. For every H € C(S), HH™'H = H. Since the idempotents of an inverse
semigroup commute, sets of idempotents commute as well. Using this fact and
Lemma 1.8 we obtain H,H;'H,H;" = H,H;'H,H"' for all H,, H,e C(S).
Therefore [28], C(S) is an inverse semigroup.

1.10. For every se S define 7(s) = {t : t < s}. Then 7(s) = s E(S) e C(S), i.e. T is
a mapping of S into C(S).

Lemma. 7 is an isomorphic embedding of S into C(S).

Proof of the Lemma consists of elementary computations and is omitted.

1.11. Let a subset H of an inverse semigroup S possess the least upper bound
VH in S. Since any two elements which have a common upper bound relative to <
are compatible, H is compatible. Therefore, if a subset H <= S is not compatible,
VH can exist neither in S nor in any oversemigroup of S.

Definition. An inverse semigroup S is called complete whenever compatible subsets
of S possess the L.u.b.’s in S.

S is called (infinitely) distributive if for finite (arbitrary) subsets H < S for which
VH exists and for every s e S the Lu.b.’s VVHs and VsH exist and (VH)s = VHs,
s(VH) = VsH.

The two last identities are equivalent. Indeed, (VH) ' = \VVH ™! and therefore
s(VH) = (VH) 's™))™ ' = (VH ") s™*)* = (VH 's™!)~! = VsH which shows
that the first identity implies the second one. Analogously, the second identity implies
the first one.

1.12. Lemma. Suppose VH exists. Then \/t,(H) and \1,(H) exist and \/i,(H) =
= (VH) (VH)™", Vi(H) = (VH)'(VH).

Proof. Let VH = h. Then for every h; e H hy < h, whence h;hi' < hh~1.
Suppose hlhf1 < s for some seS and every h; e H Then p, = h1h1—1h < sh,
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therefore, h = VH < sh. It follows that hh™' = shh™ <'s, i.e. hh~! = Vu(H).
The second identity for ¢,(H) may be proved in the same way.

1.13. Lemma. For any inverse semigroup S the following properties are equi-
valent:

1) S is (infinitely) distributive;

2) the semilattice E(S) is (infinitely) distributive;

3) if VF and VVH exist for finite (or infinite) subsets F, H = S, then \VFH exists
and VFH = (VF) (VH).

Proof. The implications 3) — 1) — 2) are obvious. Suppose 2) is valid and there
exist VF = fand VH = h. If f; e F and h, € H then f, < f and h; < h, whence
fihy < fh. Now let g be such an element of S that f;h; < g forall f; € Fand hy € H.
Then f;'fihyhi' < f'gh™*. Therefore, f~ifh;h;* = (VF)~* (VF) hihi! =
= (Vi(F)) hihi' = V((F) hihi') < f7'gh for all hy € H. Therefore,
Y (Vu(H) = V(ffu(H) < figh™Y, e f7hh™' < f7'gh™, whence
fh=ff"'fhh~*h < ff"'gh™'h £ g. Therefore, fh = \VFH. Thus 2) implies 3).

1.14. Definition. A homomorphism ¢ of an inverse semigroup S into an inverse
semigroup T'is called \-complete (A-com plete) if for every subset H < S for which
VH exists (AH exists) there exists Vo(H) in T(A@(H) in T) and ¢(VH) = Vo(H)
(9(AH) = Ag(H)).

A homomorphism which is \/-complete and A-complete is called complete.

Thus V-complete homomorphisms preserve all suprema existing, while A-
complete homomorphisms preserve all infima of subsets of S.

It should be noted that every homomorphism preserves all infima of finite subsets.
Indeed, let H < S be a finite subset, H = {hy, ..., h,} and h = AH exist. For every
h;e H we have h < h;, whence ¢(h) < ¢(h;). Now let t < ¢(h;) for all h;e H.
Since it = hyhy *hyhyt... by h,, weobtain t = 171ttt . 171 < o(hy) (A7) ...
< o(hy) o(h ") o(hy) = o(h), i.e. o(h) = Ao(H).

1.15. Theorem. (i) C(S) is an infinitely distributive complete inverse semigroup;
(ii) if F, He C(S) then F < Ho F < H;

(iii) if F, H € C(S) then F is compatible with H in C(S) if and only if FU He
€ C(S), i.e. if F U H is a compatible subset of S;

(iv) if H e C(S) then H™' is an inverse element for H in C(S);

(v) if & = C(S) then V'$ exists if and only if U$ € C(S); this being the case,
V$H = U9;

(vi) for every = C(S),  + 0 the g.1b. AD exists and A = %,
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(vii) for every homomorphism S — T of S into an infinitely distributive complete
inverse semigroup T there exists a unique \/-complete homomorphism C(Sy - T
such that the following diagram is commutative:

S——C(8)
\ i

Proof. By Lemma 1.9, C(S) is an inverse semigroup. (iv) follows from Lemmas 1.7
and 1.8.

Lemma. F € E(C(S)) if and only if F < E(S) and F € C(S), i.e., if F is an ideal of
the semilattice E(S).

Proof. If F < E(S), then F is compatible, therefore, F € C(S) is equivalent to
F e M(S), i.e. F is a (possibly empty) ideal of E(S). In this case F € E(C(S)). Converse-
ly, if F € E(C(S)), then F = FF~! = 1,(F) < E(S).

(ii) If F < Hthen F = FF™'H = ¢,(F) H = E(S)H = H. Conversely, let F < H.
Then F = FF~'F « HF'F ¢ HH™'F = 4,(H) F < E(S)F = F,i.e. F = HF'F
and F < H.

(iii) Since F and H are minorantly saturated, F U H € M(S). Therefore, F U H
is compatible in S if and only if F U H e C(S).

If FUHeC(S), then F < FUH and H < Fu H. By (i), F and H possess
a common upper bound in C(S). Therefore, F is compatible with H. Conversely,
let F, H be compatible in C(S). Then (F U H) (FUH)™* =(FUH)(F'UH™ ") =
= FF~'UFH™' U HF ™' U HH™ = 4,(F)U FH 1 U HF ™' U 1,(H) < E(S), since
HF~', FH™' € E(C(S)) and, by Lemma 1.15, HF ™', FH™! = E(S). Analogously,
(Fu H)™'(F U H) < E(S). Therefore, F U H is a compatible subset of S.

(v) If $ = C(S) is a compatible subset, then U$ € C(S). By (i), U$ is the Lu.b.
of $.
(i) follows from (v).

(vi) If = C(S) and $ =+ 0, then NH € C(S), therefore, by (iii), NH = AD.

(vii) Suppose ¢ : S — T is a homomorphism of S into an infinitely distributive
complete inverse semigroup T. If H € C(S) then H is compatible in S, hence ¢(H) is
compatible in T and V¢{H) exists in T. Let Y(H) = V¢(H). Then y is a mapping
of C(S) into T.

Let F, H e C(S). Then Y(FH) = Vo(FH) = Vo(F) o(H) = (Vo(F)) (Vol(ED) -
= Y(F) y(H). We have used Lemma 1.13. Let $ = C(S) and U$ e C(S). Then

Y(UD) = Vo(UD) = V(Un.eg ©(H1)) = Vies(VO(H) = Ve Y(H;) = V(D).
Therefore, i is a \/-complete homomorphism of C(S) into T.
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If s € S then Vo(t(s)) = ¢(s), hence Y(z(s)) = ¢(s). Therefore, the diagram (vii) is
commutative.

If y:C(S) > T is another homomorphism making the diagram commutative,
then y(t(s)) = @(s) = ¢(x(s)). Let He C(S) and he H. Then <(h) < H in C(S),
whence y(t(h)) £ x(H) in T, i.e. @(h) < x(H) in T for every he H. Therefore,
Y(H) = Vo(H) < yz(H). If y is V-complete, then H = U,y t(h) implies x(H) =
= Vien X(T(h)) = Vhen lp(‘f(h)) = 'ﬁ(H), ie. x = .

1.16. Remark. The isomorphism t is obviously A-complete. The Lu.b. VH is
called trivial if H contains the largest element. The isomorphism t is not \/-complete;
moreover, T does not preserve any nontrivial L.u.b.’s. In fact, let h = VH exist and
be nontrivial. Then ©(VH) = ©(h) + H = Uy,cu ©(h) = Viien 7(hs).

1.17. An element s € S is called V-indecomposable if s = \VH implies s € H
for any H < S. Clearly, the elements of the form t(s) are precisely all the V-
indecomposable elements of C(S). Thus, V-indecomposable elements of C(S) form
an inverse subsemigroup isomorphic with S.

Corollary. Let S and T be inverse semigroups. C(S) and C(T) are isomorphic if
and only if S and T are isomorphic.

1.18. Let S be a semilattice. By Lemma 1.15, C(S) is the set of all ideals of S
including the emptyideal. Let I(S) be the set of all nonempty ideals of S. If F, H € I(S)
then FH = F n H. Thus, I(S) is a meet-semilattice. Clearly, C(S) = I(S)°.

Corollary [6, 15]. For two semilattices S and T,1(S) = I(T) if and only if S = T.

1.19. Every automorphism of C(S) for every inverse semigroup S maps A-in-
decomposable elements onto A-indecomposable elements, i.e. it induces an auto-
morphism of 7(S). On the other hand, every automorphism of 7(S) may be in an
obvious and unique way extended to an isomorphism of C(S). Thus, the automor-
phism group of ©(S) is a restriction to ¢(S) of the automorphism group of C(S).
Moreover, every automorphism of C(S) maps @ (which is a zero of C(S)) onto itself.

Corollary. For every inverse semigroup S the groups of all automorphisms of S
and of C(S) are isomorphic. In particular, the automorphism groups of any semilat-
tice S and of the semilattice I(S) of all ideals of S are isomorphic.

1.20. Corollary. For every inverse semigroup S, C(E(S)) = E(C(S)).

Proof. See Lemma 1.15.
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1.21. Every homomorphism S — T of two inverse semigroups S and T may be in
a unique way lifted up to a V-complete homomorphism of C(S) into C(T), i.e. T is
a functor from the category of inverse semigroups and their homomorphisms into the
category of infinitely distributive complete inverse semigroups and \/-complete homo-
morphisms. In particular, the former category can be isomorphically embedded into
the latter one.

1.22. Not every inverse semigroup is distributive: e.g. nondistributive lattices can
be considered as inverse semigroups with respect to one of their operations. However,
in every inverse semigroup multiplication is distributive with respect to the operation
of forming infima.

Proposition. Let a subset H of an inverse semigroup S possess the g.1.b. AH. Then
for every s € S subsets Hs and sH possess g.1.b.’s and AHs = (AH) s, AsH = s(AH).

Proof. Let AH = h. Then for every hy e H, h £ h,, whence sh < sh;. Let
f < shy for all hye H. Then s~ f < s 'sh; < h;, hence s~ !f < h. Therefore,
ss™'f < sh. However, ff ™" < (shy)(shy)™* < ss™*. Thus, ss™'ff ! = ff~' and
f=ff"Y =ss7Yf"1f = ss"f. Therefore, f < sh, ie. sh = AsH. The other
equality may be proved analogously.

