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. 1. INTRODUCTION
Let L be a complete lattice. We denote by C = C(L) the center of L. It is well-known
that C(L) is a sublattice of L. If L is infinitely distributive, then C(L) is a closed
sublattice of L[2]. In this Note we show (Thm. 2) that C(L) is a closed sublattice of L
if and only if the following weakened infinite distributive law is valid in L:

For any x,y€e L, x 2 y, and any subset {a;} = C(L),

(1) yv(xA(Aa) = A v (x A a)),
(2 x Ay v(Va)=Vxa(yva).

In [1] there is proposed the problem wheather the center of any complete lattice
is a closed sublattice (p. 131, Problem 34). In §4 below there is described a complete
distributive lattice L and a subset {a;} = C(L) such that the element Aa; has no
complement in L; thus C(L) is not a closed sublattice of L.

In §5 there are investigated relative centers and direct factors of a conditionally
complete lattice L. There are found necessary and sufficient conditions under which
each nonempty intersection of direct factors of Lis a direct factor of L (Thm. 3).
As a corollary, we obtain the assertion: If for each interval [u, v] < L the center
C([u, v]) is a closed sublattice of [u, v], then each nonempty intersection of direct
factors of Lis a direct factor of L. Let us remark that the first condition has a local
character (concerning intervals of L) while the second one has a global character.

Let us recall some basic notions and denotations (cf. [1]). The lattice operations
will be denoted by A, v (unless otherwise stated). The direct product 4 x B of two
lattices 4, B is the set of all pairs (a, b) with a € 4, b € B, the lattice operations in
A x B being defined componentwise. If a lattice Lhas the least element (the greatest
element), then we denote this element by 0(L) or 1(L), respectively, and analogously
for other lattices. Let ¢, O(L), 1(L) € Land assume that there are lattices 4, B and an
isomorphism ¢ of Lonto A x B such that ¢(c) = (¢, ¢,) with ¢, = 1(A4), ¢, = O(B).
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Then c is said to be a central element of Land the set C(L) of all central elements of L
is the center of L. The set C(L) is a sublattice of Land C(L) is a Boolean algebra.
Each element ¢ € C(L) has a unique complement in L. This complement will be always
denoted by ¢’; this element also belongs to C(L). Each element a € C(L) is neutral,
ie.,ifx, yeL, then the sublattice of L generated by the elements a, x, y is distributive.

2. WEAKENED INFINITE DISTRIBUTIVITY

In §2—4 we assume that Lis a complete lattice. Let {a;} = C(L). If there exists the
least upper bound of {a;} in C(L), then we denote it by V*a; and analogously for the
greatest lower bound in C(L). Since C(L) is a sublattice of L, for a finite set {a;} we
have V*a; = Va,;, and dually. If \*a; exists, then clearly \V*a; = Va;, and dually.

Lemma 1. Let 0 + {a;},; = C(L),a = Aa;e C(L),b = Va; eC(L) Thena A b=
=0(L), a v b = I(L).

Proof. Since Aa; e C, Va;e C, we have
Aa; = AN*a;, Va; = V*a;.
Any Boolean algebra is infinitely distributive, therefore

a A (V*a}) = V*(a A a)).
Hence

anb=an(Va)=an(V*a) =V*a A aj).

Further we have a A a} < a; A a; = O(L) for each i€l, thus a A b = O(L). In
a dual way we prove that a v b = 1(L).

Lemma 2. Let x€ L, ce C(L). Then x A ce C([O(L), x]), x v ce C([x, 1(L)]). |

Proof. There exist lattices A, B and an isomorphism ¢ of Lonto A X B such that
¢(c) = (1(A4), 0(B)). Denote L, = [0(L), x] and let ¢* be the corresponding partial
mapping of the set L, into A x B, ¢*(x) = (x,, ;). Then ¢* is an isomorphism
of L, onto [0(A4), x;] x [0(B), x,]. In fact, if y e L,, then ¢*(y) = (v, y,) €
e [0(4), x,] x [0(B), x,]. Let (zy, z,) € [0(4), x,] x [0(B), x,], z€L, o¢(z)=
= (zy, z,); then ze[0(L),x]. We have x A ceL; and ¢*(x A c) = (x,, 0(B)).
Therefore x A ¢ € C([O(L), x]). The second assertion can be proved dually.

