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1. Introduction. In this paper we shall give the proofs of the following theorems
anounced in [1]:

Theorem 1. Let the system

(1) —=iA-—+Bu

where A;, B are N X N constant matrices, satisfy the condition

(H) There exist positive constants Cy, C,, Cs, T such that
(L, )| = [P P < €, + G|yl

forall yeR,, te<0, T).
If for some pe<{l, +0), p &+ 2 and for some C > 0 the inequality

(2) lug(t: )]z, = Clo()],

holds for all t€ 0, T), ¢ € &, where u,(t, x) = F~1(e"*P* Fo) is the solution
of (1) with the initial condition u (0, x) = ¢(x) and & is the set of infinitely differen-
tiable vector functions ¢ on R, with finite pseudonorms sup ]xlk |D“ (p(x)!, o=

xeRn
=0y, ..., %, k, 0y, ..., @, arbitrary nonnegative integers, then
],) the matrix A(y) =p¢ Y, y;A; has for all y € R, only real eigenvalues and can
Jj=1
be diagonalized by a similarity transformation T~*(y) A(y) T(y) for all y € R,.
2) AiA; = AjA;, i,j=1,2,..,n.

3) A;, i =1,2,..., ncan bediagonalized by the same similarity transformation.
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Theorem 2. Let the system (1) satisfy (H) and, for some k = 1 integer and some
pe(1, + ), let the inequality

(2) Juo(t %)z, = Clolx)]w,

hold for all te {0, T), ¢ € &, where W: are Sobolev spaces on R,, C a constant.
Then the inequality (2) is valid and if p + 2 then the assertions 1)—3) of the
previous theorem hold.

Theorem 3. Let the system(l) satisfy (H) with C, = C3 = 0. Then for pe {1, + )
there exist constants C,, C,, depending on p, n, N but not on B, such that for its
solutions the following estimation

k
©) luolt: D)z, < Ci™M L 1 o],

holds for all te Ry, ¢ € &, where k is the smallest integer satisfying

2{|:n/2:|+1 for p=+w
" An|t/p =3 for pedl, +).

Theorem 1 was published for the first time by the author in [2] without the detailed
proof. Its proof made use of a matrix theorem from [3]. The latter theorem holds
but its proof in [3] is not correct. In [4] P. BRENNER proved 2 more general result
than Theorem 1. For completeness we give here the complete proof of Theorem 1
together with the correct proof of the matrix theorem from [3] (see Lemma 6 below).
Theorem 3 generalizes the result of L. A. MURAVEJ [5]. In [4] P. BRENNER proved a
slightly weaker result than Theorem 3 but for a very large class of systems.

2. Notation. R, = {x} = {xy, ..., x,} is the linear space of n-tuples of real numbers
with

(x, Y) = '_leiyi > ]x[ = (x, x)x/z >
x, y € R,. C, is the linear space of n-tuples of complex numbers with
n
(v,w) =Y v, Wi, |o] = (v,v)"/%.
i=1

For N x N matrix A we denote by

|4 = sup ||fjo] .

veCp,v¥0

E is the set of complex infinitely differentiable functions on R,, & the set of vector
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functions f = fy, f5, ..., fy with components in E, S is the subset of E consisting
of functions satisfying for all k and a = a4, ,, ..., a, (k. a; nonnegative integers)

" lal
sup |x[* |D* f(x)| < + 0, |a|_§1ai, D*f(x) = o)

xeRn oxT ... oxin

& is the analogous subset of &. D and 2 are subsets of S and &, respectively, of
functions with a compact support in R,. The topology in S and & is defined by the
system of the above mentioned seminorms. §’, &’ are dual spaces of S and &,
respectively. If M is a domain in R,, then D(M), 9(M) are subsets of D and 2,
respectively, with supp ¢ = M. For a scalar or vector function f defined on M we

denote |z, = (far |77 dx)""* for pel, +00), |f]raon = supess |G| for

p= ;"00’ 1| zpecary = ( IszIID"J“!I,g,(M))”", IS e = Z:k|sz|Lw(M)s 17w pxcaey =

= (X Iz, 1ca0)'" I/ | w =IZO||f||sz(M) with k nonnegative integer. Wy(M),
1=0 =

WwEM) (pe{l, + o), k nonnegative integer) are usual Sobolev spaces with the
above mentioned norms. For M = R, we shall write W, #'} instead of W,(R,),
W¥R,). For p e <1, + ) these spaces are the closures of S, & in the corresponding
norms. For pe (1, +), 1/g + 1/p = 1 denote by W, . # ;* the dual spaces to
WY, #'k, k-nonnegative integer. Foru € &, Fu = #(&) = (2r))™"/? [g, "% u(x) dx,
F~1u(¢) = (&) = (2r) ™2 [, e ™D u(x)dx. For x°eR, o0>0, K(x°¢) =
= {x;xeR,, |x; — x{| <o}, B(x%¢) = {xeR, |x — x°| <o}

