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Czechoslovak Mathematical Journal, 22 (97) 1972, Praha 

CANTOR-BERNSTEIN THEOREM FOR LATTICE ORDERED GROUPS 

JÀN JAKUBIK, Kosice 

(Received October 7, 1970) 

Orthogonally complete lattice ordered groups („/-groups") and J^-spaces were 
studied in the papers [2], [3], [7], [9]. The purpose of this Note is to show that for 
complete and orthogonally complete /-groups the following proposition analogous 
to the Cantor-Bernstein theorem is vahd: (*) Let G and H be complete and ortho­
gonally complete l-groups. Let G and H be the corresponding lattices. Assume that 
there exists an isomorphism ç of the lattice G into H and an isomorphism ij/ of the 
lattice H into G such that (p{G) is a convex sublattice of H and ф^Н) is a convex 
sublattice of G. Then the lattice ordered groups G and H are isomorphic. 

In particular, if G and H are /-groups such that G = H and if G is complete and 
orthogonally complete, then G and H are isomorphic. The main step in the proof 
of (*) is the theorem on the representation of positive elements of a singular /-group 
(Thm. 3.2) that is analogous to the integral representation of elements of a i^-space 
(cf. [8], Chap. III). If the /-groups G and H are not complete or if they are not 
orthogonally complete, then the assertion of the theorem (*) need not hold. 

The standard notations for lattices and lattice ordered groups will be used [1], 
[5]. Let G = (G; + , л , v ) be a lattice ordered group. The corresponding lattice 
( G ; Л, V ) will be denoted by G. The lattice G is infinitely distributive. G is said to 
be complete, if the lattice G is conditionally complete. A subset (xj^çj of G is disjoint 
(or orthogonal) if x,- ^ 0 for each iel and x^^ л Xi^ = 0 for any pair of distinct 
elements fj, /2 e / . G is called orthogonally complete jf V/ej^'i exists in G whenever 
{^i]ieT ÏS a disjoint subset of G. Let a, b e G, a S b. The interval [a, b] is the set 
{xe G : a -^ X ^ b}. Let yi be a subset of G such that a^, a2 E A, ai ^ 02 imphes 
[a^, a2} c: A, Then A is said to be a convex subset of G.Let L^ be a sublattice of 
a lattice L. Assume that from {x j с L^, V^i = :x: e Lit follows x e Lj and that the 
dual condition also holds. Then L^ is called a closed sublattice of L. Let a, ее G, 
a ^ 0, e > 0. The element a is singular, if x л (a — x) = 0 for each x e [0, a ] . 
The element e is a weak unit, if e л x > 0 for each 0 < x e G. If e is a weak unit of G, 
let B(e) be the set of all e^ E [0, e] with the property that Ci has a relative complement 
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in the interval [0, e]. Let 0 = X с G. The set X^ = {y e G : \y\ л |x| = 0 for each 
x e Z} is a polar of G. Any polar X^ is a closed convex /-subgroup of G and the inter­
section X^ n Y^ of two polars is a polar [10]. IfX = {a}, a > 0, then the element a is 
a weak unit of the l-group X^^, For any 7 cz G we denote У^ = {y eY: y ^ 0}. 

The lattice ordered group G is a K-space provided there can be defined a multiplica­
tion Лх of elements xe G with reals Я such that G turns out to be a linear space with 
the property that Ax > 0 for each Я > 0 and x > 0, 

I. DIRECT PRODUCTS OF /-GROUPS 

In this section there are given the basic definitions and described some properties 
of the direct product of /-groups that we shall need in the sequel. (Cf, also [6].) Let 
{^iliei be a system of /-groups and let H be the set of ail mappings f : I -^ \JGi 
such that / ( / ) e G,- for each i el, f{i) is the component o f / in G .̂ The operations 
+ , л , V in Я are performed componentwise. Then Я = lii^fii is the direct product 
of /-groups Gf. Let G be an /-group and let cp be an isomorphism of G onto Я. For 
each i e I denote 

G^. = {xeG \ q){x) (j) = 0 for each j el, j ^ i) . 

Gf is a closed convex /-subgroup of G and G^ is isomorphic to G .̂ For each xeG 
let Xi be the element of Gf satisfying (p{x) (/) = (p{x^ (i). The mapping 

X - * (. . ., Xi, . . .) ,e/ 

is an isomorphism of the /-group G onto n^gjG?. We shall write 

G = nLG? . 
Let xeG^i for some f e / . Then x^ = x and Xj = 0 for each j e I, j ф /. If у e G^, 
j Ф /, then \x\ л |y| = 0. 

1.1. Let {Xi}içi be a system of convex l-subgroups of an l-group G such that 

(i) x^ A x^ = Ofor any 0 ^ x' eXt and any 0 g x̂  eXj whenever i,j e l , / Ф j , 
(ii) for each 0 < x e G there are elements 0 ^ x' eXi such that x = Vtei^'-

Then G is isomorphic to a subgroup o/IIjgjXj. 

Proof. Since G is infinitely distributive, the elements x' from (ii) are uniqueliy 
determined. Let x e G, i el. Denote x v 0 = y, —(x л 0) = z, x' = y' — z\ 
Then it is easy to verify that the mapping x -^ (..., x,-, .. .),gj is an isomorphism of G 
into ПХ;. 

