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THE CONTROL PROBLEM % = (A(l — u) + Bu)x:
A COMMENT ON AN ARTICLE BY J. KUCERA

HEcTtor J. SussmMANN, Chicago*)

(Received March 12, 1971)

In an article recently published in this journal ([1]), J. KUCERA studied the control
problem % = (A(1 — u) + Bu) x. The main results of [1] are that the set o#(w, T)
of points attainable at time T > 0 from a fixed point w is an “‘integral manifold of the
distribution %(A, B)” ([1], Theorem 2.2), and that the set o/'(w, T) = U{s/(, T) :
:0 <t < T} is an “integral manifold of the distribution %(A, B)” ([1], Theorem
2.1). The purpose of this note is to show that Lemma 2.8 [1], which is a fundamental
step in the proof of Theorems 2.1 and 2.2, is false. The natural question to be asked
now is whether these results are nevertheless valid; it will be shown in a forthcoming
paper that they are. The proof, however, is based on a completely different technique.

We quote the statement of Lemma 2.8 of [1]:

“[Let] T>0, 6€(0,%), ueM(5,1 — 8). Let the function u be not constant
in <0, T) (not equivalent with a constantfunction), then

7 (x(T, u)) crglr K(T).”

The notations of the above statement have the following meaning:

a) “(«, B)” (resp. <a, BY) is the open (resp. closed) interval with endpoints o, S.
b) “M(a, B)” is the set of all measurable functions in (0, co) whose values lie in
a, By, & < .

¢) t — x(t, u) is the solution of the equation
& 5() = (A1 = u(9) + Bu(9) x()

which satisfies x(0) = w. Here  is a fixed element of R" (n-dimensional real space),
and A, B are fixed elements of ./Z, (the set of all n by n real matrices)‘

*) This work was performed while the author was at the Division of Engineering and Applied
Physics, Harvard University, Cambridge, Mass., U.S.A.
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d) “y™ is the ““distribution created by %", i.e. the mapping that assigns to each
x € R" the set #7(x) of all elements of R" of the form Px, P € 4.

e) “B”,or “B(A, B)” is “the smallest linear space of n by n matrices which contains
the matrix C(=B — A) and, with each P € 4, contains also both matrices [A, P]
and [B, P]” ([1], Def. 2.2; the notation “[M, N]” means “NM — MN").

f) K,(T) s the set of all vectors x4(T, v), ve M(—1, 1), where

mano=mn<£k*@cmgmm0w,
and where

g) t > X(t) is the n by n matrix-valued solution of
§M0=MU—WW+BW»M0
t

which satisfies X(0) = I, (L is the n by n identiy matrix).

We shall show that Lemma 2.8 is false by means of a counterexample. Consider
the space 2, of all real polynomials in two noncommuting variables y, z. Form the
space 2 by equating to zero all the monomials of degree 5 or more (in other words 2,
is the free algebra over the reals generated by y and z, and 2 is the quotient of Z, by
the ideal generated by all the monomials of degree 5). Thus, £ is a 31-dimensional
real vector space, and the monomials 1, y, z, y%, yz, zy, 2%, y°, ¥%z, yzy, zy?, yz?,
zyz, 2%y, 2°, y*, y3z, y*zy, yzy*, zy3, y?22, yzyz, zy’z, y2*y, zyzy, 22y%, yz®, zy2?,
z2yz, 23y, z* are a basis for 2. Moreover, 2 is an associative algebra over the reals,
with the obvious multiplication table (for instance: zy.zy = zyzy, zy.y* =0,
etc.).

By means of this basis we can (and shall) identify 2 with R*'. In 2, the mappings
p(v, z) > yp(y, z) and p(y, z) - zp(y, z) are linear. Via the above mentioned iden-
tification, we obtain two 31 by 31 matrices M, and M, such that these mappings
correspond to x — M x and x — M.x, respectively. We let A = M, B =M, + M,,
so that C = M,. To begin with, we compute the space 4. It is clear from the definition
that # is the smallest linear space that contains C such that, if P e 4, then [A, P]
and [C, P] belong to %#. Thus # is the linear hull of the set & of all matrices
[Q1, [Qzs -5 [Qk-1, Q] ---]]. where k is an integer >0, and where Q; = A or
Q;=Cfori=1,...,k -1, Q = C. Using the facts that [C,C] = 0 and that
[A.[C,[A, C]]] = [C. [A,[A, C]]] (an immediate consequence of the equality
[P, P] = 0 and of the Jacobi identity [P, [Q, R]] = [[P, Q], R] + [Q, [P, R]]) we
see that the following are all the elements of & corresponding to k < 4:

M;=C, M, = [Aa C] > M3 = [Aa [A’ C]] , My = [C’ [A’ C]] ’
M; = [A,[A, [A,C]]], Mg =[C,[A [A, C]]] and M, = [C,[C,[A,C]]]-
In addition, all the elements of & corresponding to k = 5 vanish. This is so because,

via our identification of R*! with £ (and of the corresponding identification of .4,
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with the set of endomorphisms of the vector space 2), every element Q = [Q., [Qa ..

o [Qi-1,Qi] ---]] of & corresponds to the multiplication in 2 by a homogeneous
polynomial p(Q) of degree k (for instance, if Q = [A, C], then p(Q) = zy — yz).
Since every homogeneous polynomial of degree =5 vanishes in £, our assertion
follows.