3. Preliminaries. Remark. The condition (H) is satisfied if one of the following
conditions holds:

(H,) (strong hyperbolicity) The eigenvalues of A(y) are all real and distinct for
ly| =1, yeR,

(H,) (hyperbolicity in the sense of Petrovski) For all |y| = 1, y € R,, 4(y) has only
real eigenvalues and can be diagonalized by a similarity transformation

T~'(y) A(y) T(y), where T(y) < const, T~*(y) < const for || =1, yeR,.
(H:) A(y) has only real eigenvalues for ye R,, 4,8 = BA,, i = 1,2, ..., n.

The first two conditions are well known, the sufficiency of (H,) for B = 0 is proved
in [6] (pp. 80, 93) and for general B it follows from eU40)+B) _ i)t Bt

Lemma 1. The condition (H) implies
| D5 "B < Cy(a) + Cy(@) |y|Sat@

for te0, Ty, yeR, and all & = ay, a5, ..., &,
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Proof. Since g(t, y) = el *P* satisfies the system
d .
5 99) = (140) + B) (1, )

and ¢(0, y) = I, hence dg[dy, is the solution of

d%(@%‘i) = (i A(y) + B)gj—k + (i Ag)

with (dg[dy,) (0, x) = 0. Then

%((t, Y) = J‘;g(t -1, y) (,’Ak g(t, ,V)) dr

and thus

2209 = [ ot = 9 4l lote )l 6= 5 4] 70 + b €
Y 0

for 1€ (0, T), y € R,. Higher derivatives may be estimated analogously.

Lemma 2. If the condition (H) is satisfied for some T > 0, then it is satisfied
for arbitrary T > 0.

Proof. This follows easily from e(4®+B)(e+0) — (4 +B)e (iAW +B)T for g 7 > 0.

Corollary. For ¢ € &, u,(t, x) = F~' e 40*B" Fo is an infinitely differentiable
solution of (1) in t 2 0, x € R, with u,(0, x) = ¢(x) and u,(t, .)€ & for all t = 0.

Proof. This follows from F¥ = &, F~1& — & and Lemmas 1, 2.

Lemma 3. Let h(x) € E, |h(x)| < C,(1 + |x|¥) for some k = 0. If

@ sup [[F7th Folp,[[o], = € < +o0
veS,v¥0

for some pe 1, + ), then sup |h(x)| < C.

xeRn

(For a more general result see [7], Corollary 1.3.)

Proof. a) p = 2. Then |[F~'h Fv|,, = |[h Fv|,, < C|v|., = C|Fv|., and thus
for every weS, |[hw|,, < C|w|., Let y(x)eD, y 20, ¢ =0 for |x| =1,
fr, ¥2(x) dx = 1. Let x, € R,. Taking in the last inequality w(x) = ,,(%) = m"*.
SY(mR), % =x — xo, we get |[mY,|2, < ClUalZ,. Since |Wuli .= 1, |Walz, =
— |h(xo)|? for m — oo, we obtain |h(x,)| < C.
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b) p = 2. Then it is sufficient to prove that (4) holds with 2 instead of p with the
same constant C. First we prove that (4) holds with g instead of p (1/g + 1/p = 1).

|F~'h Fo|,, = sup

f (F~'h Fv, w) dx

L =1
= sup J (h Fv, Fw)dx| = sup J (h Fo, Fw) dx| =
lfwliz,=1 [J R, IwllL,=1 |J Rn
weS weS
— sup f (5, F~*h Fi) dx| < C||., = o], »
91,4 W,

where #(x) = (—1)" #( —x) (Fv = F5). Applying to the operator So: So¢ = F~'h Fo
from S to S the Riesz - Thorin convexity theorem ([8], p. 144) we obtain the desired
result in L,-norms and hence the lemma follows.

