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Czechoslovak Mathematical Journal, 23 (98) 1973, Praha 

CENTER OF A COMPLETE LATTICE 

JAN JAKUBIK, Kosice 

i (Received February 28, 1972) 

1. INTRODUCTION 

Let L be a complete lattice. We denote by С = C(L) the center of L. It is well-known 
that C(L) is a sublattice of L. If L is infinitely distributive, then C(L) is a closed 
sublattice of L[2] . In this Note we show (Thm. 2) that C(L) is a closed sublattice of L 
if and only if the following weakened infinite distributive law is vahd in L: 

For any X, у e L, X '^ y, and any subset {a,} с C(L), 

(1) у V (x A (Aa^) = A{y V (x л a^) , 

(2) X А{У V (Уа,)) = \/{x А{У V a,)) . 

In [1] there is proposed the problem wheather the center of any complete lattice 
is a closed sublattice (p. 131, Problem 34). In §4 below there is described a complete 
distributive lattice L a n d a subset {aJ с C{L) such that the element Да^ has no 
complement in L; thus C(L) is not a closed sublattice of L. 

In §5 there are investigated relative centers and direct factors of a conditionally 
complete lattice L. There are found necessary and sufficient conditions under which 
each nonempty intersection of direct factors of L is a direct factor of L (Thm. 3). 
As a corollary, we obtain the assertion: If for each interval [w, i?] с L the center 
C([M, VJ) is a closed sublattice of [w, f], then each nonempty intersection of direct 
factors of L is a direct factor of L. Let us remark that the first condition has a local 
character (concerning intervals of L) while the second one has a global character. 

Let us recall some basic notions and denotations (cf. [1]). The lattice operations 
will be denoted by л , v (unless otherwise stated). The direct product Ä x В of two 
latt ices^, В is the set of all pairs (a, b) with a e Ä, b e B, the lattice operations in 
Ä X В being defined componentwise. If a lattice L has the least element (the greatest 
element), then we denote this element by 0(L) or l(L), respectively, and analogously 
for other lattices. Let c, 0(L), 1(L) G Land assume that there are lattices Ä, В and an 
isomorphism (p of Lonto Ä x В such that (p(c) ~ (cj, C2) with c^ = 1(Л), C2 = 0(Б). 
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Then с is said to be a central element of Land the set C{L) of all central elements of L 
is the center of L. The set C(l) is a sublattice of L and C{1) is a Boolean algebra. 
Each element с e C(L) has a unique complement in L. This complement will be always 
denoted by c'\ this element also belongs to C(V). Each element a e C(l) is neutral, 
i.e., if x, у 6 L, then the sublattice of L generated by the elements a, x, 3; is distributive. 

2. WEAKENED INFINITE DISTRIBUTIVITY 

In §2 —4 we assume that Lis a complete lattice. Let {a J cz C(L). If there exists the 
least upper bound of {a J in CiV), then we denote it by V*^i ^i^d analogously for the 
greatest lower bound in C{L). Since С{£) is a sublattice of L, for a finite set {a,} we 
have V*^i = V<̂ i» ï̂̂ ^ dually. If V*öi exists, then clearly V*^i ^ V ^ P ai^^ dually. 

Lemma X.Let^ Ф {aj^^j с C(pj, a = Да^ e C(V], b = \/a\ e C{L). Then a A b = 
= 0(L), a V b = 1(L). 

Proof. Since Да^ e C, V^i ̂  ^? we have 

д«. = A*«f, v«; = v*«;. 
Any Boolean algebra is infinitely distributive, therefore 

a A (V*aO = V*(« A aO . 
Hence 

a A b = a A (V^O = « л (V*^0 = V*(^ л 00 . 

Further we have a A a\ ^ a^ A a'l = 0(L) for each iel, thus a A b — 0(L). In 
a dual way we prove that a v b = 1(L). 

Lemma 2. Let x e L, с e С(ьу Then x A ce C([0(L), x]), x v с e C([x, l(L)]). 