Thus 4 is the linear hull of M, ..., M;. We show that these matrices are linearly
independent. It is sufficient to prove that the multiplications by the corresponding
polynomials p(M;), ..., p(M;) are linearly independent. If these multiplications were
not independent, then the images of the polynomial 1 would be dependent, i.e. the
polynomials p(Ml), ... (M) would be dependent. Thus, it is sufficient to show that
these polynomials are independent. But p(M;), ..., p(M,) are homogeneous poly-
nomials both in y and z, and no two of them have the same degrees both in y and :z.
Hence they are independent.

We have shown that M, ..., M, form a basis for %, so that & has dimension
seven.

We shall take o to be the element of R*! which corresponds to the polynomial 1
of 2. Thus, ¥"(w) is the linear hull of p(M,), ..., p(M,), and dim ¥ (w) = 7. We
take & to be an arbitrary element of (0, 1), and define the control u by u(t) = 6 + ¢ for
0 £t £ T, where T=1— 25. Thus all the assumptions of Lemma 2.8 of [1] hold.
We show that the dimension of ¥"(x(T; u)) is also seven. This is an immediate con-
sequence of Lemma 2.11 of [1], or it can be proved directly as follows: the equation

— x(t u) = (A + u(1) C) x(1, u)

implies that the derivative of the polynomial x(1, u) is a polynomial in y, z without
a constant term. This implies that the constant term of x(z, u) is 1 for all 7 (because

x(0,u) = w = 1). From this it follows immediately that the seven polynomials
p(M,) x(t, u) are linearly independent.

We shall show that the dimension of the subspace U r.K (T) is not greater than

six. To begin with, U r . K,(T) is obviously the set of all elements of the form

X(T) ( f X0 X)) dt) o

where v is an arbitrary bounded measurable function in <0, T). We see immediately
that this is the same as the linear hull L" of X(T)X™'(f) CX(f) », 1€ <0, T). The
dimension of L is the same as that of the linear hull L of all the elements X~ '(¢) .
. CX(t)  (because X(T) is nonsingular). Finally, this dimension is not greater than
that of the linear hull L of all the matrices X~ !(¢) CX(¢), t € €0, T).

Thus, it is sufficient to show that dim L < 6. Since u(f) = t + J, the function
t > X~ (t) CX(f) = Y(¢) is analytic. Thus, Lis the linear hull of the coefficients of
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the power series expansion of Y in a neighborhood of ¢ = 0 or, equivalently, L is the
linear hull of {(d"/d#") Y()|,=o :n =0,1,...}.
Since (d/dt) X(¢) = (A + u(t) C) X(t), we see that

o X )= -X"YA+u(t)C).
If M(7) is any matrix-valued function, we have
%(X’l(t) M(1) X(1)) = —X7'(#) (A + u(r) C) M(¢) X(1) +
+X71(0) M(1) (A + u(t) ©) X(1) + X~'(1) Z(:} M(1) . X(1).-

Applying this formula to the successive derivatives of Y we obtain

d’ -1
3 Y0 = X O RO X(0),
where
Fo(t)=C, F,(t)=[A,C], F,(t)=[A +(t+9)C,[A, C]],
Fy(t) =[A+(t +8)C,[A + (t + 6 C,[A C]]] + [C.[A C]],
F (t) = [C,[A+ (t + §) C,[A,C]]] + 2[A + (t + 6) C, [C, [A, C]]],
Fs(r) = 3[C,[C,[A,C]]] and F4t) =0.

In the above computations we have used the fact that every element of & cor-
responding to k = 5 vanishes.

Our computations show that, of all the matrices (d"/d#") Y(f)|,o, only those for
n =0, ..., 5 are nonzero. Thus, the dimension of Lis not greater than 6.

The preceeding remarks show that in our example, the dimension of ¥~ (X(T u))
is seven, while the dimension of U r.K (T) is less than six. Therefore, the conclusion

of Lemma 2.8 of [1] does not hold even though all the assumptions are satisfied.
Thus, Lemma 2.8 of [1] is false.
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