Remark. The Riesz - Thorin theorem is formulated in [8] for operators defined
on simple functions. For pe (1, +c) no difficulties arise because of the density
of Sin L, L, If p=1, ¢ = + 00 one can proceed as follows: By continuity the
operator S, may be extended to all functions in L,, particularly to simple functions.
It remains to show that this extended operator satisfies |So@|., < C|o|L.., for
every simple ¢, if originally this estimate held for ¢ € S. Let ¢ be a simple function.
Then the mollifiers J,¢ € S with the radius l/m tend to ¢ in L; when m — oo,
[Jmellr. < @i, SoJm® = Soe in L,. We can suppose (extracting an appropriate
subsequence) that S,J,¢ — S almost everywhere. Then from |SoJ,o|., <
< C|Jw0|L, £ Clo|., we obtain for almost all xeR,: [S, @(x)| £ C|lo|L..-
This justifies the application of the Riesz - Thorin theorem.

Lemma 4. If (H) and (2) hold, then

1) |e®)] < const for all yeR,,

2) A(y) has only real eigenvalues and is diagonalizable for all y € R,

3) |F~? e“‘””Fq)[[,_P < C”(PHL,, for all pe &, te Ry, C being the same as in (2).

The constant in 1) depends on C from (2) and on N.

Proof. Let h;jt, y) be an element of e4®*5 By (H) and (2) h;(t, y) satisfies
for every t € <0, T), the conditions of the preceding lemma with C from (2). (Putting

@ = (@1s - On)s @; = $;; With @ € S.) Then for all t €0, T, y € R,, |hi(t, y)| <
£ C. Thus |H4O*®!| < NY2C for all te (0, T), yeR,. For T>t > 0 we have

N1/2C g sup Ie(iA(y)+B)t| = sup ‘eiA(n)-HBI X
yeRn neRn

Letting t — 0+ we obtain 1). This implies 2), because g(t, y) = ¢"4®* is the funda-
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mental matrix of the system du/dt = (i A(y))u satisfying (0, y) = I, which is
bounded for all ¢ € R, if and only if 2) holds.
Using the substitution yt = 5, te(0, T), we get easily
(F—l e(iA(}’)+B)t Fq)) (x) = (F—-l eiA(y)+Bt F(p ) (x/t)

where ¢,(x) = ¢(tx). This implies |F~!e“O*¥ Fo |, < Clo., for all e,
te(0, T), ¢(x) = ¢(tx). When ¢(x) varies over all # then ¢(x) does so. Thus we
have

(42) [F~* 0% Fol,, < Clo]s,

forall pe &, te(0, T). By Lemma 3 it is ]e'“”“‘ﬂ < N1/2C for t e (0, T), y€R,.
This and F¢ € & implies (by the Lebesgue theorem) F~1 ¢4 +Bt p, _, F~1¢i40) g
in R, as t—0+. Then it follows from (4a) by the Fatou lemma that
[F~* e Fo|,, < Cle| L, Similarly as above we get from this estimate the desired
estimate 3). Simple modifications for p = + o are left to the reader.

Lemma 5. Let the N x N matrices Ay, A,, ..., A, be such that A(y) = ZyiA,.
i=1

has only real eigenvalues and is diagonalizable for all y in some B(y', 0,), y' € R",
Ql > 0. Then there exist B(y°, 00) Y° € R,, 0o > 0, natural numbers ny, n, ..., ny,

Z n; = N and real infinitely differentiable in B()°, 0,) functions 2,(y) < A5(y) ...

< lk(y) such that A(y) is the eigenvalue of A(y) of multiplicity n; for y € B(y°, go)
i=1,2,...,k. For each A(y) the corresponding eigenvector v(y) may be taken
infinitely dzﬁ”erentlable in B(»°, @o)-

This lemma is an easy consequence of the following

N
Assertion. Let the polynomial P(A; y) = Y a(y) A* with ay = 1, ay(y) infinitely
k=0

differentiable real functions of y in B(y°, go) have in B(y° go) only real roots.
Then there exist B(5°, 8,) = B()° 0o), @o > 0, natural numbers ny, ny, ..., my,
Z n; = N and infinitely differentiable functions on B(33, 8o) A1(y) < 22(y) ...

< 1k(y) such that A(y) is the root of P(A; y) of multiplicity n; for all y € B(3°, @),
i=12,...,k

This assertion may be easily proved by induction, using the implicit function
theorem. :

3. A matrix lemma. Lemma 6. Let A, Bbe N x N matrices with complex elements
satisfying

1) A4 and B have only real eigenvalues,

2) a4 + BB is diagonalizable for all real «, B,
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3) A, B have the property L: the eigenvalues Ay, Ay, ..., Ay, Hys by, ..., py of A
and B respectively may be arranged in such a way that ok + Buy, ad, + Pu,, ...
., 0y + Buy are all eigenvalues of aA + BB for all a, B real.