Proof. There exist lattices A, В and an isomorphism (p of Lonto Л x В such that 
(p(c) = (1{Ä), 0 ( Б ) ) . Denote L^ = [0(L), x] and let ф* be the corresponding partial 
mapping of the set L^ into A x B, ç)*(x) = (x^, X2). Then ф* is an isomorphism 
of Li onto [0(Л), Xi] X [ 0 ( Б ) , X2]. In fact, if j ; e L^, then (p*(j) = ( j i , J2) ̂  
e [0(A), Xi] X [0(Б), X2]. Let (zj, Z2) G [ 0 ( Л ) , X J X [ 0 ( Б ) , X2], z G L, (p{z) = 
= (zj, Z2); then Z G [ 0 ( L ) , x] . We have x л C G L I and (p*(x л c) = (xj, 0(Б)). 
Therefore x л с e C([0(L), x]). The second assertion can be proved dually. 

Lemma 3. Let x, z e L, Ф Ф { a j с C{L), a = Да^ e C(L), Ь = \/a\ e C{L). Then 
X A b = \/(x A a'i), z у a — /\(z v â ). 

Proof. According to lemma 2, the elements x л a ,̂ x л a'l belong to the center 
of the lattice [0(L), x] . Further from the fact that â  e C(L) we infer that â  is neutral, 
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hence the sublattice of L generated by the elements a,-, a J, x is distributive. Therefore 
X л fl- is a relative complement of x л Û,- in the interval [0(L), x] . Denote ÜQ = 
Д(х л a,), bo = \/{x A a[). From Lemma 1 applied to the lattice [0(L), x] we obtain 
a^ A bo = 0(L), йо V bo = X. Put v = xAb = xA {\/a[). Clearly ÜQ = Л(^ A 
л Qj) = X A {/\ai) = X л a, hence according to Lemma 1, «o л v = 0(L). Further, 
since b e C{L) is neutral, we have GQ v v = {x A a) v {x A b) = x A (a v b) == x. 
Therefore both elements bo and v are relative complements of ÜQ in the interval 
[ 0 ( L ) , X] . Since (by Lemma 2) ao belongs to the center of [0(L), x] we get bo = •̂ 
Thus we have x A Ь = V(^ ^ ^0- ^У ^ ^^^^ method we verify the second assertion. 

Lemma 4. Ler x, j^ e L, j ; ^ x, 0 Ф {a J c: C{L), a = A^i^ C{L), b = \fa\ e C{L\ 
Then 

(3) }̂  V (x л {/\a>j) = A{y V (x л a^), 

(4) X л (j; V (V«;-)) = V(^ л (j; v «;)) . 

Proof. We have Д(х л a,) = x л (A^i) = x A a e C([0(L), x]) by Lemma 2. 
Now according to Lemma 3 (applied to the lattice [0(L), x] instead of L) we obtain 

у V {x A a) = A{y V (x л a^) . 

Therefore (3) is valid. By a dual method we verify (4). 

From Lemma 4 we obtain as a corollary: 

Lemma 5. Assume that C[L) is a closed sublattice of L. Then (1) and (2) are valid 
for each subset 0 ф {a J с C{L) and each x, у e L, x ^ j . 

3. SUFFICIENT CONDITION FOR THE CENTER TO BE CLOSED 

In this section we show that the validity of (3), (4) for each x, 3; G L, у ^ x is 
sufficient in order that the elements Да,-, \/а\ belong to the center C{L) of a complete 
lattice L. 

Let us remark that by putting x = 1(L) we get from (3) 

(30 У л (Va,) = W{y A a ,) , 

and by putting y = 0(L) we obtain from (4) 

(40 X л (V«0 = V(^ л a[). 

Let 0 Ф {a J be a fixed subset of C(L), Да, = a, \/a'i = b. 

Lemma 6. Assume that (4') holds for each x e L. Then a A b = 0(L). 
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Proof. We have 
a A b = a A (V«0 = V(^ л Ö-) • 

Since a ^ flj and a,- л a- = 0(L), we obtain a A b = 0(L). 

In a dual way we get: 

Lemma 6'. Assume that (У) is valid for each у e L. Then a v b = 1(L). 

Lemma 7. Assume that (3) and (4) are valid for each pair of elements x, у e L 
with у S X. Then x A a is a complement of x A b in the lattice [0(L), x] for each 
XE L. 

Proof. By Lemma 6, a A b = 0(L), whence (x A a) A (x A b) = 0(L). Denote 
z = X л (ya'j) (j G / ) . According to (3) we have z v (x л (A^i)) = Л(^ v (x л a^)). 
Further from (4') we obtain (by using the neutrahty of a^ 

(x л a^) V z = (x л a^) v (x л (Vy^ ĵ)) = Vj((^ л a^ v (x л a^)) = 

= Vi(^ л (a, V 0;.)), 

Since ai V a[ = 1(L), we get 

(x л a )̂ V z = X for each f e / . 