A systems = {^Jie/ of convex /-subgroups of an /-group G is called orthogonal, 
if the condition (i) from 1.1 is fulfilled; S is maximal orthogonal, If S = S', whenever 
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S' =) s is an orthogonal system of convex /-subgroups of G. An orthogonal system »S 
is maximal orthogonal if and only if for each 0 < g e G there is i el and x.eXf 
such that 0 < g A Xi. 

1.2. Let S = {Xi}i^j be a maximal orthogonal system of convex Usubgroups of 
a complete and orthogonally complete l-group G. Assume that each Xi is a closed 
l-subgroup of G. Then G = Tl%jXi. 

Proof. Let 0 < X e G, / GL Denote x' = sup {y eXi : y ^ x}. Since X^ is closed, 
x' belongs to Xi. The system {x'}i^j is disjoint and hence there exists z = Atei^' ^^ ^ 
and 0 ^ z ^ X. Suppose that z < x\ Then v = x — z > 0. Since the system S is 
maximal orthogonal, there is an element i e I and t e Xi such that 0 < v A t = u\ 
Clearly u'eXi. We have x' < x' + u' ^ x and x' + u'eXf, which is a contra­
diction. Thus X = Viei^^- According to 1.1 the correspondence cp : x ->{..., x\ ...) 
is an isomorphism of G into Ui^jXi. In order to verify that cp is onto it suffices to 
show that (p{G^) = (П^^/Х^)^, since each element of an l-group is a difference of 
positive elements. For each i e / let 0 ^ j ^ ' e X^. Then V^ ' = ^ does exist in G and 
x^ = x' A X = Vj6/(-^' ^ У) = x' A y\ Since y^ S ^, we have y^ = x\ thus (p{x) = 
= (..., y., . . . ) . This shows that cp is an isomorphism onto. If xeXi, then x^ = x 
and x-^ = 0 for eachjf el, j Ф i. From this it follows X? = X^ and therefore we may 
write G = П^̂ ^̂ Х,.. 

1.3. Let e be a weak unit of a complete and orthogonally complete l-group G. 
Assume that e = VieiC; and e^^ л e^^ = 0 for any pair of distinct elements fj, ь 
ofL Denote Xi = {е^у\ Then G = П ^ ^ ^ . 

Proof. Each Xi is closed convex /-subgroup of G and e^eX^. Since {ej^gj is 
a disjoint set in G, the system S = {X ĵ̂ gj is orthogonal. If 0 < ^̂  G G, then 0 < 
< g A e = \/ieig л e\-, hence g A ei> 0 for some ê -. This shows that iS is a maximal 
orthogonal system of convex /-groups in G. Now it suffices to apply 1.2. 

An /-subgroup 7of G is called a direct factor of G if there is a direct decomposition 
G = Il%jYj of G such that Y - Yj for some j e J. 

Each direct factor of G is a closed convex /-subgroup of G. For g e G the com­
ponent giof g in the direct factor 7^ will be denoted also by ^̂ j = ö'(^i)- The following 
assertions 1.4 and 1.5 are known (cf. [6]): 

1.4. Let Y be a direct factor of G, 0 ^ g e G. Then the component g(Y) of g in Y 
is the element g{Y) = sup {y eY: y ^ g]; therefore g{Y) -^ g. If g A y = 0 for 
each 0 ^ yeY, then g{Y) = 0. 

1.5. Let Y be a direct factor of G and let G = П ^ ^ ^ Then Y = П Ц У п X^), 
the l-subgroups Y n Xj are direct factors of G and for any g e G, 

g{YnX;) = g{Y){x;}=g{X;}{Y). 

In particular, if Y <= X^for some i el, then g{Y) = g{Xj) (Y). 
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1.6. Let A, В be direct factors of G such that A n В = {0} and let С be the sub­
group of G generated by Au B. Then С is a direct factor of G and С = A x B. 

Proof. Since A, В are direct factors of G there are /-subgroups A\ B\ of G such 
that G = A X A\ G = В x B'. According to 1.5 В = {B n A) x (В n A') and 
similarly A' = (A' n В) x {A' n B') = В x (A' n B% thus G = A x В x {A' n 
n Б'). Denote С = {geG : g{A' n B') = 0}. Then clearly С ^ A x B. Each 
element с e С can be written in the form с = a -\- b, with a e A, b e B; hence С is 
generated by the set AuB. 

1.7. Let e be weak unit of a complete and orthogonally complete l-group and 
assume that the element e is singular. Let e = Xi + ... + x„, 0 ^ x ^ i = 1, ..., n), 
X^ = {xf}^^ Then G = X^ X ... X X„. 

Proof. From the definition of a singular element it follows that x^ л (x2 + .. . 
... + x„) = 0, hence x^ л x̂  = 0 for i = 2, ..., n. Since G is commutative, x^ л x̂  = 
= 0 for distinct / , j e { l , ..., n]. Therefore x^ + ... + x„ = x^ v .. . v x„. Our 
assertion now follows from 1.3. 

1.8. Let e be a weak unit of a complete and orthogonally complete l-group and 
let e be singular, 0 < a -^ e, a = x + y, Q -^ x, 0 ^ y. Denote {a}^^ = A, {x}̂ *̂  = 
= X, {УУ^ = Y. Then A, X, Y are direct factors of G and a (X) = x. 

Proof. Put a' = e — a. Then 0 ^ a' and e = a + a' = x + y + a'. According 
to 1.7 A, X and Fare direct factors of G. If 3; = 0, then F - {0} and thus X(F) - 0. 
If J > 0, then y is a weak unit of the 1-group F. Since x л y = 0, we have x л j j = 0 
for each 0 ^ j ^ - e F, thus according to 1.4 X(F) = 0. Therefore a(X) = (x + y) (X) = 
= x{X) = X. 