1.23. Every inverse semigroup is isomorphic with an inverse semigroup of univalent
functions (i.e., of one-to-one partial transformations of a set). Every function ¢ on
a set A is considered as a special binary relation on A: ¢ = {(a, ¢(a)) : a € pryp}
where pr;¢ is the domain of ¢.

Let @ be an inverse semigroup of univalent functions acting in a set 4. It is known
[37] that for ¢,y e®, ¢ <y <> ¢ =, ¢ and y are compatible if and only if
@ U is a univalent function. The inverse for ¢ € @ is the converse function ¢~ 1.
A subset H < @ is compatible if and only if JH is a univalent function. If YH € @
then UH is the L.u.b. of H in @, the converse being not true in general: the L.u.b. of H,
if it exists, need not be equal to JH. A complete inverse semigroup need not be
isomorphic to some inverse semigroup of univalent functions where all lLu.b.’s
existing are set-theoretical unions of functions: infinite dictributivity is a necessary
(but not sufficient) condition for the existence of such an isomorphism. Necessary and
sufficient conditions for the existence of such an isomorphic representation are found
in [31]. They are corollaries to results of [26].

Let U(®) = {UH : He C(®)}. If H e C(®) then H is compatible and UH is
a univalent function. Thus, U(¢) is a set of univalent functions. If H is a compatible
subset of H and 1(H) = {¢ : 9 € @ and ¢ < y for some y € H} then «(H)e C(®)
and UH = Ut(H) e U(®), therefore U(®P) consists of unions of arbitrary compatible
subsets of .
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Proposition. U((D) is an infinitely distributive complete inverse semigroup of
univalent functions containing ® as an inverse subsemigroup.

Proof. If ¢ € ® then {¢} is a compatible subset and ¢ = U{p} e U(®), i..
& < U(P). If H is a compatible subset of @ then H™! = {9~ ' : p € H} is a com-
patible subset and (UH)™* = UH~*. Therefore, ¢ € U(®) = ¢ '€ U(P). If H,
and H, are compatible subsets of @ then (UH,).(UH,) = U(H, o H,) where
H,oH, = {¢,0¢,:¢,€H, and ¢, € H,}. Therefore, H, - H; is a compatible
subset and @,, ¢, € U(®) = ¢, o ¢, € U(®). Thus, U(P) is an inverse semigroup.
Infinite distributivity and completeness of U(®) are obvious.

1.24. Corollary. There exists a unique \/-complete homomorphism & : C(P) —
— U(®) whose restriction to & coincides with ™1, i.e., the following diagram is
commutative:

d—— U(<D)

]

C(e)

Moreover, £~(®) = (@), for H e C(®) §H) = UH and & is surjective, i.e. U(P)
is a homomorphic image of C(®).

& need not be an isomorphism (consider such in inverse semigroup @ that @ =
= U(2)).

1.25. Let S be an inverse semigroup, s € S. Define a binary relation g; = {(sl, sz) :
188 = 5,, 5,51 =s,} on S. Then g is a univalent function which is called the
reduced right translation of S defined by s. The mapping g : s — g, is an isomorphic
representation of S onto the inverse semigroup P(S) of all reduced right translations
of S [37].

Proposition. C(S) is isomorphic to U(P(S)).

Proof. Let H € C(S). Then §(H) is a compatible subset of P(S), therefore, Ug(H)
is a univalent function acting in S. Let (H) = Ug(H). Then B is a mapping of C(S)
into U(P(S)). Moreover, since § is an isomorphism of S onto P(S), § may be naturally
extended to an isomorphism ¢(@) : C(S) » C(P(S)). Then B = &oc(g), ie. B is
a through homomorphism C(S) » C(F(S)) - U(F(S)) of C(S) onto U(P(S)). Let
H,,H,eC(S) and B(H,) = B(H,), i.e. Usen, 8s = Use, O Let se H;. Then
(™", 571s) € &, whence (s™%, 57's) € g,, for some s; € H,. It follows that s™'s; =
=515 and ss™1s;, = ss”'s =5, ie. s <s,. Since H, is minorantly saturated,
s€ H,,ie. H < H,. Analogously, H, « H, and H, = H,. Thus,  is one-to-one.
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1.26. Definition. An ideal of a semigroup S is called a retract ideal if there exists
an endomorphism of S onto the ideal, all the elements of the ideal being fixed points
under the endomorphism.

Suppose T is an ideal of an inverse semigroup S. Then T is an inverse semigroup.
If He C(S) then Hn Te C(T). Let o(H) = H n T for every H e C(S). Clearly,
o(Hy) o(H,) = ¢(HH,) for all H,, H,e C(S). Conversely, let heo(H,H,), ie.
heTand h = h;h, for some h, € H; and h, e H,. Then h = (hh™'hy) (h,h™'h)
and hh™'hy € o(H,), h,h™'h € o(H,). Therefore, o(H,H,) = o(H,) o(H,). Now for
every He C(T) we have He C(S), ie. C(T) = C(S). Thus, o(H) = H for every
H e C(T). Since T'is an ideal of S, C(T) is an ideal of C(S). Thus, C(T) is a retract
ideal of C(S), ¢ being the idempotent endomorphism of C(S) onto C(T).

Now let I be a retract ideal of C(S), ¢ being an idempotent endomorphism of C(S)
onto I. Let ¢(E(S)) = E. Then E is an ideal of E(S) and T = SES is an ideal of S.
If He C(T) then H = HE e, since one can easily verify that E(T) = E. Thus,
C(T) = I. On the other hand, if H €I then H = HI = T. Therefore, I = C(T). We
have proved the following

Proposition. Let T be an ideal of an inverse semigroup S. Then C(T) is a retract
ideal of C(S), H — H N T being the corresponding endomorphism of C(S) onto
C(T). Every retract ideal of C(S) is of the form C(T) where T is an ideal of S. In
particular, the lattice I(S) of all ideals of S is isomorphic to the lattice of all retract
ideals of C(S).

1.27. Let Co(S) = C(S) \{0}. If (S;);c; is a family of inverse semigroups, H; € C(S))
for each i eI then the Cartesian product X,; H; is an element of C(X,; S;) where
X, S; is the direct product of the family (S,-),-e,. Clearly, the correspondence
(Hy)ier = Xir H; is a homomorphism of X;.; C(S;) into C(Xy, S;). If all H; are
nonempty, the correspondence is one-to-one, i.e. it is an isomorphism of X;_, CO(S,-)
into Co(Xie; S))-

1.28. Let ¢ be a surjective homomorphism of an inverse semigroup S onto an
inverse semigroup T. If H € C(S), then ¢(H) € C(T). Therefore, ¢ induces a homo-
morphism of C(S) into C(T). The latter homomorphism need not be surjective.

1.29. Let an inverse semigroup S be a subdirect product of an inverse semigroup T
and a group G, i.e.,, S © T x G and the natural projection homomorphisms of S
into Tand G are surjective. Suppose H € Cy(S). If (t1, 91), (t,, 9,) € H then, since H
is compatible, 1, is compatible with t, in Tand g, = g,. It follows that H = H, x
x {g} for some compatible subset Hy = T and an element g € G. Since H is mi-
norantly saturated, the same holds for Hr, i.e., Hy € Co(T).

Conversely, if Hy € Co(T) and g € G then one can easily verify that H, x {g} €
€ Cy(S), provided H, x {g} < S. Therefore, the mapping H = H, x {g} - (Hp, 9)
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is an isomorphism of Cy(S) into Co(T) x G. Clearly, the mapping H; x {g} » ¢
is a homomorphism of Cy(S) onto G. However, the mapping H — Hr. is not surjective
in general case. Therefore, C,(S) is isomorphic to a subdirect product of an inverse
subsemigroup U of Cy(T) and of the group G.

Clearly, «(T) = U. Suppose H, € E(Cy(T)), i.e. Hy is an ideal of the semilattice
E(T). For every i € H, there exists g € G such that (i, g) € S, whence (i, 1) = (i, g) .
.(i,g7") = (i, g) (i, g) "' € S. Here 1 is the identity of G. Thus, H; x {1} = S and
H, x {1} € C(S). Therefore, E(Cy(T)) = U.

If T is a semilattice then E(Cy(T)) = Co(E(T)) = Co(T) and we obtain the
following

Proposition. If an inverse semigroup S is isomorphic to a subdirect product of
a semilattice T and a group G then Co(S) is isomorphic to a subdirect product of
a lattice I(T) of all ideals of T and of the group G.

As we have proved above, Co(T x G) = Co(T) x G for every inverse semigroup T
and every group G.

1.30. Definition. Let (S;),.; be a family of semigroups with zero and S; n S; = {0}
provided i =+ j. Let S = U;; S;. Define a multiplication in S in such a way that
S,;S; = {0} for i % j, in every S; the multiplication coincides with the operation of S;.
Then S is a semigroup which is called the orthogonal sum of the family (S;);.; and is
denoted by X2, S;.

Let (S;);er be a family of inverse semigroups with zero and H € Co(X1e1 ;). Denote
H; = Hn S, Then H; € Co(S,) for every iel. Conversely, let (H;);.r € Xiey Co(S)),
H =, H;. Then He Cy(27.; S;). Now let F, He Cy(2%.; S;). Then FH = (U, F)) .
. (Uier H)) = Ui jer FiH; = Uiy F:H;, since F,H; = {0}if i & j and O H; for
all iel. Thus, (FH); = F;H; and the following proposition is valid.

Proposition. Cy(20.; S;) is isomorphic to X,y Co(S:), H = (H 0 S)icr being the
isomorphism.

1.31. Definition. 4 Croisot semigroup (or a primitive inverse semigroup) is any
inverse semigroup in which the product of any two distinct idempotents is zero.
A [0-] bisimple Croisot semigroup is called a Brandt semigroup.

Motivation. Deleting zero from a Croisot semigroup one obtains ‘‘groupes
partiels” of Croisot [5] (which are precisely the categories of isomorphisms).
Therefore, Croisot semigroups are to partial groups of Croisot exactly as Brandt
semigroups are to Brandt groupoids.

It is well known that any Croisot semigroup is an orthogonal sum of a family of
Brandt semigroups.
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Let G be a group, I a set, 0¢ G x I x I. Define a multiplication on the set (G X
x I x 1)U {0} :(g, iy, j1) (R, iz, jo) = (gh, iy, j2) if i, =j;; all other products
are 0. Then we obtain a Brandt semigroup B(G, I) and every Brandt semigroup with
zero may be constructed up to an isomorphism in such a fashion. Brandt semigroups
without zero are groups.

1.32. Suppose B(G, I) is a Brandt semigroup with zero and H € Co(B(G, I)). Then
0 € H. Suppose (g, iy, j;), (h, i5,j,) € H. Since H is compatible, either (g, iy, j;) =
= (h, iy, j,) OF iy = iy, j; * jo. Thus, ¢y = {(i,j) : (9, i, j) € H for some g € G} is
a univalent function in I. Let Iy = prioy = {i: (g, i,j) € H for some g€ G and
j €1}. Define a mapping fy : Iy — G in the following way: fy(i) = g for i € I, if and
only if (g, i, ]) € H for some j e I. Since H is compatible, j is completely determined
by g and i and fy, is a one-valued function.