Thus z V (x л (Да^) = x. The proof is complete. 

Analogously we verify (by using Lemma 6'): 

Lemma T, Assume that (3) and (4) are valid for each pair of elements x, y e L 
with y ^ X. Then x v a is a complement ofxvb in the interval [x, l (L)] /or each 
xe L. 

Lemma 8. Let the same assumptions as in Lemma 1 be valid. Let x e Land denote 
X A a = Ui, X A b = U2. Let v^, V2 E L, v^ ^ u^, V2 S ^2, v^ v V2 = x. Then 
Vi = Ui (i = 1, 2). 

Proof. According to Lemma 7' we have 

1̂ = {^1 V fl) л (f 1 V b). 

Since Vi V a = a, Vi V b = Vi V V2 V b = X V b, we obtain v^ = a A [x v b) '^ 
^ a л X = Ml- This shows that u^ = v^. Analogously we verify that и2 = î 2-

Now consider the mapping 

ф : X -^ (x A a, X A b) 

of the lattice Linto the direct product [0(L), a] x [0(L), b]. 
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Lemma 9. Let the assumptions as in Lemma 7 be fulfilled. Then the mapping ф 
is an isomorphism of the lattice L onto [0(L), a ] x [0(L), b] and ф{а) = (Й, 0 (L)) , 
^|^{b) = (0(L), b). 

Proof. Let X, у EL. The mapping ф is monotone and by Lemma 7, i/̂ (x) ^ ф{у) 
imphes that x S У- Let a'^ueL, b^veL, x = u v v. Under the denotations as 
above we have и ^ Ui, v S ^2, hence according to Lemma S, и = u^, v = U2. 
Therefore the mapping ф is onto and thus ф is an isomorphism. By Lemma 6 we 
have iA(a) = {a, 0(L)), ф{Ь) = (0(L), b). 

Theorem 1. Let Lbe a complete lattice and let { a j ^ 0 be a subset of the center 
C(L) of the lattice L. The following conditions are equivalent: 

(i) The elements /\ai and V^i belong to C(L). 

(ii) If X, у E L, X ^ y, then (3) and (4) are valid. 

Proof. By Lemma 4, (i) => (ii). From Lemma 9 it follows that (ii) => (i). 

As an immediate consequence we obtain: 

Theorem 2. Let Lbe a complete lattice. Then the following conditions are equi-
valent: 

(i) The center C(L) is a closed sublattice of L. 

(ii) If Ф Ф {ai} a C{L), x E L, y E Land x "^ y, then (1) and (2) are valid. 

Corollary, (Cf. [2].) / / L is an infinitely distributive complete lattice, then C(L) 
is a closed sublattice of L. 

4. AN EXAMPLE 

Now we describe an example showing that the center of a complete distributive 
lattice L need not be a closed sublattice of L. 

Let LQ be the lattice of all real functions defined on the interval [0, 1] = X with 
the natural partial order. The lattice operations in LQ are denoted Д*, V*- Let L be 
the subset of LQ consisting of all functions / that satisfy the following conditions: 

(i) If 0 ^ X < 1, then/(x) E {O, 2}. 

( i i ) / ( l ) E { 0 , l , 2 } . 

(iii) /(1) = 2 if and only if the set s{f) = {x : 0 ^ x < l , / (x ) = 2} is infinite. 

The set L is partially ordered by the induced order. The least and the greatest 
element of Lwill be denoted by/o and/^, respectively. L e t / e Lo,/(x) e {0, 1, 2} for 
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each xeX, We defineZ"",/"^ eLas follows. If s(/) is finite and/( l) = 2,then we 
put/""(x) = f{x) for each x e Z , x Ф 1, and/""(I) = 1; otherwise we put/"" = / . 
If s(f) is infinite and /(1) Ф 2, we set /"^(x) ==/(x) for each xeX, x Ф 1, and 
/+(1) == 2; otherwise we put /•*" = / . I f / e L, then / - = / = / + . 

Lemma 10. T/ze partially ordered set Lis a complete lattice. 

Proof. Let 0 Ф {fi} (iel) с L. Denote Д*/^ = / , V*/i = ^- The functions / , g 
satisfy the conditions (i) and (ii). If f G L{geL), then clearly / = inf{/J (g = 
= sup {fi}) in L. 