The following lemma is obvious. 

1.9. Let G = Il%iXi. Then G is complete (orthogonally complete) if and only 
if each Xi is complete (orthogonally complete). 

2. COMPLETE /-GROUPS AND X-SPACES 

We need the following result due to CONRAD and MCALISTER: 

2.1. ([4], Thm. 4.9, Corollary 2) Let S be the set of all singular elements of 
a complete l-group G. Then G = S^ x S^^ and S^ is a K-space. 

We denote S^ = K{G), S^^ = K'{G). Let G, Я be complete and orthogonally com­
plete /-groups and let G, Я be the corresponding lattices. Assume that 

(p:G-^ H 
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is an isomorphism of the lattice G into H such that (p{G) is a convex sublattice of Я 
and ф(0) = 0. In this paragraph we shall prove that the /-group K(G) is isomorphic 
with a convex /-subgroup of К(Н). Let S and S' be the set of all singular elements 
of G and Я, respectively. 

2.2. Let 0 ^ a be an element of an Ugroup G. Then a is singular if and only if 
[0, a] is a Boolean algebra. 

Proof. If a is singular and x e [0, a ] , then the element a — x is the relative 
complement of x in [0, a] , hence [0, a] is a Boolean algebra. Conversely, let [0, a] 
be a Boolean algebra, x e [0, a] and let ^̂  be a relative complement of x with respect 
to the interval [0, a ] . Then x A y = 0, hence y + x = yvx = a, thus y = a — x, 
therefore x A [a — x) = 0. 

2.3. Let X e G. Then x e S if and only if (p{x) e S\ 

Proof. According to 2.2 x e S if and only if [0, x] is a Boolean algebra and this is 
fulfilled if and only if [0, (p(x)] is a Boolean algebra. 

2.4. Let 0 uxeG. Then x e {SY if and only if ф) e (S'Y-

Proof. Since X ^ 0, we have (p(x) ^ 0. Let s' e S\ (p{x) A s' = s^. From 2.2 it 
follows s^e S\ Since 0 ^ ŝ  ^ ф(х) and (p(G) is a convex sublattice of Я, we have 
Si e (p{G), thus there is j e G such that <p(y) = s^ and by 2.3 y e S. Clearly y ^ x. 
If X eS^, then x л y = 0, hence y = 0. This imphes ŝ  = 0 and therefore q)(x) e 
e (S'Y- Conversely, assume that ^(x) e {S'^ and let 5 e S. Then by 2.2 (p{s) e S\ 
hence q){x) л (p{s) = 0 and from this we obtain x л s = 0, thus x e {S^) ̂ . 

2.5. LetÇi^yeG. Then y e {S^Y if and only if ф) e {S'^y. 

Proof. Since 3; ^ 0, we have (p[y) ^ 0. Let x ' e (S'̂ )"*", ф) A x' = x[. Then 
x[ E(S'Y n 9(G), thus there is x^ e G such that x[ = (p(xi). According to 2.4 
Xi e S^ and clearly 0 ^ x^ ^ y. If j e 5^^, then Xi = 0, hence xi = 0 and therefore 
ф)е{8'^У. Conversely, let ф)еБ'^\ XE{SY. Then by 2.4 ф)е{8'У and 
so (p(y) A (p(x) = 0. This implies у A x = 0 and thus у e (S^^. 

Let HI and H2 be the intersection of all closed convex orthogonally complete 
/-subgroups of Я that contain (p[(SY) or ф((5^^)^), respectively. According to 2.1 
we have 

H = S'^ X S"^, 

and thus S'^ is a closed convex orthogonally complete /-subgroup of Я . By 2.4 
(p((SY) с S'^ and therefore Я^ is a closed convex /-subgroup of S'^. Since S'^ is 
a X-space, Я1 is a iC-space as well. Analogously according to 2.5 H2 is a closed convex 
/-subgroup ofS'^\ 
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Let [xi] be a maximal disjoint subset of G. Then x = \/xi exists in G and x is a weak 
unit in G. Put x(S^) = e^. The element ê  is a weak unit in S^ whenever S^ ф {0}. 

2.6. Let S^ Ф {O}. Then (p{ei) is a weak unit in Я^. 

Proof. Let 0 < У eH^Aî/ л x' = О for each x ' e (̂ ((S* )̂'̂ ), then {/}*^ is a closed 
convex orthogonally complete /-subgroup of Я, (p((S^)'^) a {/y and thus Я^ с 
с (y'}*^. Clearly у' ф {y'Y which is a contradiction. Therefore there is x' e (p((S'̂ )'̂ ) 
with j ' л x' = x[ > 0. Because of 0 < x[ ^ x' e ^ ( G ) , we have x^ e (p{G) and hence 
there are elements x, Xj e G with ф(х) = x\ (p{xi) = x[. Then by 2.4 x e S^ and, 
since S^ is a convex /-subgroup of G, x^ belongs to S^ as well. We obtain x^ A e^ > 0, 
thus y' л (p{ei) ^ x[ A (p{ei) > 0. 