Conversely, let ¢ be a univalent function in I and f a mapping of pr,¢ into G.
Define H = {(g,1i,j):(i,j)ee and f(i) =g} u{0}. Then gz =¢, Iy = prio,
fu = f. Thus, the correspondence H — (o, f5) is a bijection of Cy(B(G, I)) onto the
set of all pairs (o, f) where ¢ is a univalent function in I and f : pr;¢ — G.

Let Hy, H, € Co(B(G, I)). It is easy to verify that ¢y, u, = 0u, o 0, and fp, 4,(i) =
= fu,(i) fa,(on,(i)). Therefore, Co(B(G,I)) is isomorphic to the wreath product of
the symmetric inverse semigroup #; of all univalent functions acting in I and the
group G. For a definition of the wreath product see [41].

1.33. An inverse semigroup satisfying the identity ss™! = s~ 's is called a Clifford
inverse semigroup [3] Clifford inverse semigroups are precisely the semilattices of
groups.

Let S be a Clifford inverse semigroup and H; the s#-class of S containing an idem-
potent i € E(S). Let i < j for i, j € E(S). Define a mapping ¢; ; : H; = H; in the fol-
lowing way: ¢; (s) = si for every s € H;. Then ¢; ; is a homomorphism of H; into H;
and {H;, ¢; ;, i,j € E(S)} is a direct system of groups, S = Ujegs) H; and if s e H,,
te H;then st = @, ,(s) ¢;.:,(t). Conversely, if {H;, ¢; ;, i, j €I} is a direct system of
disjoint groups, one may define a multiplication on (JH; in the above fashion,
a Clifford inverse semigroup being obtained [3].

We are going to find Cy(S) for a Clifford inverse semigroup S. To this purpose
suppose H € CO(S). Suppose s,te H n H. Since s and ¢ are compatible and s, ¢
belong to the same subgroup H; of S, s = t. Therefore, H contains one element at
most from H,. Now let se H,, te H;and s < . Then i < jand s = ss™'t = it =
= ¢; (1). Let Iy = {i : H n H; # 0}. Then I is minorantly saturated, i.e. Iy is an
ideal of E(S). Therefore, H is the set of elements h; where i € Iy, h; € H;and ¢; ,(h;) =
= h;if i £ j. Thus H is an element of the inverse limit of the direct system {Hi, ;.0
i, j €I} of groups which is a subsystem of the initial direct system.

Conversely, let I be an ideal of E(S) and let H e invlim H; be an element of the
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inverse limit of the direct system {H; ¢; ;, i, j €I} of groups. One can easily verify
that H € Cy(S). Thus, Cy(S) = Uyeyrsy inv lim H,.

Let F, H e C,(S). Then FH = F(Iply) H = F(I; A I,;) H.

Thus, Cy(S) is a Clifford inverse semigroup as well, H; = invlim H; being the
maximal subgroups for all I € I(E(S)), the order on I(E(S)) being the set-theoretical
inclusion; if I, J e I(E(S)), I = J then the structure homomorphism ¢, ; : H, —» H;
is defined as follows: ¢, ,(H) = H n S; where S; = U, H; = SIS.

1.34. Now let S be an inverse semigroup with a linearly ordered semilattice E(S)
Let H € Cy(S). Suppose s, t € H. Then either ss™" < 117" or 117! < ss™*, since the
canonical order on E(S) is linear. If ss™* < 117" then s = ss™'s < ##7's < t, since
t7'se E(S). If 17! < ss™! we obtain ¢ < s. Therefore, H is a subchain of S. Con-
versely, if H is any minorantly saturated subset of S which is linearly ordered by the
canonical order, then H € C(S). By Zorn’s Lemma, every chain in S is included in
a maximal chain. It is easy to verify that maximal chains are minorantly saturated,
hence, they belong to Cy(S).

Clearly, 7(S) = Cy(S) for any inverse semigroup S. Let (S) = Co(S). Since
(i) U 1(j) € Cy(S) for any i, j € E(S), there exists such s e S that (i) U 1(j) = (s).
Then s € 1(i) U 1(j), hence, s < i or s < j. In the first case, s = i and j < i, in the
second case s = j < i. Therefore, E(S) is linearly ordered. Now let I be a nonempty
subset of E(S). Then t(I) e C(S), therefore, 7(I) = 7(s). A simple argument shows
that s e I and s is the largest element in I. Thus, E(S) is dually well-ordered.

Conversely, let S be an inverse semigroup and let E(S) be dually well-ordered.
Suppose H € Cy(S). Then HH™! = ¢,(H) < E(S), therefore ¢,(H) possesses the largest
element, say, i. Then i = hh™* for some he H. If h; e H then h;hi* < hh™1.
Since h and h, are compatible, h; < h. Therefore, H = t(h) and Cy(S) = ().

Proposition. Let S be an inverse semigroup. Then Co(S) = (S) if and only if E(S)
is dually well-ordered.

Clifford inverse semigroups S with dually well-ordered E(S) were considered
in [38].

2. TRANSLATIONAL HULLS OF INVERSE SEMIGROUPS

2.1. Definition. An ideal extension of a semigroup S is any isomorphism S — T
of Sinto a semigroup T'such that S is mapped onto an ideal of T. Two ideal extensions
S — T and S — U are called equivalent if there exists a bijective isomorphism
T « U such that the following diagram is commutative:

A\
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An ideal I of a semigroup T is called essential or dense if every nontrivial (i.e.
non-identical) congruence on T induces a nontrivial congruence on I. An ideal exten-
sion ¢ : S — T is called essential or dense if ¢(S) is a dense ideal of T. In other
words, an ideal extension S — T'is dense if and only if every homomorphism T — U
of Tinto a semigroup U such that the through homomorphism S — T — U is an ideal
extension is an isomorphism.

A dense ideal extension S — T is called maximal, or dense ideal embedding, if
every isomorphism T — U such that the through isomorphism S — T — U is a dense
ideal extension is bijective. An ideal I of a semigroup T'is called densely embedded if
the identical ideal extension I < Tis a dense ideal embedding.

2.2. To make the paper reasonably self-contained we give here some results of
L. M. Gluskin [7, 8] which are necessary in the sequel. We use some terms, concepts
and notation introduced by P. DUBREIL, A. H. CLIFFORD, G. LALLEMENT and M.
PETRICH. A more detailed survey may be found in [21].

A binary relation ¢ on a semigroup S is called left regular if (s, t) € ¢ > (us, ut) € ¢
for every s, t, u € S. Right regular binary relations are defined dually.

As we have already said, transformations of every set are considered to be special
binary relations (one-valued and everywhere defined) on the set.

A left regular transformation of a semigroup S is called a right translation of S,
right regular transformations are called left translations. Left (right) translations
will be written as left (right) operators on S, i.e., ¢ is a left translation if (gs) t = o(s)
forall s, t € S and a right translation if (st) ¢ = s(t¢) for all s, t € S. A pair w = (4, 0)
where @ is a right translation and A a left translation is called a bitranslation if
(s¢) t = s(at) for all s, t € S. We consider a bitranslation  to be a two-sided operator
on S:sw = sg and ws = s for every s € S. Products of bitranslations are defined
in a natural way and are bitranslations, the set Q(S) of all bitranslations of S is a semi-
group, the translational hull of S.

To every se S there corresponds an inner bitranslation ;e Q(S) : mt = st and
tn, = ts for all t e S. The mapping = : s — 7, is a homomorphism of S into Q(S),
(S) being an ideal of Q(S). Clearly, m is an isomorphism (and so an ideal extension)
if and only if S is weakly reductive. i.e. if su = tu and us = ut for all u € S imply
s =1

If S is weakly reductive, then = is a dense ideal embedding and all dense ideal
embeddings of S are equivalent. If S is not weakly reductive, then it possesses no
maximal dense ideal extensions (of course, S has dense ideal extensions, say, the iden-
tical extension S < S). The first fact is due to L. M. Gluskin [8], the second is due
to L. N. SHEVRIN [35]. In fact, for weakly reductive semigroups S, 7 is the largest
dense ideal extension: for every dense ideal extension S — T there exists an iso-
morphism T — (S) such that the through isomorphism S —» T — Q(S) is = [8].

Inverse semigroups are weakly reductive, therefore, 7 is a dense ideal embedding
for every inverse semigroup.
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2.3. Definition. Let S be a subsemigroup of T. The idealizer of S in T is the subset
Ir{S) = {t : 1S U St = S} = T which is the largest subsemigroup of T containing S
as an ideal.

If S is an inverse semigroup, let T(S) denote the idealizer of 7(S) in C(S). Clearly,
T(S) = Cy(S) and 7 : S — T(S) is an ideal extension of S. Of course, T(S) is an in-
verse subsemigroup of C(S).

2.4. Lemma. Let S be an inverse semigroup, s € S and H € M(S). Then H‘c(s) =
= Hs and (s) H = sH.

Proof. Clearly, Hs = (HE(S))s = H(E(S)s) = H t(s), since 1(s) = E(S)s =
= 5 E(S). The second equality may be proved analogously.

2.5. Lemma. The following conditions are equivalent for any H € C(S}:
1) H e T(S);
2) (H) € I(S) and «,(H) € I(S).

Proof. 1) —2) follows from Lemma 1.8. Now suppose ¢(H)e T(S). Then
st (H) = 1(s) t;(H) = «(f) for some teS. Since ¢,(H)H = H, we obtain sH =
= si,(H) H = () H = tH. Therefore, t = shh™' for some he H. Let h, e H.
Since h and h, are compatible, h™'h; € E(S), hence thy = shh™'hy; < sh, e sH, i.e.
©(s) H < o(sh) = 1(s) h = (s) H; thus, ©(s) H = 7(sh). The second of conditions 2)
implies that for every se S there exists u € S such that H 7(s) = t(u). Therefore,
H e T(S).

2.6. Lemma. E(T(S)) = T(E(S)).

Proof. Let H e E(T(S)). Then H € E(C(S)) = C(E(S)), by Corollary 1.20. For
every i€ E(S) H (i) = 1(s) for some s e S. However, s € H (i) = E(S), therefore,
H e T(E(S)).

Conversely, suppose H € T(E(S)), i.e. H e C(E(S)) and for every i€ E(S) there
exists j e E(S) such that H (i) = 7(j). If s€ S then H(s) = Hs = (Hss™')s =
= 1(j) s where Hss™' = 1(j). Now t(j)s = j E(S) s = js E(S) = (js), therefore,
H «(s) = t(js). Analogously, t(s) H = t(sk) for some k € E(S). Thus, H € E(T(S)).

2.7. Lemma. Let He C(S) Then He I(S) if and only if «,(H)e T(E(S)) and
t,(H) € T(E(S)). '

Lemma 2.7 follows from Lemmas 2.5 and 2.6 and shows that the problem of
finding T(S) is very tightly connected with that of finding T(E(S)).

2.8. Lemma. An ideal I of a semilattice S is a retract ideal if and only if for
every principal ideal (s) generated by an element se S the intersection I n (s) is
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a principal ideal of S. The set of all retract ideals under the operation of inter-
section is a semilattice coinciding with T(S).

Proof. The first part of Lemma is due to M. KOLIBIAR [14]. If I is a retract ideal
and f an idempotent endomorphism of S onto I, then I N (s) = (f(s)). Conversely,
if I n (s) = (f), then the mapping s — ¢ is an idempotent endomorphism of S onto I,
whence I is a retract ideal.