Lemma 3. Let x,z€ L, 0 + {a;} = C(L), a = Aa;e C(L), b = Vaje C(L). Then
x Ab=V(xAaj),zva=AzvVa)

A

Proof. According to lemma 2, the elements x A a;, X A a} belong to the center
of the lattice [0(L), x]. Further from the fact that a; € C(L) we infer that g, is neutral,
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hence the sublattice of L generated by the elements a;, a;, x is distributive. Therefore
X A a} is a relative complement of x A a; in the interval [0(L), x]. Denote a, =
A A a)), by = V(x A a}). From Lemma 1 applied to the lattice [0(L), x] we obtain
ag A by = O(L), do v bg = x. Put v = x A b =x A (Vaj). Clearly a; = A(x A
A a;)) = x A (Aai) = x A a, hence according to Lemma 1, aq A v = O(L). Further,
since b € C(L) is neutral, we have ay v v = (x A @) v (x A b)) =x A (a v b) = x.
Therefore both elements b, and v are relative complements of a, in the interval
[0(L), x]. Since (by Lemma 2) a, belongs to the center of [O(L), x] we get by = v.
Thus we have x A b = V(x A aj). By a dual method we verify the second assertion.

Lemma 4. Let x, ye L,y < x,0 # {a;} =« C(L), a = Aa;e C(L), b = Va;e C(L).
Then

(3 yv(xa(Aa)=A v (x A a)),
(4) ' x Ay v (Va)) = V(x A (y v d)).

Proof. We have A(x A a;) =x A (Aa;) = x A ae C([0(L), x]) by Lemma 2.
Now according to Lemma 3 (applied to the lattice [O(L), x] instead of L) we obtain

yv(xaa)=AlvVv(xaa)).

Therefore (3) is valid. By a dual method we verify (4).

From Lemma 4 we obtain as a corollary:

Lemma 5. Assume that C(L) is a closed sublattice of L. Then (1) and (2) are valid
for each subset O + {a;} = C(L) and each x,yeL,x = y.

3. SUFFICIENT CONDITION FOR THE CENTER TO BE CLOSED

In this section we show that the validity of (3), (4) for each x, ye L, y £ x is
sufficient in order that the elements Aa;, Va; belong to the center C(L) of a complete
lattice L.

Let us remark that by putting x = 1(L) we get from (3)

3) y ~(Va) = V(y A a)),
and by putting y = O(L) we obtain from (4)
@) x A (Val) = Vix A ).

Let @ + {a;} be a fixed subset of C(L), Aa; = a, Va} = b.
Lemma 6. Assume that (4') holds for each x € L. Then a A b = O(L).
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Proof. We have
anb=an(Va)=V(anaj).

Since a < a; and a; A a; = O(L), we obtain a A b = O(L).

In a dual way we get:
Lemma 6'. Assume that (3') is valid for each y e L. Then a v b = 1(L).

Lemma 7. Assume that (3) and (4) are valid for each pair of elements x, y € L
with y < x. Then x A a is a complement of x A b in the lattice [O(L), x] for each
x e L.

Proof. By Lemma 6, a A b = O(L), whence (x A a) A (x A b) = O(L). Denote
z = x A (Vaj)(jel). According to (3) we have z v (x A (Aa) = A(z v (x A a))).
Further from (4') we obtain (by using the neutrality of a;)

(xAana)vz=(xnra)v(xA(Va)=VixnAa)v (xAaj)=
=V,(x A (a; v a))).
Since a; v a; = 1(L), we get
(x Aa)vz=x foreach iel.

Thus z v (x A (Aa;) = x. The proof is complete.