2.7. The l-groups S^ and H^ are isomorphic. 

Proof. S^andЯl areorthogonally completeK-spaces with weak units ^1 апа(р(е^), 
respectively. We have defined B(ei) as the set of all x e [0, e^] that have a relative 
complement in [0, e^]. By 2.6, (p{ei) is a weak unit in Hi and thus it follows from 
(p(0) = Оиш1(р(В(е^)) = Б(ф(в1)), thus the lattices B(ei) and Б(ф(е1)) are isomorphic. 
This imphes (cf. [8], 2.21) that the K-spaces S^ and H^ are isomorphic. 

3. SINGULAR /-GROUPS 

An /-group Ä with the set S of singular elements is said to be singular, if S^ — {O}, 
or, equivalently, S^^ = A. In this section we assume that the /-group A ф {0} is 
complete, orthogonally complete and singular and we are searching for a representa­
tion of positive elements of A. by means of elements of an appropriate Boolean algebra. 

3.1. There is a weak unit e of A such that ее S. 

Proof. Let {s^i^i be a maximal disjoint subset of S. Since A is orthogonally com­
plete, there exists e ~ \fsi m A. From the fact that {sj^^j is a maximal disjoint subset 
of S it follows that e is a weak unit in A. Let x G [0, e]. Then 

X == \/Xi , Xi = X A Si. 

According to 2.2 [0, s J is a Boolean algebra, thus there is a relative complement y^ 
of x̂  in the interval [0, sß. The system {у/},-б7 is disjoint, hence there is у = Vj^i 
and у G [О, в]. It is easy to verify that у is a relative complement of x with respect to 
the interval [0, e]. By 2.2, e belongs to S. 

In this section we shall use several times the lemmas 1.6, 1.7 and L8 without 
mentioning it explicitely. For a e A we denote [aY^ = [a] and for any x e Л we 
write x[a] instead of x([a]). 
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In the sequel we suppose thai we have chosen a fixed weak unit e of Л such that 
eeS. Let 0 < fe A, We construct two sequences 

(1) ^0,^1,^2, . . . , e„, . . . , 

(2) 61,^2, . . . , e„, . . . 

in the following manner. 

Fut e^ = f A e, eo = e ~ e^. Then we have CQ A e^ = 0, ^o v ^̂  = ^o + ^i = »̂ 

(3) eo Af^Q, e, ^ / . 

Denote 
{2e, -f)vO = et. 

We have {{2e^ - / ) v 0) - ê  = {e^ ~ f) v (-e^) й 0, thus et й e,. Put e, -
— e* = ^2- Then 

(4) e = во + e* + ^2 , 

therefore according to 1.7 
G = Ы X [e î ] X [e,] . 

From (3) it follows/[eo] = 0, whence/ = /^ + g^^/^ = / [ g * ] , ^^ = / [ej] .There­
fore 

(2e, - / ) V 0 = {{let - Л ) v O) + ((2^2 - З2) v 0 ) . 

Since (2ej - / ) v 0 = e^ e [e î ] , we obtain 

(5) ( 2 4 - / . ) v O = e t , 

(6) (2e2 - ^2) V 0 = 0 . 

(5) implies (et - / 1 ) v ( - e^ ) = 0, thus (y^ _ ^*) д cf = 0. Since ef is a weak 
unit in [e î ] and 0 ^ /1 - ef 6 [e t ] , we get/^ _ e* = 0, thus 

/ i = / [ e * ] = e î . 

From (6) we infer 2ег S g2 and clearly 9^ < f- therefore 

Let 0 < X ^ eî. Penote y = e* - x. According to,(4) e = во + x + y + e^, 
hence by 1.7 

Since И с: [e î ] we have (cf. 1.5 and l-8)y[-^-| ^ y[-^*-| j-^-j ^ ^*|-^.j ^ ^̂  jj^^^ 

165 



and therefore Ix % / . Let us assume that for some positive integer и we have 
constructed elements eo> ̂ i> •••' в̂> ̂ n+i and et, • • , e* with the following properties: 

(a) e; è 0, ej= ^ 0 (i = 0 , . . . , и + 1; j = 1, ..., n), 
(V) e = eo + et + ••• + «* + e„+i, 
(y) 0 < X ^ ef => (»• + 1) x ^ / (i = 1, . . . , n), 

(в)/[еГ] = 1еГ 0 = 1,...,«). 
As we have already proved the conditions (a) — (e) hold for « = 1. Now we 
distinguish two cases. 

(a) Assume that ^„+i = 0 . Then by {ß) 

^ = Ых И X ••• хИ^ 
hence 

/ = / И + ••• + / И = et + 24 + ... + «е* , 
and since the system {«ei}i=i „ is disjoint, we have 

/ - V ie,. 

In this case we put el = ^j = 0 for Î ^ n + 1,7 § и + 2. 

(b) Suppose that e„+i > 0. Denote / [ e f ] = / ^ (г = 1, ..., n), / [ e„+i ] = ö^„+i. 
From iß) it follows 

G = [^o] X И X ... X И X [e„+i ] , 
hence 

(n + 2)e,+ i - / - - / 1 - . . . - Л + ((w + 2)^„_i - ö^„+i), 
therefore 

(7) ((n + 2) e„^.i - ^ / ) V 0 = ((n + 2) ^„+1 - ^„+1) V 0 . 