Then A, B are simultaneously diagonalizable and AB = BA.

Proof. If we prove that 4 + BB is diagonalizable for all o, f complex, we get
the lemma by a theorem of Motzkin - Taussky ([9], Theorem 4).

First we remark that 3) is satisfied for all complex «, B. Supposing that the eigen-
values of 4 and B are arranged in such a way that 3) holds, we can divide the set
of pairs (4, #,), (A2 2), - .-» (Ay, pty) into k (k < N) groups in the following manner:
(45> w)> (4> ;) belong to the same group if and only if A; = 4;, g; = p;. We may
suppose that the first k pairs (1,, i,), (A2, #2), .- -, (A4 ) are different, Denote by g;
the number of elements in the group containing (4, p;), j = 1,2, ..., k.

Obviously ZQ, = N. Then for every a complex, ad; + yu;, j = 1,2,..., k is the

eigenvalue of R(oz) = a4 + B of multiplicity =g;. This multiplicity may be >g;
only for o = a; = (u; — w)[(Ay — 4;) with A, +2;, I =1,2,..,k, I +j. Note
that o, are real. It is sufficient to prove that R(«) is diagonalizable for all « complex.
Since the rank of (a; + p;)I — R(x) is <n — g; for real « (by 2)), it is <n — g;
for all complex « (because the minors of this matrix are polynomials in «). Thus the
dimension of the corresponding eigensubspace N («) is >g;. For « # a;; we have
dim N;(«) £ multiplicity of the eigenvalue ad; + y; = g;. Thus dim N(«) = ¢;
and R(«) is diagonalizable for o # a;;. For a = a;, R(x) is diagonalizable by 2),
because «;, is real. The lemma is proved.

4. Proof of Theorem 1. We begin with some lemmas.
Lemma 7. ([10]) Let pe<1, +0), ve &, [v]| 2 C, > 0 in B = B(y° 0), ¢ > 0,
y° € R,. Then there exist a constant C; and B’ = B()°, ¢'), 0 < ¢’ < ¢ such that

clFtehls, = |74,
for all he D(B).

Proof. There exist k, 1 £ k < N and §, 0 < § < ¢ such that v, + 0 in B()°, g)
and hence 1[v, is infinitely differentiable in B(y°, §). Puiting w = 1/v, ¢ where
oces,

o1 in  B()° 19),
0 in B()° 30),
then y,w = 1 in B(y°, §/2). Denote ¢’ = §[2, B' = B(y°, ¢'). For h e D(B’) we have
[F= 0], = [F7H(hwod]e, < [F~*@wh)|o, < |F~*wl, - |F~2oh]., =

= C|F~'vh|,,
with C = “F‘lw”Ll.
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Lemma 8. Let feE, |D’ f(y)| < C)(1 + |y|"*) for arbitrary B, yeR,. If for
some pe{l, + o) and all g € S with Fg € D we have the estimate

(5) |F= Fg|r, < Clol., ,
C = constant, then this estimate holds for all g € S.

Proof. It is known (see e.g. [11] pp. 29—31) that for g € S there exist g, € S,
Fg,e D, n =1,2,... such that g, » g, Fg, —» Fg in S. By the assumptions on f
we have f Fg, — f Fg and then F~'f Fg, — F~'f Fg in S and hence in L,. Using (5)
for g, and tending n — oo, we obtain (5) for g.

The following lemma is essential.

Lemma 9. ([7]) Let for a real number a the estimate
(6) |[F=t e Fol,, < Cllo]L,
hold for every ¢ € S(E,) and some pe {1, +0), p + 2. Then a = 0.

Proof. Putting U,(t,x) = F~! e’ Fop fort + 0, a + 0, we have
+ o0
Uq,(t, x) _ (27:)"”2-" ey einyzt(F(p) (y) dy -

_(27r)-1/z j+m % [(‘qu) (y)] j:ei(azq2+xq) dn ,

-0

Il

Y iatn?+xm) —iat(x?/4) |4|~1/2 OBV t
el(am xn d” — e"ia lt[ / em{ sgn dc .
(1] xJ[t]/2

Since

N 0 1 N2|a]
J' sin a2 d{ = f sin af? d{ = (sgn a) —f sin 6/,/0 do
0 -N 2 \/Ial 0

has a finite limit for N - + oo and similarly

0

cos al?d{ = f

N
cos al? d¢,
N

J 0

we obtain for all x, ye Ry, t +0,a + 0

jyei(at”2+xﬂ) dn‘ é C(a) . 1/\/|t!
o .