Analogously we verify (by using Lemma 6'):

Lemma 7'. Assume that (3) and (4) are valid for each pair of elements x, y € L

with y < x. Then x v a is a complement of x v b in the interval [x, 1(L)] for each
xeL.

Lemma 8. Let the same assumptions as in Lemma 7 be valid. Let x € Land denote
XAa=u;, X Ab=u, Let v,v,eL, vi Suy, v, < u,, v; Vv, =x. Then
v, =u; (i =1,2).

Proof. According to Lemma 7’ we have
v, =(v; va)a (v, v D).

Sincev; Vva=a,v, vb=v, vv,Vvb=xvV b weobtainv, =a A (x v b) 2
2 a A x = u,. This shows that u, = v,. Analogously we verify that u, = v,.
Now consider the mapping

Yix—>(xAa xADb)

of the lattice Linto the direct product [0(L), a] x [0(L), b].
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Lemma 9. Let the assumptions as in Lemma 7 be fulfilled. Then the mapping
is an isomorphism of the lattice L onto [O(L), a] x [O(L), b] and y(a) = (a, O(L)),
W(b) = (O(L), b). |

Proof. Let x, y € L. The mapping ¥ is monotone and by Lemma 7, Y(x) < ¥(y)
implies that x < y. Leta 2 ue L, b 2 ve L, x = u v v. Under the denotations as
above we have u < u;, v < u,, hence according to Lemma 8, u = uy, v = u,.
Therefore the mapping ¥ is onto and thus y is an isomorphism. By Lemma 6 we

have y(a) = (a, O(L)), ¥(b) = (0(L), b).

Theorem 1. Let L be a complete lattice and let {a;} + O be a subset of the center
C(L) of the lattice L. The following conditions are equivalent:

(i) The elements Aa; and Va; belong to C(L).

(i) If x, ye L, x = y, then (3) and (4) are valid.

Proof. By Lemma 4, (i) = (ii). From Lemma 9 it follows that (ii) = (i).

As an immediate consequence we obtain:

Theorem 2. Let L be a complete lattice. Then the following conditions are equi-
valent: ‘

(i) The center C(L) is a closed sublattice of L.
(i) If 0 *+ {a;} = C(L), xe L, ye Land x 2 y, then (1) and (2) are valid.

Corollary. (Cf. [2].) If Lis an infinitely distributive complete lattice, then C(L)
is a closed sublattice of L. '

4. AN EXAMPLE

Now we describe an example showing that the center of a complete distributive
lattice L need not be a closed sublattice of L.

Let L, be the lattice of all real functions defined on the interval [0, 1] = X with
the natural partial order. The lattice operations in L, are denoted A*, V*. Let Lbe
the subset of L, consisting of all functions f that satisfy the following conditions:

(i) If 0 < x < 1, then f(x) € {0, 2}.
(i) f(1) e {0, 1,2}.
(iii) (1) = 2 if and only if the set s(f) = {x : 0 < x < 1, f(x) = 2} js infinite.

The set L is partially ordered by the induced order. The least and the greatest
element of Lwill be denoted by f, and f;, respectively. Let f € Ly, f(x) € {0, 1, 2} for
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each x € X. We define f~, f* € Las follows. If s(f) is finite and f(1) = 2,then we
put f~(x) = f(x) for each xe X, x # 1, and f~(1) = 1; otherwise we put f~ = f.
If s(f) is infinite and f(1) % 2, we set f*(x) = f(x) for each xe X, x # 1, and
F*(1) = 2; otherwise we put f* = f. If fe L, then f~ = f = f*.

Lemma 10. The partially ordered set Lis a complete lattice.

Proof. Let § + {f.} (ieI) = L. Denote A*f; = f, V*f; = g. The functions f, g
satisfy the conditions (i) and (ii). If fe L(g € L), then clearly f = inf {f;} (g =
= sup {f;}) in L.