If I and J are ideals then IJ = I n J and the second part of Lemma follows
readily. '

2.9. Theorem. (i) T(S) is an inverse semigroup consisting of permissible subsets
H < S such that HH™" and H™'H are retract ideals of the semilattice E(S);

(ii) E(T(S)) = T(E(S));
(iii) the isomorphism t : S — T(S) is complete;

(iv) ©:S > TI(S) is a dense ideal embedding; in other words, the ideal extensions
t:S > I(S) and n : S — Q(S) are equivalent, for every dense ideal extension S — T
there exists such an isomorphism (which is necessarily unique) T — T(S) that the
through isomorphism S — T — T(S) is .

Proof. (i) and (ii) are proved in Lemmas 2.6 and 2.7.

(iii) Let H = S and VH = h. Then for every hy € H hy, < h, hence t(h,) = ©(h).
Let F € T(S) and t(h,) = F for all h, € H. Since F is minorantly saturated, t(h,) = F
means that h; € F. Therefore, H = F. Now Ht(h™'h) = H since hyh™'h = h, for
all hy € H. Therefore, H = Ft(h™'h) = Fh™'h < F. Since F € T(S), there exists
s € S such that Fh™'h = 1(s). Since s€ Fh™'h, se F. If h, € H then t(h;) = F and
t(hy) = t(hy) h™*h = Fh™'h = 1(s). Therefore, h; < s for all h, e H, i.e. h < s.
Thus he F and t(h)  F. It follows that ©(VH) = t(h) = V1(H), i.e. 7 is V-com-
plete.

If H c Sand AH = h then ©((AH) = Nyen o(f) = At(H) and 7 is A-complete. .

(iv) Let ¢ : S — T'be a dense ideal extension of S. If t € T, let a subset H, = S be
defined as follows: H, = {5 : ¢(s) = ¢(ss™") 1}. We are going to show that the cor-
respondence t — H, is an isomorphism of T'into T(S). This will be done in a series of
statements.

(@) H, = {s: ¢(s) = t (s 's)}.

If s € H, then t ¢(s~'s) € ¢(S), since ¢(S) is an ideal of T. Therefore, ¢ ¢(s™'s) =
= ¢s,) for some s;eS. It follows that @(ss™'sy) = @(ss™*) 1 @(s™'s) = o(s).
. o(s™'s) = ¢(ss™1s) = ¢(s), whence ss~'sy = s. Thus, s;57's = 5. On the other
hand, ¢(s) = o(s;s71s) = o(s;) o(s™'s) = tp(s™'s) o(s™1s) =t @(s™'ss™1s) =
=t (s™'s) = ¢(s;). Thus, s =s,; and o(s) = t ¢(s™'s). Analogously, the latter
equality implies ¢(s) = @(ss™*) #, i.e. s€ He
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(b) H,is a compatible subset of S.

Let sy, s,€H,. Then ¢(s;s7'sy) = o(sis7?) @(s2) = o(sys7?) @(sys3h) t =
ol £ = plsasitsisid) £ = @lsass?) 0o, € = lsas3?) o) =
= @(sys5 's,). It follows that s;s7's, = 5,55 's; and sy s, = sy 'sys7's, = (s7's,) .
(sy'sy) "t e E(S).

Using (a) we obtain in an analogous fashion that s,s; ' € E(S).

(c) H, e C(S).

By (b), H, is compatible. It remains to prove that H, € M(S).

Let s, <s and seH, Then o¢(s;) = ¢(s;s7's) = ¢(s;s7) o(s) = o(s157") -
co(ss™) t = @(sysy ss™) t = @(sys7 ") t, whence s, € H,.

(d) H,e T(S).

Let s € S. Since ¢(S) is an ideal of T; t ¢(s) € ¢(S) and the element s, = ¢~ (¢ ¢(s))
is defined. If s; € H, then ¢(s;s) = @(syss™ s7") o(s1) o(s) = @(syss™s7 ) o(sy57) -
cto(s) = o(syssTrsyMsysT ) t o(s) = o(syssTisyt) t o(s) = @(syssTUsTY) ols) =
= @(s;ss7 sy 'so), whence sys = (s;5) (sy5) "' s, and s;s < 5o. Therefore, Hs <
< 1(so). Conversely, let s, € (so), i.e. s, <55 OF 5, = 5,55 'so. Then ¢(s,) =
= (5357 ") @(s0) = (5257 ") t @(s) = @(s3) @(s) = @(s35), where @(s3) = @(s,s55 ") .
Therefore, s, = s35. Now (s3) = ¢(s555") t = @(s257 ") @557 ") 1 = @(s555") .
- o(s3) = (P(stz_lss) = (p(szs;1s3s3—153) = (p(s3s3_15252—1s3) = (p(s3s3_1) (P(525;1) .
| p(se) = 05253 ") (5253 ") 9(5553) £ = @lsass a5 553 1) £ = (5255 5253 ") £ =
= (5,55 's355 ) t = 05555 ") @(s3) @(s3 1) t = @(s3) @(s3 ") t = p(s355 ") 1, since we
have proved above that ¢(s,s5 ') @(s3) = ¢(s3). Thus, s; € H,. It follows that 1(sy) =
< Hys and H,o(s) = H,s = t(sy). Analogously, 1(s) H, = 1(s,) for some s, € S.

(¢) The mapping ¥ : T — T(S) such that y(r) = H, for every te T is an iso-
morphism of Tinto T(S) and o ¢ = .

Lets, € H, and s, € H,,. Then ¢(s;s,55 's7 ") t,1; = @(sy5,55 's7 ") o(sy577) tt, =
= (p(slszsz—lsl—l) @(51) I = (P(Sl) (P(525;1) L = (/’(51) <P(52) = (P(S152), ie. s;5,€
€ H,,,, hence H,H, < H,,,. Now let seH,,,. Denote ¢(ss™')t; = ¢(s,) and
t, o(s7's) = @(sy). Then ¢(sys;) = @(ss™') t,1; o(s™'s) = ofs) @(s™'s) =
= ¢(ss™'s) = ¢(s), i.e. s;5, = 5. We have seen above that ¢(s3) = ¢(s,s; ') f implies
s3 € H,. Therefore, s, € H,. Analogously, s, € H,,. Therefore, se H, H,, and
H,,, < H,,, Therefore, H,,,, = H, H,, ie. yY(t;t;) = Y(t;) Y(1,). If s€ S then
Hyo = {512 0(s1) = o(s157") o(s)} = {51 : 0ls1) = o(sisy’s)} = {s1 15, =
= 5,57 's} = {8, 15, < s} = 1(s). Therefore, Y(¢(s,)) = Y(o(s,)) < 1(51) = (s,)
< s; = 5,, i.e., ¥ induces an isomorphism on ¢(S) Since ¢ is dense, ¥ is an iso-
morphism of T into T/(S). Moreover, ¥ o ¢(s) = Y(¢(s)) = ©(s) for all seS§, ie.
Voo =1

(f) If x : T~ T(S) is a homomorphism such that x o ¢ = 7, then x = ¥

Suppose x o ® = 7. Then 30 ¢ = Y o @, i.e. y and ¥ coincide on ¢(S). Since @ is
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dense, y is an isomorphism. Let 7 € T and s € x(t) € T(S). Then 1(s) < (1) since (1)
is a minorantly saturated subset of S. Therefore, x(¢(s)) = t(s) = x(1). Thus, s € H,.
It is easy to verify that s e H, implies s € x(t), since our argument may be repeated
backwards. Therefore, x(t) = H, = y(t) for all te Tand y = y.

(8) 7 : S — T(S) is a dense ideal embedding.

By (e) it remains to prove that t is a dense ideal extension. Let 7 : T(S) — U be
a homomorphism and let 7 o T be an isomorphism of S into U. Let H,, H, € T(S)
and n(H,) = n(H,). If he Hy then H, t(h™") = (s) for some se S. Therefore,
hh™' € o(s),i.e. hkh~' < s.Onthe other hand, se Hy t(h™') = Hh™',ie.s = hyh™*
for some h, € H;. It follows that hh™! = shh™! = s. Thus, H, t(h™") = 7(hh™")
and n(t(hh™Y)) = n(H, ©(h™")) = n(H, «(h™")) = =((s,)) where ©(s;) = H, «(h™7).
Therefore, t(hh™*) = 1(s;) and hh™' = s,, i.e. H, 1(h') = «(hh™"). It follows that
hh~*eHyt(h™*) = Hyh ' and h = hh"'he H,h™*h < H,, i.e. H; = H,. Analo-
gously, H, < H,,i.e. H; = H,. Thus = is an isomorphism and < is dense.

2.10. Remark. Since T — T(S) is an isomorphism, T may be ordered in such a way
that T— T(S) is an order isomorphism. In this case t; < t, &> H, < H,,. Now
S — Tis an order isomorphism and H, = {t, : t; <t} 0 ¢(S).

2.11. Since S — TI(S) and S — Q(S) are equivalent ideal extensions, there exists
a bijection a between I(S) and Q(S), a0t = 7.

Corollary. Let o € Q(S) and H € T(S). In order that «(H) = w it is necessary and
sufficient that for every se€ S, sH = t(sw) and Hs = 1(ws) (i.e. H induces on 1(S)
the same bitranslation as w on S). e(H) = o if and only if H = E(S) o = w E(S).

Proof. Let H € T(S). Then for every s € S there exist sy, s, € S such that Hs =
= 1(s,) and sH = 1(s,). Define a two-sided operator wy on S as follows: wys = sy,
swy = §,. It is a matter of straightforward computation to check that the cor-
respondence H — oy is a homomorphism of T(S) into Q(S). If H = t(s,) then Hs =
= 1(s05) and sH = 1(ss). It follows that wy = m,, i.e. the homomorphism of T(S)
into Q(S) induces an isomorphism on (S). Since t is dense, the homomorphism of
T(S) into Q(S) is an isomorphism; since t and = are dense ideal embeddings, this
isomorphism coincides with c.

To prove the second part of our Corollary notice that H = E(S) H = Ujegsy iH =
= Uleres) t(i®) = 1(E(S) w). Since E(S) w = (E(S) E(S)) o = E(S) (E(S) w), the
subset E(S) w is minorantly saturated, i.e. t(E(S)®) = E(S)w. Therefore, H =
= E(S) . Analogously, H = w E(S).

2.12. Corollary. Let ©(S) = T; = I(S) for i = 1,2, T; being subsemigroups
of I(S). If ¢ is an isomorphism of Ty onto T, and all the elements of 1(S) are fixed
points under ¢, then T; = T, and ¢ is the identity.
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2.13. Corollary. Let 1(S) = T = T(S), T being a subsemigroup of T(S). Then
t:S — Tis a dense ideal extension.

Proof may be given following the same lines as that of 2.9. (iv) (g).

Thus, the ideal extensions S — T such that 7(S) = T < T(S) are dense and every
dense ideal extension of S is equivalent to the above ideal extension.

2.14. Corollary [24]. If S is an inverse semigroup, then Q(S) is an inverse
semigroup.

2.15. Corollary. If S is an inverse semigroup then E(Q(S)) is isomorphic to Q(E(S)).
This Corollary has been proved independently in [42].

2.16. Corollary. T(S) = C\(S) if and only if every principal ideal of E(S) is
dually well-ordered (in other words, E(S) is a tree semilattice satisfying the descen-
ding chain condition).