and then

0, 9] 5 o) [

d
™ (Fo) (y)’ dy < Cy(a, ¢) 1|12
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By the Parsevall identity,
Vot ¥, =[], -
From (6) it follows

(7) [F=t e Py, < Cly L,
for te Ry, y € S (for t > 0 by the substitution y \/t = z, for t < 0 using
FTe™ ) () = (F! e FJ) (—)
where §(x) = (= 1)" §(—x).
Let p > 2. Putting in (7) ¥ = U,(—1, x), we obtain
Fy =e ™" Fp, Fle® " Fy =g,
which implies

+ o0 1/p
lolk, = (= 9l, = (| oo ax) " = a0y .

For t —» + oo the right hand side tends to zero, which is a contradiction since ¢
was arbitrary € S.
For p < 2 we have

+ 1/2
0o = (o o=ras) ™ s et o) b=

If (6) (and hence (7)) holds, then

lole, = [0l = Clee=27 U, 27 < T2 o],
which yields a contradiction for t - + co.

Lemma 10. Let ) a;;y,y;, a;; = aj; be a quadratic form with real coefficients.
i=1

If for some pe {1, + ), p + 2 the estimate
® |F~* exp {i Yayy:y;} Foli, < Clo|,

holds for all @ € S, where C is a constant, then a;; = 0,1i,j =1,2,...,n.

Lj=

Proof. Let o be the orthogonal matrix such that Y a;;y,y; = Y. bni forn = ay.
1 k=1
Using the substitution = ay we get from (8)
|F~* exp {i Lburi} Fol., = Clo], -
427



n
Putting ¢(x) = [Tou(xs), @x(xc) € S(Ry), we obtain
1

kl__IlnF—l exp {ibk'l:} F‘Pk"z.,, < CkI—-Il "(pk”Lp
for all ¢, € S(R,), which implies

[F~* exp {ibui} Folr, < Cilo|L,

fork =1,2,...,n, g e S(E,). By Lemma 9 b, = O and hence a;; = 0,4, j = 1,2, ...
ey R

Lemma 11. ([7]) Let A(y) be a real function, A(y)e S, such that for some pe
€, +0), p * 2 the estimation

©) [F=texp {i 2y) 1} Fo., < Clo]s,
holds for t 2 0, Fp e D(B), B = B(y% ¢), y°€R,, ¢ > 0, C = const. Then Ny) =

=1 + Z Ayr on B, where Ag, Ay, ..., A, are real numbers.
k=1

Proof. It is sufficient to prove that 0%A(y)/dy;dy; =0 on B, i, j =1,2,...,n.
Let j e B, @ > 0 such that B = B(J, §) = B. Then (9) holds for all ¢, Fo e D(B)
and hence

[F=* exp {i(Ay = 7)) 1} Fol., < Clol,

for Fp € D(B'), B' = B(0, §), (by the substitution y — § = z). Thus we may suppose
5 =0. Let

My)=a+ _Zlijj '*'_Z,lai])’i)’j + o(|y?)
j= ij=
where a;; = % . 9°4(0)/dy; dy;, i,j = 1,2, ..., n. Then

Cllele, z [F~* exp {i 2(y) 1} Fo|., =
= |F™ exp {i(a + Xb;y; + Yayyy; + o(|y]?) t} Folr, =
= |F™ " exp {i(Taiyiy; + o(|[y]*) 1} Foll.,

for Fp e D(B'). BY the substitution y ./t = z we get
(10) [F=* exp {i(Xayy; + to(ly[V1IP)} Folle, = Clol,

for Fo € 9(B,), B: = B(0, ¢ \/t). Let B* be a fixed ball in R,. Then for t sufﬁc{ently
large B, > B* and for t - + o0 and Fo € 9(B*) we have
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1) exp {i(Cayyiy; + to|y[V1*))} = exp {i Yayyiy;}
uniformly on B*
2) exp {i(Yai;y; + to(|y[V1|*)} Fo — exp {i Ya;y:y;} Fo in Ly(R,),
3) F~hexp {i(Yayyiy; + to(|y[Vt]*))} Fo — F~*exp {i Yayyiy;} Fo
in R, and by the Fatou lemma we get from (10)
(11) [F=" exp {i(Xai;y:)} Folr, < Cllo].,

for Fo € 9(B*), and hence (since B* was arbitrary) for all ¢ € &, and by Lemma 8
for all pe . By Lemma 10 a;; =0,i,j=1,2,...,n.