Assume tha t /^ L. Suppose that s(/) is finite. Then/(1) = 2,/^ > / ~ for each i e / 
and g I ^f whenever gieL, g^ ufi for each ieL Thus / ~ = inf{/i} in L. 
Assume that s{f) is infinite. Then each 5(//) is infinite, whence /^(1) = 2 for each 
i e I and therefore /(1) = 2. Thus / e L, a contradiction. 

Assume that g фЬ. If s{g) is finite, then each s(/f) is finite, hence Д ! ) < 2 for 
each i e / , thus g{l) ^ 1 and so ^̂  e L, a contradiction. Therefore s{g) is infinite and 
from дфЬ^о obtain ^(l) < 2. Then g'^ "^fi for each iel. Moreover д^еЬ, 
g^ ^ / ; for each iel implies g^ ^ g^. Thus g'^ = sup {/J in L. The proof is com­
plete. 

The lattice operations in L will be denoted by A, V- We have shown that Д/^ = 
= (A*/i)". Vfi = (V*/f)^ for any subset 0 Ф {/J cz L. From this it follows that 
for each/, g e Land each x e Z, x ф 1 we have 

(5) {fAg){x)=f{x)Ag{x), (f v g) (x) = f{x) v д{х). 

From (5) we obtain that 

(6) s{f A g) = s{f) n sig) , s ( / v 5) = s(/) и 5(g) . 

Lemma 11. The lattice Lis distributive. 

Proof. Let/, 0̂ ,/г e Land denote 

(f A g)v h = F, ( / V /z) л (^ V /i) = G. 

Obviously G ^ F and according to (5), F(x) = G(x) for each x eX, x ф 1. Hence 
we have to verify that F(l) = G(l). 

According to (6) we have 

s{G) = s{f V h)n s{g V h) = {s{f) u s{h)) n {s{g) u s{h)) = 
= s{f) n s{g)) u s{h) = 5(F) , 

hence either both G(l), F(l) are less than 2, or G(l) = F(l) = 2. Thus if F(l) ^ 1, 
then F ^G. Assume that F(l) = 0. Then /z(l) = 0, and either/(1) = 0 or gll) = 0. 
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Therefore either (/ v h) (1) = 0 or (^ v й) (1) = 0. From this we get G(l) = 0. 
Hence F(l) = G(l). The proof is complete. 

For each у e X, j =j= 1 we define the functions/^„/y G Lby the rule 

fy[x) = 0 , fy{x) = 2 for each xeX , x + у . 

Further let QQE L be such that go{x) = 0 for each xeX, x ф 1 and ^o(l) = 1-
Then we have 

fy л /3, = /o , fyy fy=fl 

for each у eX, у ^ I. Since Lis distributive, each element of Lis neutral. Therefore 
an element/G Lbelongs to the center of Lif and only if/has a complement. Thus all 
elements fy belong to the center of L. We have 

(7) My = go. 

Let hG L, h A QQ = /Q. Then h(i) = 0, thus s{h) is finite. Hence/1 ф h w* QOG L 
and so й V * ^0 = ^ V go =¥ fi- Therefore the element QQ has no complement in L. 
This imphes that QQ does not belong to C(L). In view of (7), the center of L is not 
a closed sublattice.of L. 

On the other hand we have УЛ = / i ^ ^(^)- "Thus if {aj is a subset of the center 
of a complete lattice Land if \/а[ belongs to C(L), then Да,- need not belong to C(L). 

5. DIRECT FACTORS IN A CONDITIONALLY COMPLETE LATTICE 

In this paragraph we assume that Lis a conditionally complete lattice. 
Let (p be an isomorphism of L onto a direct product A x B, XQEL, (p(xo) = 

= («0, bo). Put 
^(^0) = {y^L: (p{y) = {a, bo), aeA} , 

ВЫ = {J e L : (p{y) = («0, b), beB} , 

For each z e Lwith ç)(z) = («i, bi) let 

Zi = 9~X(öl' bo)) , Z2 = ^"^((«0, bi)) . 

We denote by <?>'[xo] the mapping of L onto A{xo) x B(xo) defined by the rule 

^'[xo](z) = (zi,Z2) 

for each z e L. It is easy to verify that (р'[л:о] is an isomorphism of L onto A(xo) x 
X Б(хо). If the element XQ is fixed we write (p' instead of ç)'[xo]. 