Denote ((n + 2) e„+i - / ) v 0 = e*+i. From (7) we get e*+i e [e„+i]. Clearly 
<.. ^ 0 

We have 

{{{n + 2 ) e , , i ^ / ) V 0} - e„+, = ((n + l )e„^i ^ / ) v ( - e „ ^ 0 g 0 

because of (a) and {b\ hence e*+i ^ e„+|. Denote ^„+2 = ^«+1 ~ ^*+i- Then ^„+2 ^ 
^ Oand 

^ = ^0 + eî + .. . + e* + 4+1 4- ê  + 2 • 

From ^„+1 = 4+1 + ^„+2 we get (since ^„+1 e S and ^,+ 1 is a weak unit of [e„+i]) 

(8) t^«+i] = [ 4 + i ] X [e^+2]-
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Putöf„+i[e*+i] =/n+bö^„+i[e„ + 2] = о̂п + 2.С1еаг1уЛ+1 = f[et+i']^ 9„+2 = fl^n+i]' 
From (7) and (8) it follows 

et^i = {{{n + 2) e^^, - Л ^ О V 0} + {{{n + 2) e„^2 - ^n+2) v 0} , 
whence 

(9) et,, ==((n + 2)e„%, - / „ - ы ) v 0 , 

(10) 0 = {{n^2)e„^,^g^,,)vO. 

From (9) we get О = ((n + l) e^^, - f„^^) v ( - ^ ^ i ) , thus 

0 = ( Л + 1 - - ( п + 1 ) е „ ^ , ) л е „ % 1 . 

Since/„+1 - {n + 1) e*+i belongs to [e*+i] and ^*+i is a weak unit in [e*+i], we 
get/„+i ~ (?i + 1) e*+i = 0, therefore 

/ K + i ] = (?г + l)^*+i • 

From (10) we obtain (n + 2) e„+2 ^ ö̂ n+2 and since g„+2 = / [^«-2] ^ f, we have 

(n + 2 ) e „ + 2 ^ / . 

Let 0 < X ^ e^^,. Then / [ x ] = /[e„%i] [x] = (л + 1) e„%i[x] = (n + l) x, 
thus 

((n + 2) X - / ) [x] = X > 0 , 
therefore (w + 2) x ^ / . 

We have proved that the conditions (a) — (e) hold for the positive integer n + 1. 
Hence we can construct the sequences (l) and (2) such that the conditions (a) — (г) 
are satisfied for n = 1,2,. . . 

If eu+i = 0 for some positive integer fe, then according to (a) we have 

/ = V ief . 
1 = 1 

Assume that e^+i > 0 for each к = 1,2,. . . and consider the system 

(11) eo,et,e^,...,e^,... 

Since for each positive integer n the equation (ß) holds and ее S, the system (U) is 
disjoint and therefore there exists the join p of the system (U). Clearly p ^ e, hence 
e — p = q ^ 0. Assume that ^ > 0. We have p A q = 0, hence ^o л ^ = 0 and 
e* л ^ = 0 for П = 1, 2, . . . According to (ß) 

n 

e = ^0 + et + ... + e* + e„+i = ^0 V ( V e f ) V e,^, , 
i = l 

n 

q = q A e = {q A eg) V (y {q A ef)) v {q A e„+i) = q A e„+i, 
i=l 
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whence О ̂  ^ ^ ^„+i for each integer n. According to (ô) 

{n + l)quf 

for each positive integer n. Since G is archimedean, we have a contradiction. Hence 
p = e, and so 

00 

e = eo V {/\et), 
i = i 

According to 1.3 this implies 

G - Ы X ПЪП • 
i = l 

Since/ ^ 0 and (e) holds, we have (because of/[eo] ~ ^) 
00 00 

/ = V/[e*]=V'>?. 
1 = 1 1 = 1 • 

Let N be the set of all positive integers, N(f) = {i e iV : ef ф 0}. Then : 

(12) f=Vie* (ieNif)). 

By summarizing, we have the following assertion: 

3.2. Theorem. Let G be a complete and orthogonally complete singular l-group, 
0 < fe G, Let e e G be a weak unit of G and let the element e be singular. Then 
there is a subset N{f) с N and a disjoint system {ef} (f eiV(/)) such that e ̂  
^ ef > Ofor each i e N{f) andf = Vief (i e N(f)). 

Let us assume that for the given 0 < f e G there exists another subset N^ a N 
and a disjoint system {cj} (j eNi) such that e ̂  Cj > 0 for each j e N^ and / == 
= yje'j {j e N,), Let jeN,. Then 

(13) je'j = je} л / = V ( ^ ; л iet) (i e iV(/)) , 

hence there is /Q e N(f) such that jcj л iocf^ > 0. This implies Cj л ef̂  = x > 0. 
Suppose that 7 Ф ig. If j < ÎQ, then e]- = x + y, x A y = 0, thus 

/ И = fb'j] И = J^j[^] = J^ ' (̂•o->̂  - / ) [л:] = (îo ~-j)x>Q, 

therefore igX ^ / . But from x ^ e% we obtain IQX ^ iQe% ^ / , which is a contradic­
tion. Thus j ^ IQ. Analogously we can verify that I'o ^ J ^^^ hence IQ = j . This 
implies that N^ с N(f) and similarly N{f) с iVj, thus N{f) =• N^. Further we have 
e'j л ef = 0 whenever i,j are distinct elements of N^. Hence it follows from (ЛЗ) 
je'j = je'j A jej and similarly jej = jcj л jej, thus J^y = jej. Therefore Cj = ej 
for each j e N^. We obtain: 
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3.3. Under the same assumptions as in 3.2 the set N(f) and the system {ef} 
(f G JV(/)) satisfying the assertion of 3.2 are uniquelly determined. 