Proof of Theorem 1. By Lemma 4, A(y) has only real eigenvalues and is diagon-
alizable for all y € R,. Then by Lemma 5 there exists B = B()°, go) such that in B
all eigenvalues 4,(y) and the corresponding eigenvectors v,(y) may be taken infinitely
differentiable in B. If B = B()°, 10,), one can change these eigenvalues and eigen-
vectors outside of B in such a way that they belong to S(&). By Lemma 7 there
exists B’ = B and a constant C; such that

Cil|F~"v10]0, 2 [F7 0],
for Fp € @(B'). Then by Lemma 4
ClF~"v Fols, 2 [F~* (exp i A0) 8} vs Fo), =
= [~ exp (1 10) } 0 Fols, 2 - [F ™" exp (1 20) ) Foll,
and then

|F~* exp {i 4,(y) t} Fo|r, < C|F "vs|y, |@]L,

for Fp € 2(B'). By Lemma 11, A,(y) is a polynomial of degree <1 in B’. Similarly
we can proceed with the other eigenvalues and, finally, obtain a ball B, = B(y', ¢;)

such that in By A,(y) = a; + ¥ b;jy;, i = 1,2,...,N. Thus
j=1

det (Al — A(y)) = il)jl(l - a —jibijyi)

in B,. Since there are polynomials on both sides, we get A,(y) = Y b;;y; + a; for
i=1

allyeR,, i=1,2,..,Nand a; = 0. By Lemma 6 4,4; = 4;4;,i,j=1,2,...,n.
However, an arbitrary set of commuting diagonalizable matrices is formed by simul-
taneously diagonalizable matrices (see [12], p. 10). The theorem is proved.
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Corollary. Let the system (1) satisfy (H) and let for some pe <1, + ), p * 2,
T>0,C>0,0>0,x°eR, and K = K(x°, ¢) the estimate

2) Jug(t, %), = Clo|L,

hold for all t€ <0, T) and all ¢ € D(K). Then there exist T > 0, C; = const such that

4ot %)]e, < Clo],
holds for all t € {0, ©) and all ¢ € & and thus the assertion of Theorem 1 is valid.

Proof. The system (1) has a finite domain of dependence which means that there
exist R such that for arbitrary #, > 0, x° € R, the solution of (1) at the point (t,, x°)
does not depend on its values at the points (0, x), x € K(x°, Rt,). (See e.g. [6], pp.
58 —63, 89 —90.) If (2) holds for all ¢ € 2(K(ox°, g)), then it holds for ¢ € Z(K(%, o)),
% arbitrary € R,. Let ¢ € 2(K(0, mg)), m natural. Let K; = K(jo, 0),j = j1»jzs +++» Jus
JO = 10, J20s ..., ju0s J, integer. If y; (j, integer) is the decomposition of unity on R,
corresponding to the system of domains K; (j, integer), i.e. ¥;€ D(K;), 1 2 ¢ 2 0,
Y¥(x) = 1forall x € R,, denote ¢; = ¥;0. Since K(0,mg) = U K, itis Y, ¢; =
J

ljs|<m ljs|<m

=0q, u Z u,,. Then there exist natural numbers v(n), u(n) such that for
| HE
te {0, 1) 7 = min (Q/2R T[2), u,(t,.) =0 outside of U K

J°
lisl=
functions u, (¢, .) are not identically zero on K, <m, k < m and each
3] k ]s

u,(t, .), |js| < m is not identically zero at most on y(n) cubes K,. Thus we have

at most v(n)

oo (O 5 3 [ puledPas = 3 [ | S ufeopax s

ks|<m KkJEk

S Y v Tl Parsv i Y| s
lks]<m Ky ST lislsm ) R,
gwmaj % lerax=voner [ 5 jolrlyfrax s
R, lisI=m Rn lisl=m
v ia I«pl"I ¥y = v uc?|ol,
Rn jsl=

where J, is the set of such j that u,, is not identically zero on K. For C = Cy'/4u!/»
we have then

Juolts )], = Clol,

for t € (0, ©), ¢ € 2(K(0, mg)). Since C does not depend on m, this estimate is valid
for all ¢ € 9, and by the density of 2 in & it is valid for all ¢ € &. The corollary is
proved.
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5. Proof of Theorem 2. We begin with two lemmas.