Proof. T(S) = C(S) if and only if every nonempty ideal of E(S) is a retract ideal,
by Theorem 2.9 (i), i.e., if T(E(S)) = I(E(S)). Let i, j € E(S). If i and j are not com-
parable relative to < and i £ k, j < k, k e E(S), then (i) U () is a non-principal
ideal of E(S) and (z(i) u 1(j)) n (k) = (i) L ©(j), i.e. 7(i) U 7(j) is not a retract
ideal. Therefore, incomparable elements of E(S) cannot possess a common upper
bound, i.e. E(S) is a tree semilattice.

Let i € E(S) and 0 # H < 1(i). Then t(H) € I(E(S)), therefore, 1(H) n (i) = ©(H)
should be a principal ideal of E(S) which means that H possesses the largest element.
Therefore, (i) is dually well-ordered.

Conversely, let all principal ideals of E(S) be dually well-ordered sets. Let H e
e I(E(S)) and i € E(S). Then H n (i) is not empty, therefore, H n (i) = (j) where j
is the largest element of the nonempty subset H n (i) of t(i). Thus H is a retract
ideal of E(S).¥)

2.17. Definition. An ideal I of an inverse semigroup S is called V-basic if every
element of S is the l.u.b. of a subset from I.

A subset H of a semigroup S is called left reductive [36] if hs = ht for all he H
implies s = t. Right reductive subsets are defined analogously. A subset which is
both right and left reductive is called reductive. H is called weakly reductive if hs = ht
and sh = thforall he H imply s = t.

Added in the proof. Semilattices in which all ideals are retract are described in the paper:
E. J. TuLLy, Jr., Semigroups in which each ideal is a retract, J. Austral. Math. Soc. 9 (1969),
239—245. ‘
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Lemma. For an ideal I of an inverse semigroup S the following properties are
equivalent:

1) I is left reductive;

2) I is right reductive;

3) I is reductive;

4) I is weakly reductive;

5) the set E(I) of all idempotents of I is left reductive;
6) E(I) is right reductive;

7) E(I) is reductive;

8) E(I) is weakly reductive.

Proof. Implications 5) - 1), 6) »2), 7) - 3) > 1) > 4), 3) >2) > 4), 7) >
— 5) - 8) - 4) and 7) — 6) — 8) are obvious. It is sufficient to prove the implica-
tion 4) - 7).

Let I be a weakly reductive ideal of an inverse semigroup S. Suppose is = it for
all i e E(I). Then hs = h(h™'h)s = h(h™'h)t = ht for every he H, since h™'he
€ E(I). Now if h el then sh el, since[ is an ideal. Therefore, sh = (sh) (sh)™'sh =
= (sh) (sh)™* th < th. Analogously, th < sh, ie. sh = th for all hel. Since I
is weakly reductive, s = t. Therefore, E(I) is a left reductive subset of S. Right
reductivity of E(I) may be verified analogously.

2.18. Proposition. For an ideal I of an inverse semigroup S the following proper-
ties are equivalent:

1) I is a dense ideal,
2) I is a V-basic ideal,
3) I is a reductive ideal.

Proof. 1) - 2). Let I be a dense ideal of S. Then the isomorphism 7 : 1 — T(I)
can be extended to an isomorphism of S into T(I). Obviously, #(I) is a \/-basic ideal
of T(I), therefore, 7(I) is a \/-basic ideal of the image of Sin I(I)and I is a V-basic
ideal of S. ‘

2) - 3). Let I be a V-basic ideal of S. Suppose hs = ht for all hel and some
s,teS. Let s = VH,, t = VH, for some H, H, < I. If he H;, then h < s and
h=hh"'s = hh™'t < t. It follows that s = \VH; < t. Analogously, t < s, i.e.
s = t. Thus, I is left reductive. By Lemma 2.17, I is reductive.

3) - 1). Let I be a reductive ideal of S and ¢ a congruence on S which induces
a trivial congruence on I. Suppose s = #(¢). Then hs = ht(e) for all hel. Since &
induces identity on I and hs, ht eI, hs = ht. By Lemma 2.17, I is left reductive.
Therefore, s = t, i.e. ¢ is a trivial congruence.

2.19. Let @ be an inverse semigroup of univalent functions acting in a set 4. In
Corollary 1.24 we have proved that there exists a unique A-complete homomorphism
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& : C(®) - U(®) such that ¢ o 7 is the natural embedding of @ into U(®). Let V(&)
be the idealizer of @ in U(®). Then ¢ = V(®P) = U(P). The homomorphism ¢
restricted to T(®) maps T(®) onto V(®). Since t is dense, ¢ : T(P) - V(D) is an
isomorphism.

Lemma. V(®) = {¢p : o€ U(®) and ¢ o t, to ¢ € @ for all e E(P)}.

Proof. If ¢ € ¥(®), then @ o ¢, to @ e ® for all te E(P). Now let ¢ € U(®) and
@ot, Lo@e® for all te E(P). Suppose y € @. Then Y~ ! o ) € E(P), whence ™!,
oW o @e®. Therefore, Yo = Yo (Y ™' oo @)cd. Analogously, ¢ oy € D, iec.
¢ e V(D).

We have proved

Proposition. Let ¢ be an inverse semigroup of univalent functions and V(®) =
={p:9ecU®P)and 9o, 1o @ e P for all e E(P)}. Then the natural embedding
@ — V(®) is a dense ideal embedding, i.e. it is equivalent to ® — Q(P).

Remark. ¢ € V(@) if an only if ¢ is a set-theoretical union of a set of functions
belonging to @ and every restriction of ¢ and of ¢~ ! to the domain of a function
from @ belongs to .

If inverse semigroups of univalent functions ¢ and ¥ are isomorphic then V(&)
and V() are isomorphic as wzll, though U(®) and U(¥) need not be isomorphic.

2.20. Definition. An inverse semigroup S is called fundamental [18] if the Green
equivalence # on S does not contain any nontrivial congruences.

Proposition. If an inverse semigroup S is fundamental, then Q(S) is fundamental *)

Proof. Let ¢ be a congruence on Q(S) which is included into the Green equi-
valence # g on S. Then the restriction of ¢ to S is a congruence on S which is
included into #. Therefore, the restriction of ¢ to S is trivial. Since = is dense, ¢ is
trivial as well, i.e. Q(S) is fundamental.

Ideals of fundamental inverse semigroups are obviously fundamental, so if Q(S) is
fundamental, then S is fundamental as well.

2.21. Definition. Let S be a semigroup with identity 1. Units of S are the elements
of the class modulo the Green equivalence # containing 1, i.e. the elements of the
maximal subgroup of S containing 1. )

*) Added in the proof: This Proposition has been recently (and independently) proved in

the paper: N. R. REILLY, The translational hull of an inverse semigroup, to appear in the Canadian
Journal of Mathematics. That paper has ofter minor intersections with the present one.
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Let S be an inverse semigroup. Then 7/(S) contains E(S) as an identity. By Theorem
2.9 (i), H e T(S) is a unit if and only if HH™* = H™'H = E(S). If H is a subset of S
satisfying the latter equalities, then H is permissible by Lemma 1.7. Thus, the units
of T(S) are such compatible subsets H < S that for every i € E(S) there exist hy, h, €
€ H such that hyhi' = i = h;'h,. In particular, T(S) is ¢(S) with units adjoined
if and only if T(E(S)) = E(S)*. If E(S) is a chain, then E(S) may contain only one
retract ideal — E(S) itself — which is not principal. So if E(S) is a chain and S does
not contain identity (i.e. E(S) does not possess the largest element), then T(S) \ 7(S) is
the group of units of 7(S). This result has been obtained independently in [42]. Any
unit H of T(S) must be linearly ordered by < if E(S) is a chain (cf. 1.34).

2.22. By analogy with Proposition 1.26 we can prove that every retract ideal of 7(S)
is of the form T(U) where U is an ideal of S such that E(U) is a retract ideal of E(S).
Conversely, if U is an ideal of S such that E(U) is a retract ideal of E(S), then T(U)
is a retract ideal of T(S). In particular, the lattice of all retract ideals of T(S) is iso-
morphic to the lattice of all ideals U of S such that E(U) is a retract ideal of E(S).

© 2.23. Proposition. Let (S;);.; be a family of inverse semigroups. The correspondence
(H)ier = XiefH; where H; € T(S,) for all i€l is a bijective isomorphism between
Xier T(S;) and T(X.; S)). In particular, Xo; Q(S;) is isomorphic to Q(Xier Sy)-

Proof. Let H;e T(S;) for every i e I. Then, by 1.27, Xy H; € Co( Xy S)). It is
a matter of straightforward computation to verify that ¢;(X;.; H;) = Xiey ¢4(H) is
a retract ideal of X,; E(S;) = E(Xi; S;). The same is true for ¢,(X,; H;) so that
Xier Hye T(Xi; S). It remains to prove that the isomorphism of X, 7(S;) into
T(Xier S;) is surjective.

Let H e T(X,; S;) and pr;H = H; denote the i-th projection of H, i.e. the image
of H under the canonical mapping of X, S; onto S;. Homomorphisms of inverse
semigroups transform compatible subsets into compatible ones, surjective homo-
morphisms transform minorantly saturated subsets into minorantly saturated ones.
Therefore, H; is permissible for every iel. Let (s;);c; € Xir Si. Then H(s));ef =
= 1((t;)ics) where 7 :X;;S; > T(X; S;). Therefore, H;s; = prit((t)wer)) = tdt:)
where 7; : S; - T(S;). Analogously, s;H; = t,(u;) for some u; € S;. Therefore, H; e
e 1(S;).

Clearly, H = X, ; H;. The converse inclusion also holds. Indeed, let s; € H; for
every i € I. This means that for every i eI there exist s;; € S; such that s;; = s; and
(5i)jer € H. Consider the element {s;s5; '), Clearly, there exist ;€ S; such that
©(t)ier) = (s:57 )iet H = H, since H is minorantly saturated. It follows that
s;87 'si; S t;forall i, jel If i = j we obtain s; = s;57 's;; < 1, ie. (5:)ier < (t)icr €
€ H. Therefore, (s;)ir € H. .

Thus, H = X;.; H;, i.e. the isomorphism of Xic; T(S;) into T(Xier S;) is surjective.
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2.24. Let ¢ be a surjective homomorphism of an inverse semigroup S onto an
inverse semigroup U and H e T(S). It is easy to verify that ¢ transforms retract ideals
of E(S) into retract ideals of E(¢(S)) = E(U). Together with 1.28 this shows that ¢
induces a homomorphism of 7(S) into T(U), i.e. ¢(H) € T(U).

2.25. All the results obtained in 1.29 for Cy(S) can be obtained for T(S) in an anal-
ogous way. In particular, if an inverse semigroup S is a subdirect product of an in-
verse semigroup U and a group G then 7/(S) is isomorphic to a subdirect product of
an inverse subsemigroup of T(U) containing 7(U) and T(E(U)) and of G. As an
analogue of Proposition 1.29 we obtain

Proposition. If an inverse semigroup S is isomorphic to a subdirect product of
a semilattice U and a group G then T(S) is isomorphic to a subdirect product of
the lattice of all retract ideals of U and of the group G.

This Proposition (with Q(S) instead of T(S)) has been obtained independently
in [22].