Let 0 < / e G, 0 < éF e G. Let N(f), {ef : ieN{f)} be as in 3.2 and let N{g\ 
{ej :j eN(g)] have an analogical meaning with respect to the element g. Put e* = 
= V^f (ï ^N{f)), e' = \/ej(j eN(g)). Under these denotations we have: 

3.4. f ^ g if and only if e* ^ e' and ef л e} > 0 => Ï g j . 

Proof. L e t / ^ g. Denote e ~ e^ = eQ, e — e' = e'g. Then ^0(^0) is the comple­
ment of e^(e') in the Boolean algebra [0, e]. Since g = yje'j (j e N{g)), we have 
g л e'o =^ 0, thus f A e'o = 0. Because of e^ ^ / , it is also e* л ô = 0 and hence 
e* ^ e'. Let ef л ej = jc > 0 and assume that i > j . Then ix ^ /ef S f ^ g, but 
according to 3.3 and (7) from 0 < x g e} it follows that ix $ g. This is a contradic­
tion; therefore г ;g j . 

Conversely, let e* ^ e' and i ^ j whenever ef л e-j > 0. Then ef S ^' fo^ ^̂ ^̂ ^ 
I G iV(/), thus 

ê  = ê  Л e = Vjeivĉ )!̂ ^ A ê -) 
and hence 

e = eo V (VfeN(/) V;eA4o)( î̂ ^ ŷ) • 

Since the system {eo, ef л e}} is disjoint, according to L3 we have 

G ^ [eo] X n(\,X^f л e}) , (bj ) GiV(/) x N{g) . 

Further we have ^[eo] ^ 0 = / [ e o ] . I f e f л e} = 0, then^[ef л e'f\ = / [ ^ f л ej] = 
= 0. If ef л e'j > 0, then 

fbl A ej] = / [ e f ] [ef л ej] == fef[ef A e}] = f[ef л ej] 

and similary ^[ef л e}] = j[ef л ej]. Since / ^ /, we have ^ à / . 

4. ISOMORPHISM OF SINGULAR /-GROUPS 

In this section we assume that A and В are complete and orthogonally complete 
l-groups with weak units e and e\ respectively, such that the elements e and e' are 
singular. Suppose that cp is an isomorphism of the lattice [0, e] onto [0, e']. We intend 
to prove that then the /-groups A and В are isomorphic. 

Let 0 < f e A. According to 3.2 and 3.3 there is a uniquelly determined disjoint 
system {ef} {i e N{f) a N) such that 0 < ef ^ e for each / e N(f) and / = \/ief 
(i G N(f)). Then 0 < (p{ef) S (p{e) = e' and {<^(ef)} is a disjoint system in B. Thus 
there i s / ' = V̂ * ^(^f) (̂* eiV(/)) in B. From 3.2 and 3.3 (applied for the /-group B) 
it follows that the correspondence 

>A : / - / ' , </'(0) = 0 
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is a one-to-one mapping of the set A'^ onto B^. According to 3.4 for any / , g eA'^ 
we have 

fug of ^ g' ' 
Thus we have proved: 

4.1. ф is an isomorphism of the lattice A'^ onto B^. 

For any X e Л we put 0 X = 0. Let 0 < / e Л, 0 < 0̂  e A. Let e^, e^ have the same 
meaning as in § 3 and put e* - e^, W{f) = N{f) u {0}, N'{g) = N{g) и (0}. Then 

/ = Viet {i e Nif)), g = У je] (j e N'{g)) , 

e = Vet (i e iV'(/)), e = Me] {j e М^д)) 

and the systems {ef : ieN'(f)}, {e] :j eN'(g)} are disjoint. Denote ef л e] = h^j. 
Then 

e^Vhij{{i,j)€N'{f) xN'{g)) 

and the system {hи) is disjoint. Therefore 

A = П(°.,)[/!,,] . 

Denote / + g = t and define d(i,j) as follows: • 

d(ij) = 0 if either (f, j) = (0, 0) or h^j - 0 , and 

d(i, j) = i + j otherwise . 

For fe = 0, 1, 2, . . . put Mk = {(/, j) : d{i, j) = k}, 

h = y(iJ)eMjhj ' 

If fei, /c2 are distinct elements of the set {0, 1, 2, . . . } , then Mj-̂  n M^, = 0, whence 
the system [t*] is disjoint and 0 ^ f* ^ e. Denote 

(14) t° = Vktt (fe = 0 , 1 , 2 , . . . ) . 

We have 

' [ ' ' y ] = (f + 0) [hij] = flh.j] + з[Лу] = i/î,7 + i'-ù- = ('• + J) hij, 

t\h,j] = t<^[ttj] [A..,] = (« + 7) ГГ,,[Й,.,] = (г + j) h,j 

for each (г, j) e iV(/) x N'(g) and therefore r̂  = t. From this and from (14) it follows 

Hf+9) = m + Ф(9), 
hence ï/̂  is an isomorphism of the lattice ordered semigroup A'^ onto B^. Clearly the 
/-groups A, В are isomorphic if and only if Л"̂  and B^ are isomorphic. We obtain: 
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4.2. Let Ä, В be complete and orthogonally complete singular l-groups with 
weak units e and e\ respectively, such that e and e' are singular elements. If the 
lattices [0, e] and [0, e'] are isomorphic, then the l-groups A and В are isomorphic. 

Now let G and H have the same meaning as in § 2. Under the same denotations as 
in §2 we have S^^ = {0} if and only if H2 = {0}. Let us assume that S^^ Ф {0}. 
Since S^^ is a singular /-group, according to 3.1 there exists a singular element 
0 < ее S^^ such that e is weak unit of S^^. Let such an element e be fixed. 