Assume that f ¢ L. Suppose that s(f) is finite. Then f(1) = 2, f; > f~ foreach ie I
and g; < f~ whenever g, €L, g, < f; for each iel. Thus f~ = inf {f;} in L.
Assume that s(f) is infinite. Then each s(f;) is infinite, whence f(1) = 2 for each
i eI and therefore f(1) = 2. Thus f e L, a contradiction.

Assume that g ¢ L. If s(g) is finite, then each s(f;) is finite, hence f{(1) < 2 for
each i e, thus g(1) < 1 and so g € L, a contradiction. Therefore s(g) is infinite and
from g ¢ L we obtain g(1) < 2. Then g* > f; for each iel. Moreover g, €L,
gy 2 f; for each i eI implies g, = g*. Thus g* = sup {f;} in L. The proof is com-
plete.

The lattice operations in L will be denoted by A, V. We have shown that Af; =
= (A*)™, Vfi = (V*)* for any subset @ + {f;} = L. From this it follows that
for each f, g € Land each x € X, x & 1 we have

©) (frg)(x) =1(x) ~g(x), (/v g)x)=/x)va(x).

From (5) we obtain that

(6) s(f A g) = s(f) nslg), s(f v g)=s(f)vs(g).
Lemma 11. The lattice Lis distributive.
Proof. Let f, g, h € Land denote

(fag)vh=F, (fvh)a(gvh=¢G.

Obviously G = F and according to (5), F(x) = G(x) for each x € X, x # 1. Hence
we have to verify that F(1) = G(1).

According to (6) we have
S(G) = s(/ v k) ns(g v k) = (s(f) v s(h)) " (s(g) © s(h)) =
= 5(f) n 5(g)) © s(h) = s(F) ,
hence either both G(1), F(1) are less than 2, or G(1) = F(1) = 2. Thus if F(1) 2 1,
then F > G. Assume that F(1) = 0. Then k(1) = 0, and either f(1) = 0 or g(1) = 0.
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Therefore either (f v k) (1) = 0 or (g v h)(1) = 0. From this we get G(1) = 0.
Hence F(1) = G(1). The proof is complete.
For each y € X, y + 1 we define the functions fy,fy € Lby the rule

L) =2, 5 =0,
f(x)=0, f(x)=2 foreach xeX, x+y.

Further let g, € L be such that go(x) = 0 for each xe X, x + 1 and g,(1) = 1.
Then we have

fy/\fyzfos fyvf—yzfl

for each y € X, y =+ 1. Since Lis distributive, each element of Lis neutral. Therefore
an element f € Lbelongs to the center of Lif and only if f has a complement. Thus all
elements f, belong to the center of L. We have

(7) Afy =Jo-

Let he L, h A go = fo. Then h(1) = 0, thus s(h) is finite. Hence f; = h v*goe L
andso h v* gy, = h v g, * f;- Therefore the element g, has no complement in L.
This implies that g, does not belong to C(L). In view of (7), the center of Lis not
a closed sublattice.of L.

On the other hand we have Vf, = f; € C(L). Thus if {a,} is a subset of the center
of a complete lattice Land if Va; belongs to C(L), then Aa; need not belong to C(L).

5. DIRECT FACTORS IN A CONDITIONALLY COMPLETE LATTICE

In this paragraph we assume that Lis a conditionally complete lattice.
Let ¢ be an isomorphism of L onto a direct product A X B, xo€ L, ¢(xo) =
= (a09 b())- Put
A(xo) = {ve L: 9(y) = (a, b), ae A4},
B(xo) = {y e L: ¢(y) = (ao, b), be B} .

For each z € Lwith ¢(z) = (ay, by) let
zZy = (0_1((“19 bo)) s 22 = q’—l((ao, bx))-
We denote by ¢'[x,] the mapping of Lonto A(x,) x B(x,) defined by the rule

@'[xo] (2) = (21, 22)

for each z e L. It is easy to verify that ¢'[x,] is an isomorphism of L onto A(xo) x
X B(x,). If the element x,, is fixed we write ¢’ instead of go’[xo].

