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ON THE CHARACTERIZATION OF WEAK CLOSURE
IN HILBERT SPACE¥*)

EBERHARD GERLACH, Vancouver

(Received October 5, 1970)

The purpose of this note is an attempt to characterize the weak closure of bounded
sets in a separable Hilbert space. The problem was motivated by a recent paper of
G. E. Siov [3] in which he studies the Lévy-Laplace operator on a particular class
of norm-closed domains in Hilbert space. In § 7 of [ 3] it was shown that these domains
are weakly compact and that the nullspace of the Lévy-Laplacian is a dense algebra
in the algebra of all weakly continuous functions on the given domain. It turns out
that the (sup-norm closure of the) algebra considered by Silov, or equivalently the
algebra generated by all continuous linear functionals, on a given bounded (not
weakly closed) set B is precisely that algebra of bounded weakly continuous functions
which corresponds to the compactification given by the weak closure of B. It would
be natural to expect this compactification of B to be ‘“distinguished” in some way;
examples suggest, however, that the weak closure may not enjoy any special proper-
ties not shared by other compactifications. We conclude the note with a few open
problems.

Throughout this paper, # will denote an infinite dimensional separable Hilbert
space over the reals, with real valued inner product. If B is a bounded subset of #,
we write B,, for the topological space {B, t}, where 7 is the weak topology of #
restricted to B, and BY for the weak closure of B together with the weak topology.
It is well known that B* is compact and metrizable. If g(x, y) is any admissible metric
on B" (they are all equivalent there) then B* is isometric to the completion of B,,
with respect to ¢g. From now on let K be a closed ball in 2, containing B¥, and let g
be an admissible metric for the weak topology on K, with ¢g(x, y) < 1forall x, y e K.

If S is a set, denote by F(S) the Banach algebra of all bounded (real or complex
valued) functions on S, endowed with the sup-norm. If S = T'is a topological space,
C(T) will denote the subalgebra of all bounded continuous functions. If {X, @/} is
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a uniform space, we denote by #(X) the closed subalgebra of F(X) which consists
of all bounded # — ¥ -uniformly continuous functions, where ¥~ is the usual
uniformity on the space of real or complex numbers.

Definition. A real or complex valued function f defined on the bounded subset B
of # is said to be simple [3] if there are (i) a finite number of vectors ay, ..., g, in A,
(ii) a closed bounded domain Q in Euclidean R", and (iii) a continuous function J
on Q such that 1° x € B implies ((ay, x), ..., (a,, x)) € Q and 2° f(x) = f((a,, x), ...
eeos (ag X))

The class D(B) of simple functions forms an algebra (operations pointwise) — the
arguments of § 1 in [3] remain valid for any bounded B = #; and in the case when B
is a norm-closed domain in #, Silov showed that D(B) is equal to the nullspace of
the Lévy-Laplace operator L(the latter is an unbounded operator defined in the larger
algebra of “regular” functions; cf. [3]). Let D(B) denote the sup-norm closure of D(B).

If %, denotes the metric uniformity induced on B,, by that of B*, then D(B) =
< %(B), and as % (B) is complete, also D(B) = % (B). On the other hand, since the
functions 4 given by d(x) = (a, x) (a € #) separate points of # and by the Stone-
Weierstrass theorem form a system of generators for %,(B") = C(B”) — and hence
also for the restriction of this algebra to B,,, namely @!,(Bw) — we obtain E(B) >
> % (B,). We have proved the following.

Proposition 1. The compactification B¥ of B,, corresponds to the closed sub-
algebra %(B,) = D(B) of C(B,). This algebra is generated by the continuous
linear functionals on #.

Proposition 2. Let {X, %} be any uniform Hausdorff space. If fe %(X) and
f~' e F(X), then f~' e U(X).

Proof. If fe F(X), then f~' e F(X) if and only if inf {|f(x)] : xe X} = ¢ > 0.
Suppose fe #(X) and f~'e F(X) now, and set d = sup {|f(x)| : x€ X}. Then
S x) = (f(x))"" = (reaof) (x) where r,4(z) = z7' and r,, is uniformly conti-
nuous on the annulus ¢ < |z| < d. Consequently the composition f~' =1, 0f
is %-uniformly continuous. (In C we always use the usual uniformity given by the
metric p(z, z,) = |z, — z4|.)

Proposition 3.1f f € D(B) [ f € D(B)] and f~* € F(B), thenf~* € D(B) [/ ~' € D(B)].
The case of D(B) was proved directly in [2]; the case for D(B) = % (B,,) follows
from the preceding propositions.

Now let Do(B) denote the set of simple functions which are representable in the
form x — g((ay, x), ..., (a,, x)) where ay, ..., a,,€ B, and denote by Dy(B) its sup-
norm closure. Then Dy(B) is an algebra, and we have the following result.
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Proposition 4. If the functions d(x) = (a, x), a € B, separate the points of B (in
particular, if the norm interior of B is not empty) then % (B,,) = Do(B).

