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Czechoslovak Mathematical Journal, 22 (97) 1972, Praha 

ARCHIMEDEAN EQUIVALENCE ON ORDERED SEMIGROUPS 

BEDRICH PONDELICEK, Podëbrady 

(Received September 22, 1970) 

Archimedean properties in some special kinds of ordered semigroups have been 
studied by several authors (for example [ l ] —[8]). In the book [5], L. FUCHS defined 
the Archimedean equivalence on a simple ordered semigroup as follows: 

a ^ b if and only if one of the four conditions: 

a S Ь й ci\ b S a й b\ a"" ^ b ^ a, b" ^ a S b 

holds for some positive integer n. 
T. SAITÔ [7] showed that this relation is not an equivalence relation. Then he 

studied the Archimedean equivalence on nonnegatively simple ordered semigroups. 
In this paper we shall consider the Archimedean equivalence on a general ordered 
semigroup. On the other hand, in our paper [9] we studied the equivalence К on 
a semigroup S: for a, b e S, aKb if and only if there exist positive integers m, n such 
that a'" = b". We shall define the Archimedean equivalence on an ordered semigroup 
S in a similar way. 

Let ^(S) denote the set of all ^-closure operations for a non-empty set S, i.e. 

(0) и E ^(S) <:> Ü : exp 5 -> exp S and 

(1) U(0) = 0 , 

(2) ÄCZ В a Ä=> U{A) c: U{B) , 

(3) A' cz U{Ä) for each A Œ S , 

(4) Ц Ц ^ ) ) = Ц ^ ) for each AŒ S 

hold. 
A subset A of S will be called U-closed if U(A) = A. The set of all U-closed subsets 

of S will be denoted by J^(ü). 

(5) If A Cl S, then U[À) = П ^i y^here Ai ( I G / ) are all U-closed subsets of S 
such that A a A^. '^^ 
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Let ü, V 6 ^(5У Then we define 

(6) и ^Vo U{Ä) C V{A) for each A cz S . 

We have 

(7) ^{U V V) = :F{U) n ^{V), 

(8) и ^Vo^{V) cz ^{U). 

We shall denote by l{S) the set of all ^-closure operations for a set 5, i.e. 1{S) a 
c: ^(S) and for every U G ^ ( S ) and for every A a S, 

(9) U{Ä) = и U{x) 
xeA 

holds. 

Let Ü G ^(S). We define Ü* G J (S ) . 

(10) If A cz S then x G и*(Л) if and only if U{x) n Л Ф 0 . 

For Ü, V G ^ ( S ) we have 

(11) Ü ^ V = > Ü * ^ V * , 

(12) U(x) = a**(x) for every XGS, 

(13) Ü** ^ Ü , 

(14) U*** = U* . 

Put 0{A) = A for each A Œ S. Then О G 1{S) and 

(15) О ^ Ü /lo/Js for every U e ^(S) . 
See [10]. 

Let и G ^(5) . We shall introduce the equivalence U on S by: for x, y e S, xUy if 
and only if U(x) = U(y). For any element x of S, let l/^ denote the U-class of S 
containing x. If U,V e ^{S) then we have 

(16) и SV=>U czV, 

(17) xUy <=> X G U{y) and y e U(x) . 

See [9]. 
Let S be an arbitrary semigroup. Put P(0) = 0. If A cz S (A ^ 0), then by 

P{A) we denote the subsemigroup generated by all elements of A. Evidently P G ^(S) 
and J* (̂P) is the set of all subsemigroups of S (including 0). See [10]. Let К = P"^ v 
V P**. Then К = K* and xKy if and only if there exist positive integers n, m such 
that x" = j ' " . See [9]. 
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By an ordered semigroup, we mean a semigroup S with an order which is com.-
patible with the semigroup operation: 

a, b, с e S and a ^ b imply ac ^ be and ca ^ cb . 

A subset Л of S is called convex if for every a, b e A and for every ce S 

(18) a ^ с :£ b implies с e A . 

We shall denote by C(A) the convex hull of a subset A cz S. It is clear that С e ^ (̂5) 
and .^(C) is the set of all convex subsets of S. It follows from (12) that C** = O. 

Put Pc = P V C. It follows from (7) that ^(PQ) is the set of all convex subsemi-
groups of S (including 0). 

Lemma 1. Let u, x e S. Then и e Pc{^) if and only ifx^^u^ x"" for some posi­
tive integers n, m. 