All lattices A(x,) constructed in this way will be called direct factors of L with
respect to x, and the system of all direct factors of Lwith respect to x, will be denoted
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by F(xo). (Cf. [3], [4].) Each lattice A € UF(x,) (x, € L) will be called a direct factor
of L.

Let ¢ be as above, u,veL, u < v, @(u) = (uy, u,), @) = (vy,7,), ¢ =
= ¢~ !((vy, u)). Then c is said to be a relative central element of L with respect to
the interval [u, v]. The set C'([u, v]) of all relative central elements with respect
to [u, v] will be called the relative center of L with respect to [u, v]. Let us consider
the following condition on L:

(*) For each x4 € Land each set § + {A(x,)} of direct factors of Lwith respect
to x, the intersection (YA/(x,) is a direct factor of Lwith respect to x,.

If A(x,) is a direct factor of Land x, € A(x,), then A(x;) = A(x,); therefore the
condition () is equivalent with the condition:

(**) Each nonempty intersection of direct factors of Lis a direct factor of L.

The following lemma shows the relation between the condition (x) and the proper-
ties of the center of Lin the case when Lhas the greatest and the least element:

Lemma 12. Let O(L), 1(L) € L. Then L satisfies (x) if and only if the center C(L)
is a closed sublattice of L. ;
At first we prove the following lemma:
Lemma 12.1. Let ¢ be an isomorphism of Lonto A x B, x, x, € L, 0(L), 1(L) € L,
a = ¢~ '((1(4), O(B))). Then x € A(xo) if and only if a v x = a v x,.
Proof. Let @(xo) = (a0, bo), ¢(x) = (ay, by). We have
(a1, b1) v (1(4), 0(B)) = (1(4), by) ,
(a0, bo) v (1(4), 0(B)) = (1(4), bo) -

The element x belongs to A(x,) if and only if by = by; since ¢ is an isomorphism,
this is true if and only if a v x = a Vv X,.

Proof of Lemma 12:

(a) Assume that C(L) is a closed sublattice of L and let xo€ L, O % {4,(x,)}
(ieI) = F(x,). For each i I there exist lattices 4;, B; and an isomorphism ¢; of L
onto A; x: B;yUnder the analogous denotations as above let ¢} be the corresponding
isomorphism of Lonto A{(x,) % By(xo). Since 1(L) € L, there exists a greatest element
¢;in 4,(xo) and a least element d; in B{(x,). The element a; = (¢})~" ((c;, d;)) belongs
to the center of L, hence

(@)™ (e di) v (x0: %0) = (00) 7" (i X0)) = ¢

belongs to the center of the lattice [xo, 1(L)] (cf. Lemma 2). Put ¢ = Aci, a = Aa;.
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Then, since C(L) is a closed sublattice of L, a € C(L) and according to Thm. 2 we
have g

c=Ac;=Axo Vv a)=x, v (Aa)=xVa
and ¢ € C([xo, 1(L)]) by Lemma 2. There exist lattices 4, B and an isomorphism ¢

of Lonto 4 x B such that a = ¢~*((1(4), 0(B)). Consider the direct factor A(x,) e
€ F(xo). Let z € A(xo). By Lemma 12.1 we have z v a = x, Vv a, thus for each q,,

zva;=zv(ava)=(zvava=(xva)Vva==xVa,
hence z € A(x,). Conversely, let z € A,(x,). Then

ZVva;=xoV a; foreach iel.
Since the center of Lis a closed sublattice, we have
zva=zv(Aa)=AzvVva)=Ax Vva)=xov(Aa)=x,Va,
therefore z € A(x,). Thus NA(x,) = A(xo) € F(xo)-

(b) Let (%) be valid and let {c;} (ieI) = C(L). For each ieI there are lattices
A;, B; and an isomorphism ¢, of Lonto A; x B; such that ¢, = ¢; '((1(4,), 0(B))).
Put x, = O(L). Then c; is the greatest element of A(x,). According to the assumption,
there exist lattices 4, B and an isomorphism ¢ of Lonto A x B such that A(xo) =
= NA{xo). Thus NA(x,) has a greatest element ¢ and ¢ e C(L). Obviously ¢ =
= Ac; (i €I), hence Ac;e C(L). Further consider the lattices By(y,) for y, = 1(L).
The element c¢; is the least element of B(y,). According to (x), NBy(y,) belongs to

F(y,), therefore NB(y,) has a least element d and d € C(L). Clearly d = Va,. The
proof is complete.