Lemma 12. For each q€(1, + ), p = q/(1 — q) there exists a constant C, > 0
such that

y (DY, Do) dx

Ja[ <k J Rn

(12) sup 2 Coll¢]

q’EWPk ” (P ” ka
for all Yy e "///"’1‘.
Proof. For fixed y € #% denote
it = i |

for 1 =1,2,...,N, |« £k, where fi,,. DY; = |D*|, || = 1. Then

U, = ([lowd)™ = g

There exists a sequence fo = (fm 15 ---» f4,m) COnverging to f* = ff, f3, ..., fy in L.

Putting .

on = F1g(0) ¥ ()M (e 7
a| £k .

where g(¢) = ( Z 52") 1§22 = g2mpZe2 | p2m By Michlin’s theorem on multi-

pliers [12] we have

lolw,s = €, 3 Vsl

@n — @ in W[ as m - oo, satisfying
(D%, D*@) dx = Z (DY, f) dx .
|2k J Rn a| =k J Rn

From the definition of f* we obtain

(D%, D*¢)dx = Y, f (DY, f)dx =Y ¥ f | Dy|* dx
lel<k J Rn la]<k 1=1 J Rn

~

la]<k J Rn
and hence
2.(D*y, D*p) dx & Z D"Pth dx
Squ ; % g€ ; . (a—1)/q 2 Cq”‘/’”#’.,"-
PeW ! u(p”*’n laZSk 12__:1 <J‘lDal// l )
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Lemma 13. Let A be a linear operator from 9(E,) to ¥(R,), pe (1, +o),
k natural, satisfying
l4elwy < Cillofw,

l4e]y,-« < Callo]4,-x

for all q)e.@(R,,), where C,, C, are constants. Then there exists a constant C
depending only on C{, C,, N, n and n such that

l4e]., = ClelL,
holds for all ¢ € D(R,).

For the proof see e.g. [13] (theorems 7, 9, 10) and [14].
Now we are able to prove Theorem 2. Putting for p € &, te {0, T)

S,o(x) = F 'exp{(i A(y) + B)t} Fp, Sf (p(x) = F 'exp {(—iA*(y) + B*)t} Fo

where A*(y), B* are the adjoint matrices to A(y) and B, respectively, we have by
D*S,p = S,D%p, D*S¥p = S¥D*%p and the assumption of Theorem 2:
(D*, D*S}y) dx

=’ Y j (D*S,p, DY) dx
|| £k J Rn || £k J Rn

< ISl [¥lwi = CiCllolw e [¥ e

C being a constant, ¢ = (p — 1)/p. Since & is dense in %}, this estimate holds
for all p € #°k. Now by Lemma 12

=

2 | (D', D*S7Y) dx

e[k J Rn

sup 2 C|STY ]y

oot e Il
and thus
[S¥U s < Call ]l

for all Y € &, t € {0, T). This implies for all ¢, Y € ¥, te <0, T)

[ stv.0r0n

< Calollyy-o - [ ]l pe
and hence

.m0

< Cafolly o - [¥]wpe

- [[ st oo

and ‘
”St(p”#/‘p(—k) = C4”¢”W,,<-k)

for all p e &, te <0, T). Applying Lemma 13 to S,, t e {0, T), we get Theorem 2.

Remark. The cases p = 1, + o0 are not covered by this theorem. This seems
to be a defect of the method. The following example of a strongly hyperbolic system
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(1) (n = 2, N = 2) which does not satisfy 4,4, = 4,4, and the estimate [|u, [, <
= C“(P"wa may be of some interest.

Example. Let us consider the system

(13) — 1 _22_9, gﬂ %_%zo

at  0x; 0x, ot 0x; 0x,

with initial conditions u(0, x) = ¢(x), ¢ € Z(R,), x = x;, x,. If we take ¢, = 0,
©, = J.04, where J, is the mollifier with the radius ¢ > 0,

x2 . X,
yarcsin ([ ———— Jdy x, 20 for (x| =<(1 + h/2
w o= [l =) H=enR

0 x, <0 for 0<h<1

(it is || @a]lwo1x) < 1+m72) S const), @, the extension of ¢, on R, satisfying |||y (r,) <
< const, §, = @,{ where { = 1for|x| £3,{ =0for|x| 22,{eP(R,),0<{ <1,
then we have for the corresponding solution u,: (9/dx,) (u,); (1, 0, 0) is unbounded
as h — 0, g(h) - 0. Thus the system (13) does not satisfy the estimate [|u,|y . <
< C|@]l4..:- This may be seen as follows: if u,, is the solution of (13) with the initial

condition ¢, then applying to (13) the operator

e 0 G
54‘6_):’ 0x

B(D): 1 2
9 9 _ 9
ox, ot ox,

we obtain that (u,); is the solution of
62 2 2
o _ o 0 (u,); =0,
orr  ox?  ox}

i = 1,2, with initial conditions u,(0, x) = ¢(x),

Aolr (g ) = 901, 002 Ato)z (g v _ 201 202
ot 0x, 0x, ot 0x, 0x,

Then (u,), may. be written by the well known formula

F 1 (p(x1+€sx2+r’)
() (1) = 2L 2 e
? 0121 ) j2eyyer (2 — & - %)

901 _ 992 (x, + &, x, + )
+_1_ 0x,  0x4

27 | jg24nry s J(E& =& —n?)