AU lattices A(xo) constructed in this way will be called direct factors of L with 
respect to XQ and the system of all direct factors of Lwith respect to XQ will be denoted 
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by F(xo). (Cf. [3], [4].) Each lattice Ae \JF{xo) (XQ e L) will be called a direct factor 
ofL. 

Let (p be as above, u, v e L, и ^ v, (p(u) = (w^, M2), (p{v) = (vi, V2), с = 
= (p~^{{vi, U2)). Then с is said to be a relative central element of Lwith respect to 
the interval [u, v]. The set С'([м, v]) of all relative central elements with respect 
to [w, f] will be called the relative center of Lwith respect to [u, v]. Let us consider 
the following condition on L: 

(*) For each XQE L and each set 0 ф {У4^(ХО)} of direct factors of L with respect 
to XQ the intersection n^i(^^o) ^^ ̂  direct factor of Lwith respect to XQ. 

If Ä(XQ) is a direct factor of Land Xi e v4(xo), then Ä(xi) = Ä[XQ); therefore the 
condition (*) is equivalent with the condition: 

(**) Each nonempty intersection of direct factors of Lis a direct factor of L. 

The following lemma shows the relation between the condition (*) and the proper­

ties of the center of Lin the case when Lhas the greatest and the least element: 

Lemma 12. Let 0(L), 1 ( L ) G L . Then L satisfies (*) if and only if the center C{L) 
is a closed sublattice of L. 

At first we prove the following lemma: 

Lemma 12.1. Let cp be an isomorphism of L onto A x Б, x, XQ e L, 0 ( L ) , 1(L) e L, 
a = (p~'^([l{A), 0(B))). Then x e A{XQ) if and only if a v x = a v XQ. 

Proof. Let (P{XQ) = (flo? bo), (p{x) = (a^, b^). We have 

( a „ b,) V (1(Л), 0{B)) = (l{A),b,), 

(йо, bo) V (1(Л), 0(ß)) = (1(Л), feo) • 

The element x belongs to A{XQ) if and only if bi = bgi since cp is an isomorphism, 
this is true if and only if a v x = a v XQ. 

P r o o f of Lemma 12: 

(a) Assume that C(L) is a closed sublattice of L and let Xo e L, 0 ф {Л,(хо)} 
(г el) cz F(XO). For each iel there exist lattices A^, Bi and an isomorphism cp^ of L 
onto ^jfX'Bf.x Under the analogous denotations as above let (p\ be the corresponding 
isomorphism of Lonto ^^(XQ) X Б^(ХО). Since 1(L) e L, there exists a greatest element 
Ci in AIXQ) and a least element d^ in Blx^^. The element â  = (ФО~^ ((^i' ^i)) belongs 
to the center qfL, hence 

(<?>0~̂  ((^»' ^/) V (^0. ^0)) = ( Ф О " ^ {{СЬ ^O)) = Ci 

belongs to the center of the lattice [xo, 1(L)] (cf. Lemma 2). Put с = Дс;, a = Да^. 
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Then, since C(L) is a closed sublattice of L, a e C(L) and according to Thm. 2 we 
have 

с = /\а = Д(хо V äi) = Xo V (Да^) = XQ V а Г 

and с e С([хо, 1(Ь)]) by Lemma 2. There exist lattices Л, В and an isomorphism (p 
of Lonto A X В such that a = (p~\(l(A), 0(B)). Consider the direct factor A(XQ) e 
e F(xo). Let z G ^(XO)- By Lemma 12.1 we have z v a = XQ w a, thus for each a^, 

z V üi = z V (a V a,.) = (z v a) v â  = (XQ V a) v a^ = XQ v a^, 

hence z G AI(XQ). Conversely, let z G Л^(ХО). Then 

z V «i = XQ V â  for each iel. 

Since the center of Lis a closed sublattice, we have 

z V a = z V (Aa,) = Mz v a) = A(^o v a,) = x^ v (А^г) = ^o v a , 

therefore z G Л(ХО). Thus n^i(^o) = ^(^o) ^ ^(^o)-
(b) Let (*) be valid and let {cj (iel) a C(L). For each iel there are lattices 

Ai, Bi and an isomorphism cpi of Lonto A^ x Bi such that ĉ  = (p'^^({l(A^, 0(B^)). 
Put XQ = 0(L). Then Cf is the greatest element of У4̂ (ХО). According to the assumption, 
there exist lattices A, В and an isomorphism cp of L onto A x В such that A(XQ) = 
= OAi(xo). Thus n^i(^o) has a greatest element с and с G C(L). Obviously с = 
= A^i (i ^I)^ hence Дс^ G C(L). Further consider the lattices ^^(уо) for j;o = 1(L). 
The element ĉ  is the least element of ^^(jo). According to (*), n^i(jo) belongs to 
Р(уо), therefore n^i(jo) has a least element J and de C(L). Clearly d — \/ai. The 
proof is complete. 