2.26. Proposition. Let (S;);.; be a family of inverse semigroups with a common
zero. Then T(Z3.;S,) is isomorphic to Xy T(S;), H — (H 0 S;);c; being the iso-
morphism.

Proof. Proceed as in the proof of Proposition 1.30. The only addition to the proof
is the following argument: an ideal P of E(Z}.; S;) is a retract ideal if and only if for

iel

every iel P, = P n S, is a retract ideal of E(S)).

This Proposition for arbitrary semigroups S; such that S? = S; was proved in [1].

2.27. If S is a Brandt semigroup then, by Corollary 2.16, T(S) = C,(S). Co(S)
has been described in 1.32. Translational hulls of Brandt semigroups have been
previously described in [19].

2.28. Now let S be a Clifford inverse semigroup, the notation of 1.33 being
preserved. Evidently, Theorem 2.9. (i) and the results of 1.33 imply

Proposition. Let S be a Clifford inverse semigroup with the maximal subgroups H;,
i€ E(S). Then T(S) is a Clifford inverse semigroup with the maximal subgroups
invlim {H},.; for all retract ideals I of E(S). The structure homomorphisms @y r
of T(S) are defined as follows: I = J and ¢;H)=Hn S; for all He
einvlim {H;},,; and S; = Ues H:. '

This result for ©(S) has been obtained independently in [22].
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3. IDEAL EXTENSIONS OF INVERSE SEMIGROUPS

3.1. Definition. An ideal extension ¢ : S — T'is called an ideal extension of S by Q
if the Rees quotient semigroup T/¢(S) is isomorphic with Q.

We restrict ourselves to the case when both S and T are inverse semigroups. In
Section 2 we have described all dense ideal extensions of inverse semigroups. However,
not all ideal extensions are dense.

3.2. Theorem. Let S be an inverse semigroup, U an inverse subsemigroup of T(S),
©(S) = U, K an inverse semigroup with zero 0 and T an inverse semigroup which
is a subdirect product of U and K such that o(S) x {0} = T. Let ¢(s) = (z(s), 0) e T
for all se S. Then ¢ : S — T is an ideal extension of S and every ideal extension
of S is equivalent to an ideal extension of the above form.

Proof. Since 7(S) x {0} is an ideal of U x K, it is an ideal of T'so that ¢ is indeed
an ideal extension of S.

Now let f : S — Tbe an ideal extension of S. Let T/y(S) = K, then K is an inverse
semigroup with zero. Define an equivalence relation g on Tas follows: t; = 1,(es) <
o t; Y(E(S)) = 1, Y(E(S)). Clearly, e is left regular. New 1 y(E(S)) = 1t Y(E(S)).
W(E(S)) = Y(E(S)) t W(E(S)) = W(E(S)) W(E(S)) t = Y(E(S)) t. It follows that ¢, =
= 1,(e5) & Y(E(S)) t; = Y(E(S)) t,, whence &g is right regular. Therefore, g is a con-
gruerce  on  T. Now  Y(s;) = Y(s,) (es) « Y(s,) Y(E(S)) = ¥(s,) Y(E(S)) <
— Y(s;y E(S)) = Y(s, E(S)) < s, E(S) = s, E(S) <> 5, = s,. It follows that eg induces
the trivial congruence on y(S). Therefore, the through homemorphism S — T —
— TJes is an ideal extension of S. Let « denote the canonical hemomorphism of T
onto TJes. Suppose ¢ is a congruence on T/eg such that it induces the trivial congruence
on a(y(S)). If o(t,) = a(t,) (€) then oft,) a(Y(i)) = oft,) a(¥(i)) (¢) for every i € E(S).
Since oY(S)) is an ideal of T/esand eis trivial on this ideal, a(t,) a(y(i)) = a(t,) a(Y(i))
or afty Y(i)) = oty Y(i)), ie. ty (i) = t, Y(i) (¢5). In other words, t, Y(i E(S)) =
= 1, Y(i) Y(E(S)) = 1, Y(i) Y(E(S)) = t, (i E(S)). Sirce this is true for every
i€ E(S), t, Y(E(S)) = t; Y(E(S) E(S)) = 1, Y(E(S) E(S)) = t, Y(E(S)), i.e. t; = t,(eg)
and oft;) = «ft,). Thus, ¢ is trivial. It follows that S — TJes is a dense ideal extension.
Therefore it is equivalent to a dense ideal extension of the form 7 :S — U where
1(S) =« U = I(S).

Let B be a bijective isomorphism of Tfes onto U such that foa oy = . If oz(tl) =
= oft,) and ¢, 1, have the same image under the Rees homemorphism of T onto
T/y(S), then t, = t,, i.e. Tis isomorphic to a subdirect product of K and Tes =~ U.
Our Theorem readily follows.

Remark. It is clear from the proof of Theorem that we may suppose 1(S):=
={u:(u,0)eT}.
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Our Theorem follows from a known fact [23]: every ideal extension T of a semi-
group S is isomorphic to a subdirect product of a dense ideal extension of S and
another semigroup.

3.3. Let ¢ : S —» T be an ideal extension constructed as in Theorem 3.2. Then T'is
an ideal extension of S by Q = T]¢(S). Since Tis a subdirect product of U and K, Q is
naturally isomorphic to a subdirect product of U/t(S) and K. In the proof of Theorem
3.2 we have seen that one may suppose K = Q.

3.4. Let @ be an inverse semigroup of univalent functions acting in a set 4, K an
inverse semigroup of univalent functions actingin a set B,0e K, An B = 0. Let U
be an inverse subsemigroup of ¥(®), & = U. Then, by 2.19 ,® < U is a dense ideal
extension. Let ¥ be a subdirect product of U and K such that & x {0} = ¥. Then
we may represent each element (¢, %) of ¥ as a univalent function ¢ U x acting in
the set C = A U B. We will consider the inverse semigroup ¥ to be a semigroup of
univalent functions which is obtained under this representation. Then @ is an ideal
of ¥, ie. & <« ¥ is an ideal extension of @. Conversely, every ideal extension of @
is equivalent to the above ideal extension. In fact, every ideal extension ¢ — T is
obviously equivalent to an ideal extension @ — ¥ where ¥ is an inverse semigroup
of univalent functions acting in a set C. Let 4 = U e Pr1¢ and B = C\ A. Since &
is an ideal of ¥, the restriction of ¥ to A is an inverse semigroup U of univalent
functions acting in A. For every ¢ € U and every ¢ € E(®), ¢ o t € &. It follows that
@ = U,cr@) @ o t, therefore, @ is a V-basic ideal of U. By Proposition 2.18, & =« U
is a dense extension. It is easy to verify that U <= V(<D). Let K be a restriction of ¥
to B, then K is an inverse semigroup of univalent functions acting in B and @ € K.
For every Y € ¥ the mapping y — (|, ¥/|) is a subdirect decomposition of ¥ in
a subdirect product of U and K.

3.5. To illustrate how the preceding results work in concrete situations we consider
several examples.

First of all we consider ideal extensions of Clifford inverse semigroups by Brandt
semigroups.

Let S be a Clifford inverse semigroup and ¢ : S — T an ideal extension such that
T/o(S) is a Brandt semigroup. Without loss of generality we may suppose that ¢ is
constructed as in Theorem 3.2, i.e. T'is a subdirect product of U and K, S x {0} c T
Since Q = T/Y(S) is a Brandt semigroup and a subdirect product of U[¢(S) and K,
both U/(S) and K are Brandt semigroups. Now U is a Clifford inverse semigroup so
that U|(S) is both Brandt and Clifford. This is possible only if U/t(S) is a group with
zero adjoined. Therefore, U = 1(S) U G where G is a subgroup of a group inv lim H;
where i €I for some retract ideal I of E(S). If I is a principal ideal then U = 1(S),
whence T is isomorphic to a subdirect product of S and Q, S x {0} being included
into:the subdirect product.
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Conversely, if Q is a Brandt semigroup with zero then any inverse subdirect
product T of S and Q which contains S x {0} is an ideal extension of S by Q (the
extension itself being ¢ : S — T where ¢(s) = (s, 0)).

Now let I be a non-principal retract ideal of E(S). Then U/7(S) = G° where G°
is G with zero adjoined. We may suppose without loss of generality that K = Q.
Then G° is a homomorphic image of Q. It follows that Q is a group with zero adjoined
(we use here a well known and trivially verifiable fact that every congruence on
a Brandt semigroup is either universal or idempotent-separating). Let Q = H° where H
is a group. Then G is a homomorphic image of H and the subdirect product of G°
and H° which is isomorphic to Q contains precisely two idempotents. Now (0, 0)
belongs to every subdirect product of G®and Q. If Q = {0} then Tis isomorphic to U;
otherwise, precisely one of the idempotents (0, 1), (1, 0), (1, 1) belongs to the subdirect
product of G° and H°. If this idempotent is (0, 1) or (1,0) then G =0 or H = 0
respectively and we arrive to a case already considered. Therefore, the idempotent
is (1, 1). It follows that the subdirect product of ‘G® and H® is a subdirect product of G
and H, say, K = G x H, with (0,0) adjoined. Therefore, T = (¢(S) x {0}) U K.
We have proved the following

Theorem. Let S — T be an ideal extension of a Clifford inverse semigroup by
a Brandt semigroup. Then one of the following cases holds:

1) T is a subdirect product of S and a Brandt semigroup with zero (possibly,
a one-element Brandt semigroup) containing S x {0}, S is mapped onto S x {0}
under this extension;

2) T = (¢(S) x {0}) U K where K is a subdirect product of a subgroup of a group
inv lim {H,},;, H; being maximal subgroups of S and I a non-principal retract
ideal of E(S), and another group; in this case S — T is an ideal extension of S
by a group with zero adjoined.

3.6. Now let ¢ : S — Tbe an ideal extension of a Brandt semigroup S by a Clifford
inverse semigroup Q = T/p(S). Then T < U x K and Q = T[o(S) = P = U/<(S) x
x K. Both U[t(S) and K are Clifford inverse semigroups. If U = (S) then Tis a sub-
direct product of S and Q containing S x {0}, conversely, every such subdirect
product provides an ideal extension of S by a Clifford inverse semigroup. Suppose
now U = (S). Then U/(S) is a Clifford inverse semigroup if and only if for every
HeU\(S), HH™!' = H™'H. If T(S) is represented as a wreath product of #, and
a group G as in 1.32 and 2.27, then U consists of such pairs (g, f) where prio = pryo
in case that pr;¢ contains more than one element. Therefore, U is an inverse subsemi-
group of a wreath product of an inverse semigroup @ of univalent functions acting
in the set I and of G, where @ contains all the functions of the form {(i, j)} for i, jel
and for every other function ¢ € & pr;0 = pr,0. Conversely, if U is an inverse sub-
semigroup of such a wreath product and r(S) < U then any subdirect product of U
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and a Clifford inverse semigroup with zero containing 7(S) x {0} provides an ideal
extension of S by a Clifford inverse semigroup.

3.7. Now consider ideal extensions of Brandt semigroups by Brandt semigroups.
Such ideal extensions were described in [39] and, by another method, in [41, 2].