4.3. (p{e) is a weak unit in H2-

Proof. Let 0 < y' e Я2. Assume that y' л (p{e) = 0. Let x' e (p{{S^^y), x' > 0, 
x' = (p{x). According to 2.5 0 < x e S^^. If j ; ' л x' = x[ > 0, then x[ e (p{G), 
x[ = (p{xi), where 0 < Xi ^ x, thus x^ e S^^ and therefore e A x^ = t > 0. This 
implies y' л (p(e) ^ x[ A (p(e) = (p{xi) л (p(e) = <p(xi л ^) > 0, which is impos­
sible. Therefore 3;' л x' = 0 for each x' G (р{{8^^). Denote X = {у'у. Then 
(p((S^^Y) c: X and X is a closed, convex and orthogonally closed /-subgroup of H. 
Hence according to the definition of H2 we have H2 с X. Clearly у' does not belong 
to X and this is a contradiction. 

4.4. The l-group H2 is singular. 

Proof. Let S2 be the set of all singular elements of Я2. For any 0 Ф Z с Я2 let 
Z^ = {t G H2 '\t\ A \z\ = 0 for each z e Z} (i.e., the operation Z^ is taken with respect 
to Я2). We have (p{e) e S2 and hence {(p{e)Y^ с Sf. Since (p(e) is a weak unit in Я2, 
{(p{{e)Y = {0}, thus {(p{e)Y^ = H2. Therefore Sf = Я2 and so Я2 is singular. 

4.5. The l-groups S^^ and H2 are isomorphic. 

Proof. Let e have the same meaning as in 4.3. S^^ and Я2 are complete and ortho­
gonally complete. The element e{q){ef^ is a weak unit in S^^ (in Я2) and both elements e 
and ç{e) are singular. Moreover, [O, e] is isomorphic to [0, (p{è)\. Obviously S^^ is 
singular and by 4.4 Я2 is singular as well. Thus according to 4.2 the /-groups S^^ 
and Я2 are isomorphic. 

4.6. The Ugroups H^ and H2 are orthogonal. 

Proof. Let 0 < X e Я^, 0 < у e H2 and assume that x л 3; = Г > 0. Since Я^ 
and Я2 are convex in Я, we have Г G Я1 n Я2. Let e^ be as in § 2 and let e have the 
same meaning as above. Since e^ e S^ and e e S^^ we have ê  л e = 0, thus (p{ei) л 
л (p{e) = 0. Since (p{ei) and (р{е) are weak units in Я^ and Я2, respectively, we have 

0 < t A (p{ei) G Я2, 0 < t A (p{ei) A (p{e), which is impossible. 

4.7. The l-subgroup HQ of H generated by H^ u Я2 is a direct factor of H and 
the l-groups G, HQ are isomorphic. 
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Proof. The 1-subgroups H^ and H2 are closed and convex in Я . Since H is complete, 
according to [ l ] , Chap. XIV, Thm. 19 H^ and H2 are direct factors of H. Now it 
follows from 4.6 and 1.6 that HQ = Hi x H2 is a direct factor of H. Then we obtain 
from 2.1, 2.7 and 4.5 that G and HQ are isomorphic. 

5. PROOF OF THE THEOREM(*) 

Let G and H be complete and orthogonally complete /-groups. Assume that there 
is an isomorphism (p of the lattice G into H and an isomorphism ф of the lattice H 
into G such that ç(G) is a convex sublattice of H and 1/̂ (Я) is a convex sublattice of G. 

For each ^̂  G G put (Poid) = ф(о') ~ ф(0). Then cpo is an isomorphism of G into Я 
such that (po{G) is a convex sublattice of Я and <?>o(ö) = 0- The mapping lAo(̂ ) =" 
== \l/(h) — î/̂ (0) of Я into G has similar properties. Hence in proving the theorem (*) 
we may assume without loss of generality that <p(0) = 0, i/̂ (0) = 0. Then according 
to 4.7 there is an isomorphism 

^1 : G -> Я 

of the l-group G into Я such that (pi{G) is a direct factor of Я . Analogously, there is 
an isomorphism 

iktiH-^G 

of the l-group Я into G such that il/i{H) is a direct factor of G. Let x{G) = ^ i (^ i (^ ) ) = 
= ^ 1 . Then X is an isomorphism of G onto yl̂  and 4̂̂  is a direct factor of Б == 
= II/I{H). Hence there are /-subgroups C^, D^ of G such that 

(15) Б = Di X ^ 1 , 

(16 ) ^ 0 = ^ = < î X ^ 1 X ^ 1 . 

We define by induction C„, D„, A„ {n = 2, 3, ...) according to the rule X„ = x(Xn-1) 
for X = C, D,A, Then from (16) it follows 

00 

for n = 1,2,. . . Put П ^n = ^^- Consider the system S^ of /-subgroups 

Л ^ С , , D,- (/,j = 1 ,2 , . . . ) . 

Since У4|_1 = C^ X D^ X ^ i and Л^ с Ai, the /-groups C ,̂ Di,A^ are pairwise 
orthogonal. If i < j , then Dy с ^ . and thus C^ and Dj are orthogonal. Analogously, 
if i < г, then C,- and Dj are orthogonal. Therefore the system 6^ is orthogonal. 