Our purpose is to prove the following assertion: 

Theorem 3. Let Lbe a conditionally complete lattices. Then the following condi­
tions are equivalent: 

(a) = (*). 
(b) For each interval \u, r] cz L, the relative center С'([м, t;]) is a closed sublat­

tice of L. 
(c) If X, y,u,ve L, и S У S ^ è ^ (^nd {ai] с С'([м, г;]), then the relations (l) 

and (2) are valid. 

At first we introduce some auxiliary notions and prove some lemmas. Let us remark 
that for any u,ve L, C'([u, i;]) is a closed sublattice of Lif and only if C'([i/, vj) is 
a closed sublattice of [w, f]. Let Lbe a lattice, XQ G L . For each subset 0 ф Z c: L 
we denote by Z^(xo) the set of all у e L satisfying 

(8) (x V Xo) A (y V XQ) = XQ = (X A XQ) V ( J Л XQ) 
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for each x e Z . Let A, В be lattices and let (p be an isomorphism of L onto A x B. 
Let p, qe L, If pe A(q) we write p = ^(JR(^)). Analogously we define the relation 
p = q(R(B)y Then R(Ä), R(B) are permutable congruence relations on L, R(Ä) л 
л R(B) is the least congruence relation on L and R(Ä) v JR(JI5) is the greatest con­
gruence relation on L. (Cf. [1].) 

Lemma 13. Let z e L, (p^z) = (z^, Z2). Then 

Zi G ^(Xo) n B{Z) , Z2 G Б(Хо) n /l(z) . 

This is an immediate consequence of the definition of the sets A(x) and B{x) for 
xe L. 

Lemma 14. Let XQ, Z G [и, v] с L, (p'(z) = (z^, Z2). Tften z^, Z2 G [W, t;]. 

Proof. According to Lemma 13 we have 

Xo ^ z,(i^(^)) , z,^z{R(B)), 

and hence (because R{Ä), R(B) are congruence relations on L) 

Xo = (zi V M) л V(R{A)) , (zi V M) л I? = z(i^(^)) • 

From this we infer that 
Zi = (zi V M) л V{R(Ä) Л i^(J5)). 

Since R(A) A R(B) is the least congruence on L, we obtain ẑ  = (z^ v w) л i?. 
Thus Zi G [w, ü]. 

Lemma 15. B(xo) = (Л(хо))^ (xo). 

Proof. Let yeL, (p{y) = {a, b), <?)(xo) = («o, bo), x G Л(хо), ф(^) = («i, Ьо). 
If j ; G В(хо), then a = UQ, thus 

((p(x) V (p{xo)) л (^(y) V ф(хо)) = («1 V «0. bo) л (ao, Ь v feo) = («0» bo) » 

therefore (x v Xo) A (y v уо) = XQ- Dually, (x л Xo) v (y л уо) = XQ, hence 
J;G(4XO))'(XO). 

Let Xo й ye (А(хо)У (XQ). Then (a, bo) e Л(хо), (a, bo) A (a, b) = (a, bo) and 
hence by the definition of the set {А{ХО)У (XQ) we obtain (a, bo) = (äo^ ^o), therefore 
у G Б(хо). Similarly, if Xo ^ j G {А{ХО)У (X^), then у e B{xo). Now let у be any 
element of the set (^(xo))^ (xo) and denote y^ = у v Xo, J2 = J ^ XQ. Then y^ 
and J2 fiilfil (8), hence Ĵ i, У2 ^(Д^О))^(-^О)^ thus >'i» У2 ^^(^o)- Since J5(xo) is 
a convex subset of L, we obtain у e B{xo)' 1 
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Lemma 16. Let XQ e [w, v] c [w ,̂ г̂ ]̂ cz L. Assume that (p is an isomorphism of 
[и, v] onto A X В and that (p^ is an isomorphism of [ui, v^'j onto A^ x Bi such 
that A(xo) = Ai(xo) n [w, v]. Then B(xo) = ^^(xo) n [u, v]. 