Let us take a look at other possible compactifications of B,,.

Lemma 1. Let {X, p} be a meiric space and a, b two distinct points of X. Write
X~{a, b} =Yand set

(1) r(x, ) = min [p(x, y), p(x, a) + p(y, b), p(x, b) + p(y, a)] .

Then r is a metric on Y, and both r and p determine the same topology on that
space. Moreover r is strictly coarser than p; if {X, p} is precompact, then so is

{Y, r}.

The verification is straightforward.

Proposition 5. Let a, b be two distinct points of BY\ B,,, p = q, and r as defined
in (1). Then at least one of the functions d(x) = (a, x) and b(x) = (b, x) is not
r-uniformly continuous on B,, and the compactification of B,, corresponding to r
is obtained from B by identifying a and b.

This is immediate from Lemma 1.
Remark.If a + 0 #+ b in Proposition 5, then both of 4 and b are not r-uniformly

continuous.

Lemma 2. Let {X, p} be a metric space with p(x, y) £ 1 for all x,ye X, and
a € X a non-isolated point. Set

() d(x, y) = log <1 + 4p(x, y) > .

min [p(x, a), p(y, a)]*

Then d' is a metric on X \ {a} = Y which is strictly finer than p, and {Y, d'} is not
precompact. Moreover, the function g given by g(x) = sin (1/p(x, a)) is d’-uniformly
continuous on Y, but not p-uniformly continuous.

Proof. A straightforward calculation shows that d’ is indeed a metric on Y, and
that {Y, d'} is not precompact. We check d’-uniform continuity of g. The function
sine is uniformly continuous on R; so there is a function 6 from ](), 2] to ]0, 27:]
such that |¢ — 5| < 6(e) implies |sin & — sin 5| < & Then d'(x, y) < log (1 + 45(¢))
yields

5(e) > p(x. y) > Py
min [p(x, a), p(y, a)]* ~ p(x, a) p(y, a) —
> lp(x’ a) - P(y’ a)l = | 1 — !
= p(xa)p(v.a)  |p(x.a) p(y.a)
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and hence

sin ——— — sin
p(x, a) p(y, a)

Thus g is d’-uniformly continuous, but it clearly is not p-uniformly continuous.

Lemma 3. Let {X, d} be a metric space which is not precompact, and d(x, y) < 1
for all x, y € X. Let 2* be the coarsest uniformity on X which leaves all bounded d-
uniformly continuous functions still @*-uniformly continuous. Then @* is also the
finest uniformity on X which (i) is Hausdorff, (ii) determines the same topology as d,
and (iii) makes {X, 2*} precompact. The uniformity 9* is generated by the family
of semi-metrics b(x, y) = |d(b, x) — d(b, y)|, be X (the b form a subbase). If X
is separable in the topology given by d, and {b, :ne€ N} is a countable dense set
in X, then @* is determined by the metric

d*(x, y) = Y. 27"b,(x, y) .
neN

Proof. The first part is an exercise in § 1 of [1]. The verification that &* is gen-
erated by the b, or by d*, respectively, is left to the reader.

Proposition 6. Let a € B* \ B,,. Then there exists a metric r which is strictly finer
than q on B but which determines the same topology as does q (namely the weak
topology on B) such that {B, r} is precompact, and the function g(x) = sin (1/g(x, a))
is r-uniformly continuous.

Proof. We give two examples of such a metric. (i) Let X = B¥ and p = q in
Lemma 2 (a is not isolated in B*), and d = min {d’, 1} in Lemma 3. Then r = d*
has the desired properties. (ii) Let f be any bounded continuous function on B,
which is not g-uniformly continuous, for instance f(x) = sin (1/g(x, a)). Then
r(x, ) = q(x, ) + |f(x) — f(y)| is a metric on B for which {B, r} is precompact,
r determines the weak topology on B, and f is r-uniformly continuous.

The above results are summarized as follows.

Theorem. The weak closure B of a bounded set B in a separable, real Hilbert
space # is the compactification determined by the algebra generated by all con-
tinuous functionals on # (or equivalently, by the simple functions). If B is not
weakly closed, it has metrizable compactifications which are “larger” than B,
and if B\ B contains at least two points, B also has metuzable compactifications
which are “smaller” than B.

We conclude with some unanswered questions.

Problem 1. (a) Characterize all metrics on B which determine the weak topology,
in particular those arising from compactifications. (b) Give an example of a bounded
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set B in # which is not weakly closed, of a nonmetrizable uniformity % on B de-
termining the weak topology — perhaps so that {B, %} is precompact, and of a #%-
uniformly continuous function which is not g-uniformly continuous.

Problem 2. Does every % ~uniformly continuous function on B have a % -uniformly
continuous extension to the closed convex hull of B (perhaps even to K)?
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