Our purpose is to prove the following assertion:

Theorem 3. Let L be a conditionally complete lattices. Then the following condi-
tions are equivalent:

(@) = (%)

(b) For each interval [u, v] < L, the relative center C'([u, v]) is a closed sublat-
tice of L.

(©) If x, y,u,veL,u £y £ x £vand {a;} = C([u,v]), then the relations (1)
and (2) are valid.

At first we introduce some auxiliary notions and prove some lemmas. Let us remark
that for any u, ve L, C'([u, v]) is a closed sublattice of Lif and only if C'([u, v]) is
a closed sublattice of [u, v]. Let Lbe a lattice, x, € L. For each subset § + X < L
we denote by X°(x,) the set of all y e Lsatisfying '

) (x v x0) A (¥ Vv X0) =x0=(x A X) V(yA xo)
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for each x € X. Let A, B be lattices and let ¢ be an isomorphism of Lonto A x B.
Let p, g€ L. If pe A(q) we write p = g(R(A4)). Analogously we define the relation
p = q(R(B)). Then R(A), R(B) are permutable congruence relations on L, R(4) A
A R(B) is the least congruence relation on L and R(4) v R(B) is the greatest con-
gruence relation on L. (Cf. [1].)

Lemma 13. Let ze L, ¢'(z) = (zy, z,). Then

z, € A(xo) N B(z), 2z, € B(xo) N A(2) .

This is an immediate consequence of the definition of the sets A(x) and B(x) for

xeL.

Lemma 14. Let x, z € [u, v] = L, ¢'(z) = (zy, z,). Then zy, z, € [u, v].
Proof. According to Lemma 13 we have |
xo = zy(R(4)), z; = =(R(B)),
and hence (because R(4), R(B) are congruence relations on L)
xo = (2, v u) A o(R(4)), (z, v u) A v =2z(R(B)).
From this we infer that
z; = (z; v u) A (R(4) A R(B)).

Since R(4) A R(B) is the least congruence on L, we obtain z; = (z, v u) A v.
Thus z, € [u, v].

Lemma 15. B(x,) = (A(xo))’ (xo)-

Proof. Let yeL, ¢(y) = (a,b), ®(xo) = (ao, by), x€ A(xo), @(x) = (ay, bo).
If y € B(x,), then a = a,, thus

(o(x) v @(x0)) A (0(y) v (/’(xo)) = (a; v a,, bo) A (ag, b v bo) = (ag, by) ,

therefore (x v xo) A (¥ v yo) = Xo- Dually, (x A xo) v (¥ A yo) = Xo, hence
¥ € (A(x0))’ (x0)-

Let xo < y € (A(xo))’ (xo)- Then (a, bo)eA(xo) (a, bo) A (a, b) = (a, by) and
hence by the definition of the set (A(xo)) (xo) we obtain (a, bo) = (aos bo), therefore
y € B(x,). Similarly, if xo = y e (A(x0))’ (X,), then y e B(x,). Now let y be any
element of the set (4(x,))’ (xo) and denote y, = y v x,, y, = y A Xo. Then y,
and y, fulfil (8), hence y,, y, € (A(x0))’ (x,), thus y,, y, € B(x,). Since B(xo) is
a convex subset of L, we obtain y € B(xo)
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Lemma 16. Let x, € [u, v] < [uy, v,] = L. Assume that @ is an isomorphism of
[u,v] onto A x B and that ¢, is an isomorphism of [u, v;] onto A, x By such
that A(x,) = Ay(xo) 0 [u, v]. Then B(x,) = By(xo) N [u, v].