Proof. Let у e BI{XQ) n [w, г;], x e ^(XQ). Then x e AI{XQ) and hence according 
to Lemma 15 the relation (8) is valid. Thus у G B{XO). Conversely, let y e B{xo) and 
let X e Ai(xo), Then since ̂ ^(xo) is a convex sublattice of L we have XQ ^ (x v XQ) A 
Ave A(xo) and therefore by Lemma 15 

(X V Xo) л {у V Xo) = (x V Xo) A [v A (y V XQ)] = 
= [(x V Xo) л г;] V (y V XQ) = XQ . 

Dually we obtain (x л XQ) V (y A XQ) = XQ, thus by Lemma 15, yeBi{xo) n 
n [w, v]. 

Under the same assumptions as in Lemma 16 the following two lemmas are valid: 

Lemma 17. Let z e [w, i;]. Then 

A{z) = Ai{z) n [u, v] , B{z) = Bi{z) n [w, v] . 

Proof. According to Lemma 13 there exist ẑ  e A(xo), Zj e B(xo) such that 

Zi G ß(z) , Z2 G A(z) . 

Thus ^(zi) = A(ZO) and so according to the assumption we have A(zi) = ^i(zi) n 
n [M, f]. Hence by Lemma 16, 5(zi) = ^^(zi) n [м, v]. Therefore z G J5I(ZI) and 
thus B(z) = 5i(z) n [w, ü]. From this and from Lemma 16 we infer that A(z) = 
= ^i(z) n [w, ü]. 

Lemma 18. Let z e [w, v]. Then (p'{z) = 9i(z). 

Proof. Let Zi, Z2 be as in the proof of Lemma 17. We have 

Zi G v4(xo) n JB(Z) , Z2 G В(Хо) П ^(z) 

and hence according to Lemma 17, 

Zi G ^i(Xo) n J5i(z) , Z2 G ßi(Xo) П ̂ ^(z) . 

Therefore from Lemma 13 and from the fact that JR(^I) Л R{B\) is the least сопЕш-
ence relation on [w ,̂ v^ we get cp'{z) = (z^, Z2) = <?>i(̂ )-

Lemma 19. Lê  L = [w, v\ and let 

(p : L-^ Л X В , (Pi'. L-> Ai X Bi 
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be isomorphisms of L onto Л x В and Ai x Bi, respectively (iel). Denote a^ = 
= ()!)Г^((1(Л,.), 0(ß,.)) and assume that 

(cj) t V (Да,.) = /\{t A a^ for each teL 
is valid. Let XQ e L, C\Äi(u) = A(u). Then f|^i(^o) = ^(^o)-

Proof. There exists aeC([u,vJ) such that a = l(A(u)). Clearly «̂  = l{Ai{u)). 
From C\Ai{u) = A(u) it follows Да^ = a. Nowby using (c^) and by the same method 
as in the part (a) of the proof of Lemma 12 we obtain that n^i(^o) = ^(^o)-

Lemma 20. (c) => {^)for each conditionally complete lattice L. 

Proof. Assume that L satisfies (c) and let {Л,(хо)} (i^l) be a nonempty subset 
of F(XO) for some Xo e L. Let z e L. Choose u,veL such that и ^ v, [XQ A Z, 
Xo V z] cz [M, t;]. 

For each iel there is a lattice B^ and an isomorphism cpt of L onto Л,- x B .̂ 
Let <?)i(w) = (wj, U2), cpi{v) = {v\, V2) and let cpi be the corresponding partial mapping 
of the interval [u, i;] into Ai x Б,-. Then ^j- is an isomorphism of [u, i;] onto 

[u\,v[] X [ м ^ 4 ] = ^ i ^ Bf 

Let a,- = Ф Г Ч ^ 1 ' "2)5 '̂i = Ф Г Ч ^ ! ' ^2)- The elements a,-, a'i belong to the relative 
center C([u, vj) с C([w, i;]) and â  is the complement of â  in the interval [м, i;]. 
According to the assumption the condition (c) is valid and thus by Thm. 1 the elements 
(^ = hßb ^ = V^'i belong to the center of the lattice [w, v]. Hence there are lattices X 
and Y and an isomorphism ф of [u, г?] onto X S Y such that (p(a) = (1(X), 0(7)), 
(p{b) = (0(Z), 1(7)). Clearly 

X(u) = [u, fl] , Äi[u) = [M, a J 

and therefore 

X(M) = n ^ , ( w ) ( ^ e / ) . 