Let ¢ : S — T be an ideal extension of a Brandt semigroup S and let Q = T/¢p(S)
be a Brandt semigroup with zero. Then 7(S) x {0} =« T< U x Q where 7(S)
< U < T(S). We will use a description of T(S) given in 2.27 and 1.32. Then U/z(S)
is a Brandt semigroup which is a homomorphic image of Q. If U = 7(S) then T'is
isomorphic to a subdirect product of S and Q and S x {0} is contained in this sub-
direct product. Conversely, any such subdirect product provides an ideal extension
of S by Q.

Now let U % ¢(S). Then 7 : S — U is an ideal extension of S by a Brandt semi-
group U/7(S). Elements of U are pairs (g, f) where ¢ is a univalent function in I and
S :prie — G.1tis easy to verify that (g, f) is an idempotent if and only if ¢ = 4, for
a subset A < I and f maps A onto {1} where 1 is the identity of G. Let (4, f,) and
(45, 1) be idempotents of U\z(S), i.e. 4 and B contain more than one element each.
If A # B (i.e. the idempotents are different), then the product of these idempotents
is (44np, f3) Where f5 maps 4 n B onto {1}. If U[«(S) is a Brandt semigroup,
(44np:f3) €7(S), ie., AN B contains one element at most: |AnB| <1 where
|4 ~ B| is the cardinality of 4 N B.

Since U/(S) is 0-bisimple, there exists an element (g,f) e U such that (g, f).

A0, f)" = (44 f1) and (o,f) (0. f) = (4p, f,). It follows that A = pr,o and
B = pr,g, hence, |4| = |B].

To fix a Brandt semigroup P one needs to give all idempotents of P, the structure
group of P (which is isomorphic to any nontrivial maximal subgroup of P) and give
mappings between different maximal subgroups of P. We are going to describe U/z(S)
and U following these lines.

Let (A4;);cy be the set of all such subsets 4; = I that (4, f;) is an idempotent of
U\t(S) for f;: A; - {1}. Then |4, n A4;| <1 if i +j. Fix an element O e J. Let
(0, f) be an element of the maximal subgroup of U having the identity (44, f,)-
Then prio = pryo = A,. It follows that this maximal subgroup of U is a subgroup
of a wreath product of the symmetric group &4, of permutations of 4, and G, the
structure group of S. Denote this maximal subgroup of U by V. For every j € J fix an
element (¢j, ;) € U such that pri0; = Aj, pr0; = Ao, g; is an arbitrary mapping
of A; into G. Now U is determined in the unique way. In deed, let (o, f) € U\z(S).
Suppose pri@ = A;, proe = A;. Then (¢;,9:)7 " (0, f) (¢, 9;) € V. 1t follows that
(0.f) = (i 9:) (@, h) (g, g;)~* for a uniquely determined element (g, h) € V. Clearly,
if U consists of 7(S) and the elements (g, f) satisfying the above properties, then U/<(S)
is a Brandt semigroup. Thus, we have proved
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Proposition. Let S — T be a dense ideal extension of a Brandt semigroup S by
a Brandt semigroup. Then it is equivalent to an ideal extension of the formt : S —
— U where ©(S) = U = I(S) and U has the following structure:

a) let (A;)jes be a family of subsets of I (I is the index set of S) such that
|[4; 0 Ayl S Vifi %, |4 = |4] for all i, je J;

b) let for every j € J @; be a bijection of A; onto A, where 0 is a fixed element of J;
let for every je J f; be a mapping of A; into G where G is the structure group of S;

c) let V be a subgroup of the wreath product of &, the symmetric group of
permutations of Ay and of G;

Then U consists of 1(S) and all the elements of T(S) of the form (¢, f;) (e, f) -
(e;, f;) " where (¢, f) €V, i.e. U = ¢(S) U RVR™* (here R = {(0;, f1)}es)-

In particular, if [Aj[ < 1foralljeJthenU = ’L'(S).

To construct all ideal extensions of S by Q we should find subdirect products
of U[7(S) and Q which are Brandt semigroups. Suppose u,, u, € U[t(S) and q,, g, €
€ Q are nonzero idempotents and (uy, q,), (41, 4,), (u,, g;) belong to a subdirect
product P of U[t(S) and Q. Then (uy, 4,4,), (u1u,, q;) € P. If u; # u, then (0, 0) <
< (uyus, q4) = (0, 71y < (41, 41); if g1 # g5 then (0, 0) < (uy, 9:19>) = (uy,0) <
< (uy, ;). In neither case can P be a Brandt semigroup. If P is a Brandt semigroup
then u; = u, and g, = g,. Since P is a subdirect product of U/t(S) and Q, E(P)
should be a bijection of E(U/[(S)) onto E(Q). In particular, the index sets (i.c. the
sets of nonzero idempotents) of U/(S) and Q should have the same cardinality. Since
the index set of U/(S) is in a one-to-one correspondence with J, we may suppose
J = E()\{0}.

Conversely, let P be a subdirect product of U[t(S) and Q and E(Q) = J u {0}.
Clearly, the product of two different idempotents of P is 0 in case of E(P) =
= {((44,,f;)sJ)} jes © {0}. For any i,je J there exists g € Q such that gg~' =i
and g~ 'q = j. There exists u € U/t(S) such that (u, q)eP. It follows that
(uu=',qq7") = (uu~',i)e E(P) and (u"'u,q 'q) = (u"'u,j) e E(P). Therefore,
uu' = (44, f;)and u™'u = (44, f;). Thus P is a Brandt semigroup.

We have given an outline of the proof of the following

Theorem. Let S and Q be Brandt semigroups, let Q contain zero and let U be an
inverse subsemigroup of T(S) constructed as in Proposition 3.7. Let o be a bijection
of J onto E(Q)\{0} and P an inverse semigroup which is a subdirect product of U[t(S)
and Q such that E(P) = {((44,1;), «())}jes © {(0, 0)}. Suppose T = (z(S) x {0}) u
u (P\{(0, 0)}). Then ¢(s) = (s, 0) is an ideal extension of S by P and P is a Brandt
semigroup. Conversely, every ideal extension of S by a Brandt semigroup is equiv-
alent to an extension constructed above or to an extension of the form ¢(s) = (s, 0),
@ : S — T where T is a subdirect product of S and a Brandt semigroup with zero,
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S x {0} = T. P is isomorphic to Q if and only if the structure group of P (which is
a subdirect product of V, the structure group of U/‘c(S), and of the structure group
of Q) is isomorphic to a structure group of Q.

In particular, an ideal extension of S by Q which is not obtained via a subdirect
product of S and Q (i.e. such that U # 1(S)) exists if and only if |[E(Q)| + 1 < |E(S)|.
We could easily obtain conditions for equivalerce of two ideal extensions constructed
as in the above Theorem; we omit them since the Theorem itself is of purely illustrative
character: its aim is to show how results from Section 2 work. Theorem 3.7 is fairly
analogous to the corresponding results from [2, 41].

4. SUBDIRECTLY IRREDUCIBLE INVERSE SEMIGROUPS

4.1. Every inverse semigroup is isomorphic to a subdirect product of subdirectly
irreducible inverse semigroups. We consider here some properties of arbitrary sub-
directly irreducible semigroups which will be used later in the inverse case. Necessary
facts on the structure of subdirectly irreducible semigroups can be found in [27, 34].

Every subdirectly irreducible semigrcup S contains a core K (i.e. the smallest
non-null ideal).

Proposition [17]. 4 core of a subdirectly irreducible semigroup is a dense ideal.

Proof. Let K be a core of a subdirectly irreducible semigroup S and let ¢ be a con-
gruence on S which induces a trivial congruence on K. Let ¢ = (K x K) U 4g be
the Rees congruence on S corresponding to K. Then & n ¢¥ = Ag. Since e¥ + Ag
and S is subdirectly irreducible, ¢ = As.

4.2. Proposition. Let K be a core of a subdirectly irreducible semigroup S and
let T be an oversemigroup of S containing K as a dense ideal. Then T is subdirectly
irreducible.

Proof. Let (¢;);c; be a family of congruences on T, the intersection of the family
being a trivial congruence. Let &; be a restriction of ¢; to S. Then the intersection of
all & is trivial, hence, & = Ag for some iel. It follows that ¢; induces a trivial
congruence on K. Therefore, ¢; = Ay and T'is subdirectly irreducible.

4.3. Proposition [17]. If a semigroup S contains a subdirectly irreducible dense
non-null ideal, then S is subdirectly irreducible.

Proof. Let T be a subdirectly irreducible dense non-null ideal of S and let (;);.;
be a family of congruences on S having a trivial intersection. The intersection of
restrictions of ¢; to T'is trivial on T, therefore, there exists i € I such that g; induces
a trivial congruence on T. Therefore, ¢; is trivial and S is subdirectly irreducible.
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4.4. Definition. A congruence ¢ on a semigroup S is called extendible to T where
@ : S — Tis an ideal extension, if there exists a congruence n on T such that for

every sy, 5, €S s, = 5,(e) > 0(s,) = o(s,) (1)

Proposition. Let every congruence on a core K of a subdirectly irreducible
semigroup S be extendible to S. Then K is a subdirectly irreducible semigroup.

Proof. Let (g;);.; be a family of congruences on K having a trivial intersection.
Let &; be an extension of ¢; to S and & = ();; &. Then & is a congruence on S which is
trivial on K. Since, by Proposition 4.1, K is a dense ideal, § = A4g. Since S is sub-
directly irreducible, §; = Ag for some i € I. Therefore, ¢; = Ag and K is subdirectly
irreducible.

4.5. Proposition. Let a congruence ¢ on a weakly reductive semigroup S be
extendible to every T such that ¢ : S — Tis a dense ideal extension. Then for every
s, 52 € S and every w € Q(S)

(* sy = s,5(e) implies s, = s,0{¢) and ws; = ws,(e) .

If the quotient semigroup S[e is weakly reductive, then the converse holds, i.e. )
implies that ¢ is extendible for every dense extension of S.

Proof. Let ¢ be extendible. Then there exists a congruence & on €(S) such that
s1 = 55(8) © 7(sy) = 7(s;) (). If s, = 5,(e) then 7, = 7, (&), whence 7,0 =7,,0(8)
for every w € Q(S). Now n,w = mg,. It follows that n,,,, = 7,,,(&). Therefore, 5,0 =
= 5,0(¢). Analogously, ws, = ws,(¢).

Now let S/e be weakly reductive and let (*) hold. Let ¢ : S — T be a dense ideal
extension and a : T— Q(S) an isomorphism such that « . ¢ = 7. Define a binary
relation & on Q(S) as follows: (wy, w,) € £ if and only if s;w; = 5,0,(¢) and w;s, =
= ,5,(¢) for every sy, 5, € S, provided s; = s5,(¢). The reflexivity of & follows from
(*), the symmetricity of & is obvious. Let (wy, 0,), (w,, w;) € & and s, = s,(¢). Then
5101 = 5,0, = 5,04(¢), analogously w;s; = w;s,(e), ie. (@, ws) €& Therefore
£ is transitive, i.e. £ is an equivalence relation. Now let w; = ®,(&) and w; = w,(&).
If s, = s,(¢) then s,(w,0;) = (5;01) V3= (5,0,) w3 = (5,02) W4 = 5,(0,0,), since
5,0, € S. Analogously, (w,w;) s; = (w,0,) s,(¢). Therefore, ®;w; = W,04(8), ie. §
is a congruence.

s10

Let m,, = m,,(2), i.e. s3m,, = s47,,(¢) and 55 = m,,54(e) for every s3, 54 € S such
that s; = s,(¢). The latter formulae mean: sys; = s45,(¢) and 5,55 = 5,5,(¢). Let B
be the canonical homomorphism of S onto S/e and x € S/e. Then the latter formulae
mean that B(s,) x = B(s,) x and x B(s;) = x B(s,). Since S[e is weakly reductive,
B(s;) = B(s,), i.e. s; = s,(¢). Therefore, & is an extension of &. Now define #, =
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= 1,(2) © oft,) = «(t,) (§). Then % is a congruence on T and s, = s5,(¢) < ¢(s,) =
= ¢(s2) (2)-

Corollary. Let S — T be a dense ideal extension of an inverse semigroup. S Then
every congruence of S is extendible to T.