From this representation the desired result follows.

dédn.
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6. Proof of Theorem 3. First of all we remark that if |exp {i(A(y) + B)t}| < C
forte (0, Ty, T> 0, y e R, then |exp {i A(y)}| < C for yeR,, |exp {i A(y)t}| < C
forte Ry, yeR,, |exp {(i A(y) + B)t}| £ Cexp {C|B||t|} for arbitrary B and hence

[45]l.. = € exp {CIB|[t]} o],

forteR,, o, ul® = F~'exp {(i A(y) + B)t} Fo (C is the same as in the first
inequality). The system (1) has a finite domain of dependence and the constant R
(see the proof of Corollary in § 4) depends only on Ay, A4, ..., 4,

Now we prove that there exists C(p, n, N) such that

(14) (4Pt )| 2,r0 = C(p, 1, N, R) €1 0]| ey
for all p € P(K(x° 1)), |t| £ 1, x°€R,. In virtue of the invariance of (14) with
respect to a translation one may suppose x° = 0.

a) pe<1,2). If p e P(K(0, 1)), then u'? e 2(K(0, 1 + R)) for [t| €0, 1). Thus

we have

““(B ”fp(R,.) ”“<p I Zp(K(O,1+R) =
< &(p,N, n, R) ”“(B)" L2(K(0,1+R)) =

(P, N, n, R) Ce“"™| o] ,x0.1y <
C(P, N, n, R) C o]y xxo,1)

I[/\ l

(with k defined in the formulation of Theorem 3) by imbedding theorems [16] and
Holder inequality.

b) pe(2, +o0).

5™ 2p(K(0,1+R)) =

C(p, N, n) [ug” | k0,1 +m) =
= g(P’ N, 1) C ey xxco,1y =
< C(p, N, n, R) Ce“™ 9|l k0,1

146l 2k

IIA

Thus (13) is proved.

Let ¢ € 9(0, m), m natural. We shall use the notation as in the proof of Corollary
of Theorem 1 with T=¢ = 1. Wehave ¢ = 3 ¢, ul? = Y u(®. Nowitis

lis|sm - lis|sm
60, %)% 00 = z |7 dz = j | Y updx <
LiEm ) g, 1LTSm J g, lisiSm
< Y ot Y uPPdx < vP e Y [uP]? dx =
lls|sm K, Jelu lisl=m J g,
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< vp—lu C"(p, n, N, R) epCIBI| .IZ‘ém(“(Pj”Wp")p <
2E

<t Clpm N Ry Yy [ [Dofrax < e gfs ..

lis]sm |a]<k J Rn

We have used inequalities
(Zalrss Sk, Tl ss-1.
=

y j !(p]"dxgconstJ- |(p|"dx.
lislsm JK; Rn

Thus we have proved that there exist © > 0, C”é(P, n, N, R) such that
(15) (4] 2,y < C*(p: 1, N, R) €™ 0] 4 r,)

for |f| <1, p € 2(R,), B arbitrary. Let ¢e@(Rn), ul® as above, y > 0. Puiting
u,(t, x) = ulP(yt, yx), then u, is the solution of

ZAi% + 7 Bu,
=1 0x;

13

ou
16 b’
(16) o

with the initial condition @(yx). Thus by (15)
lu(t, )] 2, = C* ™ o@X)|wamn > [ <7
If t, is arbitrary but fixed € R;, then
[ug2(t0> %) 2, = [, (tofr: %) 2, =
= Prluofn D, £ 770 M T oy, =

= C* e Ty o] 2,
for |to|fy < .

Then for y = |t,|/t
k =
[uolto: D)z, < € T ((tolf5) ], = €PN Tliof [@]la,e

The theorem is proved.

Remark. It is seen that Theorem 3 gives a better result then in [5] for all pe
€ (1, + o) when n is even and for p close to 2 if n is odd.
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