Proof. Let y e By(xo) N [u, v], x € A(x,). Then x € A;(x,) and hence according
to Lemma 15 the relation (8) is valid. Thus y € B(x,). Conversely, let y € B(x,) and
let x € A,(x,). Then since A,(x,) is a convex sublattice of L we have x, < (x v Xo) A
AVE A(xo) and therefore by Lemma 15

(x VX)) Ay Vvxo)=(xVxe)a[va(yvx)]=
=[(xvxo)Av]v(yvxp)=xo.

Dually we obtain (x A Xo) V (¥ A Xo) = Xo, thus by Lemma 15, y e B,(x0) N
A [u, v].

Under the same assumptions as in Lemma 16 the following two lemmas are valid:

Lemma 17. Let z € [u, v]. Then
A(z) = Ay(2) n[u,v], B(z) = By(2z) 0 [u, v].
Proof. According to Lemma 13 there exist z, € A(xo), z, € B(x,) such that
z,€B(z), z,€A(z).

Thus A(z,) = A(z,) and so according to the assumption we have A(z;) = 4,(z1) N
A [u, v]. Hence by Lemma 16, B(z,) = B,(z,) N [u, v]. Therefore z € B,(z,) and
thus B(z) = By(z) 0 [u, v]. From this and from Lemma 16 we infer that A(z) =

= A,(z) n [u, v].
Lemma 18. Let z € [u, v]. Then ¢'(z) = ¢{(2).
Proof. Let z,, z, be as in the proof of Lemma 17. We have
z, € A(xo) 0 B(z), z; € B(xo) 0 A(2)
and hence according to Lemma 17,
zy € Ay(xo) N By(2), z5€By(xp) N 4y(2).

Therefore from Lemma 13 and from the fact that R(4;) A R(B;) is the least con8ru-
ence relation on [uy, v,] we get ¢'(z) = (zy, z,) = ¢1(2).

Lemma 19. Let L = [u, v] and let
¢o:L->AxB, ¢,:L-> A; X B,
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be isomorphisms of Lonto A x B and A; x B, respectively (i €I). Denote a; =
= ¢;'((1(4,), 0(B;)) and assume that

(c1) t v (Aa) = At A a;) for each teL
is valid. Let xo€ L, NA{u) = A(u). Then NA(x,) = A(xo).

Proof. There exists a € C([u, v]) such that a = 1(A(u)). Clearly a;, = 1(A(u)).
From NA4(u) = A(u) it follows Aa; = a. Now by using (c,) and by the same method
as in the part (a) of the proof of Lemma 12 we obtain that A(x,) = A(xo).

Lemma 20. (¢) = () for each conditionally complete lattice L.

Proof. Assume that L satisfies (c) and let {A(x,)} (i €I) be a nonempty subset
of F(x,) for some x,€ L. Let ze L. Choose u,ve L such that u < v, [xo A z,
Xo V z] < [u, v].

For each i eI there is a lattice B; and an isomorphism ¢; of L onto A; x B,.
Let o (u) = (ul, ub), p(v) = (vi, v}) and let @, be the corresponding partial mapping
of the interval [u, v] into 4; x B;. Then @, is an isomorphism of [u, v] onto

[“L vi] x [u3, 03] = 4; x B;.

Let a; = @; '(v, u}), ai = @; '(ul, v}). The elements a;, a} belong to the relative
center C'([u, v]) = C([u, v]) and a; is the complement of aj in the interval [u, v].
According to the assumption the condition (c) is valid and thus by Thm. 1 the elements
a = Aa;, b = Vajbelong to the center of the lattice [u, v]. Hence there are lattices X
and Y and an isomorphism @ of [u, v] onto X < Y such that @(a) = (1(X), 0(Y)),
@(b) = (0(X), 1(Y)). Clearly

X(u) = [u,a], Aw) = [u.a]
X(u) = NAu) (i ).

and therefore

Hence by Lemma 19 (the condition (c,) of this lemma is valid because of (c)), we have

X(x0) = NA(x0) = NALxo) -
Denote
A= nA,-(xo) , B= A"(xo).