Proof. Let A = [v e Sjx" ^ v ^ x"" for some positive integers n, m}. Since Pd^) 
is a convex subsemigroup of S containing x, hence by (18), A a Pc{x). 

If V,WEA, then x"̂  ^ î  ^ x"'̂  and x"̂  ^ w ^ x"'" for some positive integers 
n^, m|, П2, ni2' This implies that x"̂ "̂ "̂  ^ vw ^ x'"^ '̂"- and thus we have vw e A. 
Hence, Л is a subsemigroup of 5. If i; ^ z ^ w for v, w e A and for z e S, then 
x"̂  g f ^ z ^ w g x""' for some positive integers n^, m2. This means that z e A. 
According to (18), A is a convex subsemigroup of S. It follows from (5) that Pc{^) ci 
c: A. Therefore, A = Pd^)-

Lemma 2. Let x, y E S. Then Pc(x) n Pc{y) =¥ 9 if crnd only if x" ^ y' g x''' for 
some positive integers n, r, m. 

Proof. If x" ^ y^ ^ x'" for some positive integers n, r, m, then it follows from 
Lemma 1 that j** e Pd^). Evidently j ' * G Pdy)- Hence we have Pd^) ^ ^dy) + •̂ 

Let Pd^) ^ ^dy) + 9' Then there exists an element и e Pd^) ^ ^dy)- Lemma 1 
implies that x"̂  ^ и ^ x"'^ and 3;"̂  ^ w ^ y""^ for some positive integers n ,̂ m ,̂ 
П2, m2. Then we have x" = x"̂ "̂  <: w"̂  g /^^^ = / й w"" ^ л;̂ '""' = ^̂"̂  where 
П = П1П2, r = '^з'^г ^^^ ^̂  — ^1^1-

Lemma 3. Let A с 5. Then A E ̂ {PC) if cind only if for every x E S 

(19) x ' ^ ^ w ^ x " ' , UEA=>XEA. 

Proof. Let AE^(PC)- If x" ^ w ^ x"" for some positive integers n, m and for 
some UE A, then by Lemma 1, w G PC(^). It follows from (10) and (2) that x G PC{^) C: 
c: Pt{Ä) = Л. 

Let (19) hold for every x e S. Evidently Pj e J(S). If A Ф 0, then by (9) we have 
P*(Ä) = и P*(x). If j ; e Р^{А}, then j e PS(X) for some x e A. It follows from (10) 

xeA 
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and (12) that x e Рс{у)- Then by Lemma 1 and (19), у e A. Thus we have PC{A) a A. 
It follows from (3) that A = Pc(^) e i^(Pc)-

Lemma 4. Let A cz S. Then A e ^{P%^) if and only if for every xe S 

(20) w ^ ^ x ^ w ' " , ueA=>xeA, 

Proof. Let A G#'(Pc*). If u" ^ X ^ u"' for some positive integers n, m and for 
some UEA, then by Lemma 1, (12) and (2), x e Pc{u) = Pc*(w) c: Рс*(Л) =- A. 

Let (20) hold for every xeS. Since Pc* e j (S) , hence by (9) and (12) we have 
P%^{A) = и Pc{^)- If J e Pc*(^), then у e Pc(^') for some x e A. According to Lemma 

xeA 
1 and (20), ye A. Therefore, Pc%A) cz A. It follows from (3) that A = P^^A) e 
e^{PVy 

Definition 1. Kc =- P^ w P**. 

Lemma 5. Kc = K%. 

Proof. Evidently P* ^ K^ and P** ^ K^. It follows from (11) and (14) that 
P** ^ K*andP* = P*** ^ K*. This implies that Kc = P^ v P** ^ K*. According 
to (11) and (13), we have K* ^ Kj* ^ Kc- Hence K^ = X^. 

Lemma 6. К ^ K^ and К с К^. 

Proof. Since P ^P V С =^ Pc. hence by ( l l ) we have P* ^ P^ and P**_^ P j* . 
Therefore К = P* v P** ^ Pc v P j* = Kc- According to (16), we have К с Же. 

Remark 1. Evidently, if С = О (e.g. if S is an unordered semigroup) then Kc = К 
and Kc = K. 

Theorem 1. Let S be an ordered semigroup and let x, y e S. Then хКсУ if and 
only ifx" ^ J** ^ x"" for some positive integers n, r, m. 