Hence by Lemma 19 (the condition (cj) of this lemma is valid because of (c)), we have 

^(^0) = OAii^o) ^ OAiixo). 
Denote 

А = ПЛ1хо), B = A\xo). 

Let xe A, ye 7(xo) and denote (x v Xo) л i; = z. Then z e X{xo) and hence 
according to Lemma 15, 

z л (3; V Xo) = (z V Xo) л (3; V Xo) = Xo. 
Therefore 

(x V Xo) л {y V Xo) = (x V Xo) A [v A (y V Xo)] = 

= [(x V Xo) л г;] A (у v XQ) = z A (у v Xo) = Xo 
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and dually we obtain 

(x л Xo) V (y A Xo) = XQ. 

Thus yeA\xo) and hence 7(xo) cz ^^(XQ). Let ^'(z) = (zj, Z2). Then z^^eA, 
Z2 G В. From Lemma 18 it follows that the elements Zj, Z2 do not depend from the 
particular choice of elements u, v. We write 

Z, = 2 [ Л ] , Z2 = Z[B]. . : 

If te L, we may choose u,ve Lsuch that {xo, z, t] c: [м, v] and then we obtain that 

(z л t) [A] = zlA] A t[A'] , (z у t) [A] = z [^] v г[Л] 

and analogously for B. Further z Ф t implies (z^, Z2) Ф (^1, 2̂)- Hence the mapping 
<j9 : z -^ (zi, Z2) is an isomorphism of Linto A x B. 

Let pe A, q^B and choose u,ve L such that (XQ, p, q] ^ [w, v]. Then we have 
(by the same notations as above) pEX{xo)' From Lemma 15 it follows ^ e Y(xo). 
Thus there is z G [и, v] such that (p'(z) = {p, q). Hence we obtain p = z^, q = z^. 
Therefore the mapping ц) is onto. We have (p(x^ = (XQ, XQ) and if z G A{Z G JB), 
then (p(z) = (z, Xo) (^(z) = (л:о, 2))- Thus >4(хо) = ^^ ^(^:o) = ^- We have proved 
that n^i(^o) = ^ belongs to F(xo). 

P roo f of Thm. 3. 

(a) => (b). Let (a) be valid. Let [w, 2;] с L, 0 ф {сJ (г G / ) cz C'([w, i;]). For each 
i G / there is an isomorphism ц>^ of L onto A^ x B^ such that the condition from the 
definition of Ci^, i;]) is fulfilled. Put Xo = u. According to (a), there are lattices A, В 
and an isomorphism cp of L onto A x В such that A{XQ) = OAI^XQ). The lattice 
X = [u, v] is isomorphic with the direct product (X n A{xo)) x (X n JB(xo)), and 
X n A(XO) = Г\{Х ^ ^i(^o))- Then the lattice X n A{XQ) has a greatest element с 
and с G С'([м, г;]). The element C; is the greatest element of X n ^^(xo), hence /\Ci = с 
and so Acj G C'([w, t;]). By a dual method we can prove that \/ci e C'([w, v])-

(b) => (c). Assume that (b) holds. Let x, y,u,ve L, w g j ^ x ^ t;, {a J cz 
с C'([w, ü]). Let a'i be the relative complement of â  with respect to the interval [w, г;]. 
Then a[ e C([u, vJ) and hence according to (b) we have a = Да^ G С {[и, vj), b = 
= V^i e C([w, г;]). Thus the elements a ,̂ a, Ь belong to C{[u, vJ) and therefore from 
Lemma 4 we infer that the relations (3) and (4) are valid. Thus (1) and (2) hold 
whenever the assumptions of (c) are fulfilled. 

The implication (c) => (a) was proved in Lemma 20. 

Corollary 1. Let Lbe a complete lattice. Then the following conditions are equi­
valent: 
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(a) The center of L is a closed sublattice of L. 

(b) Each relative center of Lis a closed sublattice of L. 

Proof. Since the center of Lis a relative center of L, (b) => (a). From Lemma 12 

and Thm. 3 it follows that (a) implies (b). 

Corollary 2. Let Lbe a conditionally complete lattice, XQ G L . If for each interval 

[u, Î;] of L the center С([м, v]) is a closed sublattice of [u, г;], then for each set 
0 Ф {y4j.(xo)} of direct factors of L with respect to XQ the intersection n^i(^o) ^^ 
a direct factor of L with respect to XQ. 
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