Let xe A, yeY(xo) and denote (x v Xo) A v =z Then ze X(x,) and hence
according to Lemma 15,

z2A(y VX)) =(zV X)) A(yV xo) = X.
Therefore

(xvx)) Ay Vvx)=(xVx))a[va(yvxg)]=

=[(xvx) AvJA( Vxe)=1zA(yV x) =%
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and dually we obtain
(x A xg) v (¥ A xo) = Xq.

Thus ye A’(x,) and hence Y(xo) = A%(xo). Let ¢'(z) = (z;,z,). Then z, €4,
Z, € B. From Lemma 18 it follows that the elements z,, z, do not depend from the
particular choice of elements u, v. We write

zy = z[A], z, = z[B].
If t € L, we may choose u, v € Lsuch that {x,, z, t} < [u, v] and then we obtain that
(z A 0)[A] = z[A] A 1[A], (z v 1)[A] = z[4] v 1[A4]

and analogously for B. Further z # ¢ implies (z;, z,) # (t;, t,). Hence the mapping
@ : z - (zy, z,) is an isomorphism of Linto 4 x B.

Let pe A, g€ B and choose u, v € Lsuch that {xo, p, g} < [u, v]. Then we have
(by the same notations as above) p € X(x,). From Lemma 15 it follows g € Y(x,).
Thus there is z € [u, v] such that §'(z) = (p, q). Hence we obtain p = z,, g = z,.
Therefore the mapping ¢ is onto. We have ¢(xo) = (X0, Xo) and if z e A(z € B),
then ¢(z) = (z, xo) (¢(z) = (o, 2)). Thus A(xo) = A, B(xo) = B. We have proved
that NA4,(xo) = A belongs to F(x,).

Proof of Thm. 3.

(a) = (b). Let (a) be valid. Let [u,v] = L, 9 + {c;} (ieI) = C'([u, v]). For each
i €I there is an isomorphism ¢; of Lonto A; x B; such that the condition from the
definition of C'([u, v]) is fulfilled. Put x, = u. According to (a), there are lattices 4, B
and an isomorphism ¢ of Lonto 4 x B such that A(xo) = NAyx,). The lattice
X = [u, v] is isomorphic with the direct product (X n A(x,)) x (X N B(Xo)), and
X N A(xo) = N(X N Afx,)). Then the lattice X n A(x,) has a greatest element ¢
and c € C'([u, v]). The element c; is the greatest element of X N A,(x,), hence Ac; = ¢
and so Ac; € C'([u, v]). By a dual method we can prove that Ve, € C'([u, v]).

(b) = (c). Assume that (b) holds. Let x,y,u,veLl, u<y=<x=Zv {a}c
< C'([u, v])- Let a; be the relative complement of a; with respect to the interval [u, v].
Then a} e C'([u, v]) and hence according to (b) we have a = Aa; e C'([u,v]), b =
= Vaje C'([u, v]). Thus the elements a;, a, b belong to C([u, v]) and therefore from
Lemma 4 we infer that the relations (3) and (4) are valid. Thus (1) and (2) hold
whenever the assumptions of (c) are fulfilled.

The implication (c) = (a) was proved in Lemma 20.

Corollary 1. Let L be a complete lattice. Then the following conditions are equi-
valent:
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(a) The center of Lis a closed sublattice of L.
(b) Each relative center of Lis a closed sublattice of L.

Proof. Since the center of Lis a relative center of L, (b) = (a). From Lemma 12
and Thm. 3 it follows that (a) implies (b).

Corollary 2. Let Lbe a conditionally complete lattice, x, € L. If for each interval
[u, v] of L the center C([u,v]) is a closed sublattice of [u,v], then for each set
0 % {A(xo)} of direct factors of L with respect to x, the intersection A(xo) is
a direct factor of L with respect to x,.
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