Proof. If x" ^ y*" g x'" for some positive integers n, r, m, then it follows from 
Lemma 2 that there exists и e Pc{^) (^ Рс{у)- (Щ ^^^ (^) ™р1у that x e Pc{u) cz 
с Kc(w). By (12) and (6), we have w e Pc{x) = РП^) ^ '^cW- Then, by (17), we 
have xKcU. We can similarly prove that иКсу. Hence хКсу. 

Let хКсУ. Put A = [u e Sjx" g м*" ̂  x"" for some positive integers n, r, m}. 
Evidently x e Л. We shall prove that A e ^{Kc) = ^{P%, v P^*) = i^(PÏ) n 
n #'(Pc*) (see (7)). Let u,veS,\îue A and v^ ^u ^v^ for some positive integers 
s, f, then x" ^ w** ^ x"" for some positive integers n, r, m. This implies that x"* ^ 
^ I/''* ^ i?**̂ ' ^ M''̂  ^ x'"^ and thus we have v e Л. It follows from Lemma 3 that 
A e # ' ( P 2 ) - If t̂  e V4 and v^ ^u ^v^ for some positive integers 5, t, then x" ^ i;*" ^ x'" 
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for some positive integers n, r, m. Hence, x""" S v'^^ й ^"^ й '̂̂ ^ S ^"^ so that и e A. 
Lemma 4 implies that Ле# ' (Рс*) . Since xeAe^{Kç), hence by (17) and (2) 
y e Kç-(x) с KÇ^(A) = A. Therefore, x" g / g x"" for some positive integers n, r, m. 

Definition 2. The equivalence K^ in an ordered semigroup S is called an Archi­
medean equivalence. An equivalence class of S modulo the Archimedean equiva­
lence KQ is called an Archimedean class. 

Theorem 2. Every Archimedean class of an ordered semigroup S is convex. 

Proof. Let X, y e S and xK^y. It follows from Theorem 1 that x" ^ j ' * g x'" for 
some positive integers n, r, m. If x ^ z g y for some z e S, then x** ̂  z** g j;'* g x"". 
Theorem 1 implies that xK^^^z. Thus every Archimedean class of S is convex. 

Remark 2. It follows from Theorem 1 and Theorem 2 that the set of all Archimedean 
classes of an ordered semigroup S is the maximal decomposition into convex unions of 
subsemigroups of S. 

An element x of an ordered semigroup S is called nonnegative if x g x^, while y 
is called nonpositive if y^ ^ y. A subset ^ of S" is called nonnegatively (nonpositively) 
ordered, if every element of A is nonnegative (nonpositive). 

Lemma 7. If x is a nonnegative element of S, then x" ^ x'" for any positive 
integers n, m (n ^ m). 

P r o o f is obvious. 

We denote by E the set of idempotents of an ordered semigroup S. 

Lemma 8. Let x be a nonnegative periodic element of S. If x" = ее E for some 
positive integer n, then ex ~ e = xe. 

Proof. Evidently ex = x"^^ = xe. It follows from Lemma 7 that e = x" g 
^ x""̂ ^ ^ x^" = e^ = e. Therefore, ex = e =^ xe. 

Theorem 3. (Cf. [7], Lemma 2.1.) Let x, j^ he nonnegative elements of a simple 
ordered semigroup S. Then xK^y if and only if there exists a positive integer n 
such that x^y^x^ory^x^ y\ 

Proof. If X ^ j ; ^ x" or j^ ^ X ^ j " for some positive integer n, then it follows 
from Theorem 1 that xK^y. Suppose that xK^j. According to Theorem 1, we have 
j^^ ^ x" ^ y"" for some positive integers 5, n, r. If x ^ y, then, by Lemma 7, we obtain 
X ^ y й y' й^""'^^ У й^, then J g X ̂  x" ^ / . 
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The following order dual of Theorem 3 holds: 

Theorem 4. Let x, y be nonpositive elements of a simple ordered semigroup S. 
Then xK^y if and only if there exists a positive integer n such that x" ^ >' g x 
or >'" ^ X ^ y. 

Theorem 5. Let x be a nonnegative element of an ordered semigroup S and let y 
be a nonpositive element of S. Then xK^-y if and only if there exists a positive 
integer n such that x" = v" = e E E. If xK^j;, then x ^ y and xy = e = yx. 

Proof. If x" = v" = e e E for some positive integer n, then according to Theorem 1 
we have xK^y. Suppose that xK^-y. Theorem 1 implies that x^ ^ y'' ^ x"' for some 
positive integers /c, r, m. It follows from Lemma 7 and its dual that x ^ x^ ^ j ' ' g y 
and У g J** g x'" g x" where n = max (r, m). Then x" ^ y" S x" so that x" = y". 
Now we put e = x" = j ^ " and so, by Lemma 7 and its dual, e = x" ^ x^^" = e^ = 
= y^" й y" = e. Hence e = e^' e E. 