Proof. Inverse semigroups and their homomorphic images (which are inverse
semigroups as well) are weakly reductive. It suffices to verify (*) for every congruence ¢
on an inverse semigroup S. Instead of Q(S) we shall consider T(S) (this is possible
by Theorem 2.9). Let s, = s,(¢) and H e I(S). Let s;H = t(s3) and s,H = 1(s).
Thus s; = s;h, and s, = s,h, for some hy, h, € H. Therefore, s; = s;h; = s,h; <
< spand s, = s,h, = s h, £ s;5. If y is the canonical homomorphism of S onto S/e
then y(s;) < y(s4) and y(sy) < 9(s3), ie. y(s3) = y(s4) and s;3 = s4(¢). Analogously,
if Hs; = 1(ss) and Hs, = 1(s¢) then s5 = s¢(¢). By Proposition 4.5, ¢ is extendible
to T.

Remark. Corollary 4.5 is not true for arbitrary regular semigroups (consider, for
example, left zero semigroups and their dense ideal extensions).

4.6. Theorem. (Cf. [40].) An inverse semigroup is subdirectly irreducible if and
only if it contains a dense ideal which is a subdirectly irreducible [0-] simple
inverse semigroup.

Proof. By Corollary 4.5, Propositions 4.1 —4.4.

Notice that [0-] simple ideal of an inverse semigroup S is a core of S if S is sub-
directly irreducible. Since ideals of ideals of inverse semigroups are ideals of the
inverse semigroups themselves, a core of an inverse semigroup is a [0-] simple
inverse semigroup.

Since all dense ideal extensions of inverse semigroups were described in Section 2,
the problem of finding subdirectly irreducible inverse semigroups reduces to the same
problem for [0-] simple inverse semigroups.

4.7. Precisely in the same way as Theorem 4.6 we could prove the following more
general assertion. Let a semigroup S have a non-null ideal which is an inverse
semigroup. Then S is subdirectly irreducible if and only if it has a dense subdirectly
irreducible [0-] simple ideal.

Remark. Every congruence ¢ of an inverse semigroup S can be extended to C(S)
and even to M(S). Indeed, for H,, H, € M(S) define H, = H,() « &(H,) = &(H,)
Here ¢(H) is the union of all e-classes having a nonempty intersection with H. Then
s1 = 55(€) © 1(s,) = t(s,) (€) and & is the largest congruence on M(S) having this

605



property. The same is true for C(S). The congruences & constructed in 4.6 and 4.7
coincide on 7(S).*)

4.8. Lemma. An inverse semigroup is semisimple (i.e. all principal ideal factors
of the semigroup are completely [0-] simple) if and only if it does not contain
a bicyclic subsemigroup.

Proof. If an inverse semigroup S contains a bicyclic subsemigroup & then all the
elements of & are contained in the same _#-class, i.e. they generate the same principal
ideal of S. Then S possesses a principal ideal factor containing % as a subscmigroup,
i.e. this factor cannot be completely [0-] simple. Therefore, S cannot be semisimple.

Conversely, let S contain no bicyclic subsemigroups. If H is a principal ideal factor
of S, it cannot contain two different comparable nonzero idempotents. Indeed, if
i, j € H are nonzero idempotents and i < j then xix~! = j and x~!jx = i for some
x€S. Then (jxi)(jxi)™" = jxiix™"j = jxix"'j = jjj = j and (jxi)™* (jxi) =
= ix"Yjxi = ix"Yjxi = iii = i, i.e. the element jxi generates a byciclic subsemi-
group of S. Thus, H is a Croisot semigroup. Since H is [0-] simple, H is a Brandt
semigroup. Thus, S is semisimple.

4.9. Lemma. A Brandt semigroup is subdirectly irreducible if and only if its
structure group is subdirectly irreducible, i.e. the structure group contains the
smallest nontrivial invariant subgroup.

Proof. This follows from a description of congruences on Brandt semigroups [25].
This Lemma was proved also in [40].

4.10. Lemma. A [0-] simple inverse semigroup is a Brandt semigroup if and
only if it satisfies the descending chain condition for principal right ideals.

Proof. Every Brandt semigroup satisfies the descending chain condition for
principal right ideals. Conversely, let S satisfy the descending chain condition. Then S
cannot contain a bicyclic subsemigroup (since the idempotents of a bicyclic sub-
semigroup generate an infinite descending chain of principal right ideals). By Lemma
4.8, S is [0]- semisimple. Since S is [0-] simple, S is its own principal ideal factor,
i.e. S is completely [0-] simple. Since S is an inverse semigroup, S is a Brandt
semigroup.

*) Added in the proof. After this paper had been submitted for publication there have been
submitted and published two papers of N. R. REILLY: Extensions of homomorphisms to dense
extensions of semigroups, Semigroup Forum 6 (1973), 153—170; Extensions of congruences and
homomorphisms, Proc. Symposium on Inverse Semigroups and Their Generalizations, N. L
University, De Kalb, Ill., 1973, 140—166. In these papers Reilly has independently introduced the
concept of compatible congruences similar to that of Definition 4.4 and proved Proposition and
Corollary 4.5 and the maximality of € on £2(S).
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4.11. Theorem. An inverse semigroup S is a subdirectly irreducible inverse
semigroup with a core satisfying the descending chain condition for principal
right ideals if and only if S contains a \/-basic ideal which is a Brandt semigroup
with subdirectly irreducible structure group. This ideal is the smallest \/-basic
ideal of S.

Proof. Theorem 4.11 follows from Theorem 4.6, Proposition 2.18 and Lemmas 4.9
and 4.10. Theorem 4.11 for finite S was proved in [40].

Example. Every inverse semigroup of univalent functions acting in a set 4 and
containing all univalent functions of the form {(ay, a,)} for a;, a, € A is subdirectly
irreducible [40].

4.12. Proposition [29]. If E(S) is a well-ordered linear semilattice than S is
a Clifford inverse semigroup.

Proof. If T is a homomorphic image of S then E(T) is a homomorphic image
of E(S), hence E(T) is well-ordered. Suppose T is subdirectly irreducible. Then T
satisfies the descending chain condition for principal right ideals and the core of T
is a Brandt semigroup, by Theorem 4.11. The idempotents of this Brandt semigroup
are linearly ordered, therefore, the core is a group or a group with zero adjoined.
It follows that S is a subdirect product of groups and groups with zeros adjoined,
whence S is Clifford.

4.13. Proposition. An inverse semigroup which possesses a dense ideal satisfying
the descending chain condition for principal right ideals is isomorphic to a sub-
direct product of subdirectly irreducible inverse semigroups with Brandt cores.

Proof. Let S have a dense ideal P satisfying the descending chain condition for
principal right ideals. Let (g;);.; be a family of congruences on S such that N, &; =
= Agand S|, is subdirectly irreducible for every i e I.

If ¢” is not included in ¢;, then the image of P in S|; is a non-null ideal satisfying
the descending chain condition for principal right ideals. Therefore, the core of S/si
satisfies this condition. By Theorem 4.11, S/e; has a Brandt core. Now let & be the
intersection of such ¢; that Sfe; has a Brandt core. Since ¥ < ¢; if S/¢; has a non-
Brandt core, ¢ induces a trivial congruence on P. Therefore, ¢ = 4g, i.e. S is iso-
morphic to a subdirect product of subdirectly irreducible inverse semigroups with
Brandt cores.

4.14. Proposition. If an inverse semigroup has a dense ideal satisfying the identity
x2x~2 = x72x? then this semigroup is isomorphic to a subdirect product of sub-
directly irreducible inverse semigroups with Brandt cores.

Proof. Let S possess a dense ideal P satisfying the above identity and let (&;);s
be a family of congruences on S as in the proof of Proposition 4.13. We have already
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seen that without loss of generality we may suppose that ¥ is not included in ¢; for
every i e I. Therefore, S/¢; possesses a non-null ideal satisfying the above identity.
Therefore, the core of S/e; satisfies our identity. Such a core cannot contain a bicyclic
subsemigroup. Therefore, the core is semisimple. Since it is [0-] simple, it is
a Brandt semigroup.

2

Remark. Instead of x2x~2 = x~2x2 we could consider any identity which bicyclic

semigroups do not satisfy.

4.15. Let V be a variety of inverse semigroups defined by a system F of identities
in two operations — multiplication and involution (in particular, F may consist of
semigroup identities, i.e. identities where only the multiplication is used).

Suppose F contains an identity # which is not valid for a bicyclic semigroup %.
Since subdirectly irreducible inverse semigroups from V'satisfy «, they cannot contain
a bicyclic semigroup. Therefore, all subdirectly irreducible inverse semigroups from V
possess Brandt cores. If S eV then any inverse subsemigroup of S belongs to V.
Thus V contains Brandt semigroups. Every Brandt semigroup possesses a homo-
morphic image which is a Brandt semigroup with a trivial structure group. Therefore,
V contains Brandt semigroups with trivial structure groups.

Let 4 denote a Brandt semigroup with trivial structure group and two-element
index set (% contains precisely 5 elements: a zero, two nonzero idempotents and two
non-idempotent elements). If ¥ contains a Brandt semigroup S which is neither
a group nor a group with zero, then & is isomorphic to a homomorphic image of
a subsemigroup S, i.e. BeV.

Let o be an identity which does not hold for 4. If ¢ € F then £ ¢ V. It follows that
all Brandt semigroups in V are either groups or groups with zero. This being the case,
all subdirectly irreducible semigroups in ¥ are groups or groups with zero (by Proposi-
tion 4.1), i.e. Vis a variety of Clifford inverse semigroups. On the other hand, if ce F
but identites which do not hold for € do not follow from F, then each subdirectly
irreducible semigroup in V is either a group or a group with zero, or it has a non-
Brandt core. Non-Brandt cores are infinite.

We have proved the following

Proposition. Let V be a variety of inverse semigroups.V is a variety of (not neces-
sarily all) Clifford inverse semigroups if and only if , € ¢V (i.e. all inverse semi-
groups inVsatisfy an identity which does not hold for # and an identity which does
not hold for ). If B ¢V then every finite semigroup belonging to V is a Clifford
inverse semigroup. If € ¢ V then all semigroups in V are isomorphic to subdirect
products of subdirectly irreducible inverse semigroups with Brandt cores.

Remark. The “only if” part of the first assertion follows from the fact that all
Clifford inverse semigroups form a variety satisfying the law xx~! = x ™ !x.
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