If xK^y, then it follows from Lemma 7 and its dual that x ^ x" = e = y" g y. 
Lemma 8 implies that x>' g e j = e = xe g xy and j x ^ ye = e = ex ^ yx. There­
fore, xy — e ~ yx. 

Corollary. (Cf. [7], Corollary 2.4.) Every Archimedean class of an ordered 
semigroup S contains at most one idempotent. 

Definition 3. If an Archimedean class A of an ordered semigroup S contains one 
idempotent, then A is called a periodic Archimedean class. Otherwise A is called 
a nonperiodic Archimedean class. 

Theorem 6. If x is a periodic element of an ordered semigroup 5, then K^^ = K .̂ 

Proof. Obviously, x" = ее E for some positive integer n. It follows from Lemma 6 
that K^ с Kç^. Let и e К^^. Then xK^w and so, by Theorem 1, x'' ^ ŵ  g x̂  for 
some positive integers r, 5, t. Since e = x'"* ^ w"'̂  ^ x"' = e, hence u""" = e and thus 
we have и e K^ = K^. Therefore K^ = K̂ -̂ .. 

Corollary 1. Every element of a periodic [nonperiodic) Archimedean class is 
periodic (nonperiodic). 

Corollary 2. / / S is a periodic ordered semigroup, then K^ = K. 

Theorem 7. / / e is an idempotent of an Archimedean class A having only non-
negative and nonpositive elements, then e is a zero element in A. 

Proof follows from Theorem 6 and from Lemma 8 and its dual. 
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Corollary. / / e is an idempotent of a simple ordered Archimedean class A, then e 
is a zero element in A. 

A subset A of an ordered semigroup S is called nonnegatively (nonpositively) 
ordered in the strict sense, if x ^ xy and x ^ yx {xy ^ x and yx ^ x) for every 
X, 3; e У4. 

Theorem 8. The following conditions on a simple ordered periodic Archimedean 
class A are equivalent: 

1. A is nonnegatively ordered in the strict sense, 
2. A is nonnegatively ordered, 
3. An idempotent of A is the greatest element in A. 

Proof. 1 => 2. Evident. 
2 => 3. If X e A, then x" — eeE for some positive integer n. Lemma 7 implies 

that X ^ x" = e. 
3 => 1. Let X, ye A. Suppose that xy < y. This implies that x^"^^}^ ^ x ĵ̂  for 

every positive integer /c. Evidently, x" = e e £ for some positive integer n. It follows 
from Corollary to Theorem 7 that e = ey = x"y g х " ~ ^ ^ ... ^ xy < у ^ e, 
which is a contradiction. Thus we have y ;g xy. We can prove y ^ yx in a similar 
way. Thus A is nonnegatively ordered in the strict sense. 

Theorem 9. The following conditions on a simple ordered periodic Archimedean 
class A are equivalent: 

1. A is nonpositively ordered in the strict sense, 
2. A is nonpositively ordered, 
3. An idempotent of A is the least element in A. 

P r o o f is order dual to that of Theorem 8. 

Lemma 9. Let x e S. If x" ^ x""^^ for some positive integers n and k, then there 
exists a positive integer m such that x^ ^ x̂ *̂ '. 

Proof. It is clear that there exist positive integers r and q such that n + r = qk. 
Since x" й ^""'^ bence x̂ ^ = x"""" ^ .̂ n+r+fc ^ ^(c + i)k^ jj^j^ implies that 

Putting m = qk, we have x'" ^ x^'". 

Definition 4. We say that a nonperiodic Archimedean class A of an ordered semi­
group S satisfies Condition (P) if it holds: 

(P) for every xe A and for any positive integers n, m such that x" ^ x"", we have 
n ^ m. 
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We say that a nonperiodic Archimedean class Л of S satisfies Condition (N) if it 
holds: 

( N ) for every x e A and for any positive integers n, m such that x" ^ x"', we have 
n ^ m. 

Remark 3. Condition (P) can be replaced by 

(P') x" Ij x""*"̂  or x" < x"^^ for every x e A and for any positive integers n, k. 

Similarly, Condition (N) is equivalent to 

(N') x" II x""̂ ^ or x" > x"^^ for every x e A and for any positive integers n, k. 

Remark 4. A nonperiodic Archimedean class A satisfies Conditions (P) and (N) 
if and only if for every x e A and for any positive integers n, m (n ф m) 

,,n ^m 

Theorem 10. Every nonperiodic Archimedean class A of an ordered semigroup S 
satisfies at least one of Conditions (P) and (N). 

Proof. Suppose that A does not satisfy Conditions (P) and (N). Then there exist 
elements x, y e A such that x" ^ x""̂ ^ and y"^ ̂  y"""*"̂  for some positive integers 
n, k, m, L It follows from Lemma 9 and its dual that x** ̂  x̂ ** and j - ' ' ^ j ^ ^ for some 
positive integers r, s. Evidently x^ y"" e A, By Theorem 5, A has an idempotent and 
so Л is a periodic Archimedean class, which is a contradiction. 

Theorem 11. Let x be a nonperiodic element of an ordered semigroup S. If a non-
periodic Archimedean class K^^ satisfies Conditions (P) and (N), then K^-^ = ^x-

Proof. By Lemma 6, we have K^ с K^^. Let и e K^.^. Then xK^w and Theorem 1 
implies that x" ^ w** ^ x"' for some positive integers n, r, m. According to Remark 4, 
we have n = m and x" = u\ Hence xKu and so и e K^, Therefore K^ = K^̂ .. 

A subset A of an ordered semigroup S is called positively {negatively) ordered in 
the strict sense, if x < xy and x < yx (xy < x and yx < x) for every x, y e A. 

Theorem 12. (Cf. [7], Lemma 2.5.) Every simple ordered nonperiodic Archimedean 
class A satisfying Condition (P) is positively ordered in the strict sense. 

Proof. It follows from (P') of Remark 3 that x < x^ for every x e A. Let x, v e A. 
If X ^ y, then X < x^ ^ xy. If y < x, then by Theorem 3 we have x ^ /' for some 
positive integer n. Next we suppose that xj; S ^- Then x^ ^ xj'" ^ xv"~^ ^ .. . 
... ^ xy S X and so x^ ^ x < x^, which is a contradiction. Thus x < xy. Similarly 
we can prove x < yx. Thus A is positively ordered in the strict sense. 
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Dually, we have the following 

Theorem 13. Every simple ordered nonperiodic Archimedean class A satisfying 
Condition (N) is negatively ordered in the strict sense. 

A non-empty set Л of a semigroup S is called commutative if xy = yx for every 
X, y e A. 

Theorem 14. An Archimedean class A of an ordered semigroup S is a convex 
subsemigroup of S if one of the following conditions is satisfied: 

1. A is simple ordered, 
2. A is nonnegatively ordered in the strict sense, 
3. A is nonpositively ordered in the strict sense, 
4. A is commutative. 

Proof. It suffices to prove only that Л is a subsemigroup of S (see Theorem 2). 

1. Let Л be a simple ordered Archimedean class of S. If x, у e A, then x^', y^" e A. 
Since X ^ у or у ^ x, hence x^ ^ xy ^ y^' or y^- ^ xy ^ x^. By Theorem 2, we 
have xy e A. 

2. Let Л be a nonnegatively ordered Archimedean class in the strict sense of S. 
If X, у e A, then it follows from Theorem 1 that y" ^ x"" for some positive integers 
n, m. Since A is nonnegatively ordered in the strict sense, hence x ^ xy ^ xy^ ^ . . . 
. . . ^ xy" g x'"^^ By Theorem 1, we have xy e A, 

3. Dual to 2. 

4. Let Л be a commutative Archimedean class of S. If x, у e A, then it follows from 
Theorem 1 that x" ^ y^ ^ x"* for some positive integers n, r, m. Thus we have 
x"" '̂' S ^y = {^УУ = ^ V ^ x'""^^ By Theorem 1, we have xy e A. 

Remark 5. Let every Archimedean class Л of an ordered semigroup S satisfy one 
of the conditions of Theorem 14. Then it follows from Remark 2 and Theorem 14 
that the set of all Archimedean classes of S is the maximal decomposition into convex 
subsemigroups of S. See [8]. 

A u t h o r ' s N o t e . When the paper had already been in print, the author's attention was 
drawn to the paper by Saitô T.: Note on the Archimedean Property in Ordered Semigroup, Bui. 
Tokyo Gakugei Univ. 22 (1970), 8 — 12, where Archimedean properties of simple ordered semi­
groups are studied. 
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