Let 0 < g eG such that ^̂  A C| = ô' л J,- = 0 for each 0 < ĉ  e C^ and each 
0 < diEDi (i = 1, 2, . . . ) . Then ^(C,) = g{D,) = 0 and thus according to (17) 
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g e Ai for i = 1, 2, ..., therefore g e A^, This shows that the system «̂^ is a maximal 
orthogonal system of convex /-subgroups of G. Since Cf, D̂ -, Л^ are direct factors 
of G, they are closed and thus A^ is closed as well. Therefore it follows from 1.2 

(18) G = П^С, X n ^ D , X Л^ . 
i = l ï = l 

From the fact that .̂ ^ is a maximal orthogonal system and from (15) we obtain that 
the system 

A^D,,C,,Dj {iJ = Z3,...) 

is a maximal orthogonal system in B; therefore 

00 OO 

(19) в = lY'C, X lY'D, X Л^ . 
i = 2 i = l 

Obviously C^ is isomorphic to C„ for n, m = 1,2,. . . Therefore G is isomorphic to B. 
Since В — 0̂ 1 (я ) , the /-groups G and Я are isomorphic. The proof of (*) is complete. 

As a corollary, we obtain from (*) : 
(**) Let G and H be complete and orthogonally complete l-groups. If the cor­
responding lattices G and H are isomorphic, then the l-groups G and H are iso­
morphic. 

6. EXAMPLES 

6.1. Let G and Я be orthogonally complete /-groups. Assume that there is an 
isomorphism cp of the /-group G into Я and an isomorphism ф of the /-group Я into G 
such that (p{G) is a convex /-subgroup of Я and ф{Н) is a convex /-subgroup of G. 
The /-groups G and Я need not be isomorphic. 

Example . Let E be the additive /-group of all integers with the natural order. 
If X, Y are /-groups, their lexicographic product is denoted by X о У (cf. [5]). For 
i = 1, 2, . . . let Б^ — £ о £ and 

00 

G = YlBi, H = E X G. 
i=l 

Both /-groups G and Я are orthogonally complete. Obviously there is an isomorphism 
(p of the /-group G into Я and an isomorphism ij/ of the /-group Я into G such that 
(p{G) and \I/{H), respectively, is a convex /-subgroup of Я or G. The /-groups G and Я 
are not isomorphic. 

6.2. Let G and Я be complete /-groups. Let (p and ф be as in 6.L The /-groups G 
and Я need not be isomorphic. 
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Example . If a < b are reals we denote by F(a, b){B(a, b)) the set of all real 
functions (all bounded real functions) defined on [a, b]. Let G = F(0, l), H = 
= F ( 0 , 1) X B{2, 3). Clearly G is isomorphic with a convex /-subgroup of H. Let GQ 
be the set of all / e F(0, 1) such that / is bounded on [f, 1] and f(t) = 0 for each 
t e (^, f ). Then GQ is a convex /-subgroup of F(0, 1) isomorphic to H, The /-groups G 
and Я are not isomorphic (G is orthogonally complete and Я is not). 

A 

6.3. If G, Я are complete and orthogonally complete and if (p, xji satisfy the as­
sumptions of (*), (p(0) = 0, i/̂ (0) = 0, then (p and xj/ need not be isomorphisms with 
respect to the group operation; (p{G) and <А(Я) need not be a subgroup of Я or G, 
respectively. 

Example . Let G = H = E (= the additive group of all real numbers with the 
natural order). There exists an isomorphism ÇQ of the lattice E onto (—1, 1) such that 
(PQ{0) = 0. Put (p = \j/ = (PQ, Then (p{G) is not a subgroup of Я and ф{Н) is not a sub­
group of G. 

6.4. Let G and Я be complete /-groups such that the corresponding lattices G 
and Я are isomorphic. Then the /-groups G and Я need not be isomorphic (i.e., the 
Proposition (**) cannot be generalized for complete /-groups). 

An element 0 < e e G is a strong unit if for each g e G there is a positive integer n 
satisfying g g ne. Let GQ be the additive /-group of all real functions defined on the 
interval (0, oo) the lattice operations being defined by / v ^ = max (/, g), f A g = 
= min (/, g). Let G be the set of all bounded functions / e Go and let Я be the set 
of all functions/e GQ with the property 

| / (x) | й e-^ 

for some positive integer m = m{f) and for each x e (0, oo). Let/ i(x) = 1 identically 
on (0, oo). Then G and Я are /-subgroups of Go and /^ is a strong unit in G. On the 
other hand, Я has no strong unit, thus G and Я are not isomorphic. Both /-groups G 
and Я are complete. 

Denote gj^x) = e'"'' (m = 1, 2, 3, ...) and let gQ{x) = 0 for each x e(0, oo). For 
each fixed x e (0, oo) let (px{y) be a real increasing continuous function defined on 
the set (— 00, oo) = R such that 

(рх{^г) = gjx), (pX-m) = -~gm{x) (m = 0, 1, 2, . . . ) . 

Let / 6 G. We define (pf e GQ by the rule 

for each x e ( 0 , oo). If | / | ^ n/̂ ^ for some positive integer n, then |(p/| ^ g^, hence 
(pfeH. Conversely, if he H, \h\ ^ Ö̂ „, then there is a uniquelly determined element 
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/ e G such that [/| ^ nfi and cpf = h. Since [<Рд. is an automorphism of R, we have 

for any/, 0̂  e G. Therefore <p is an isomorphism of the lattice G onto the lattice И, 

6.5, Let G and Я be orthogonally complete /-groups such that the lattices G and H 
are isomorphic. Then the /-groups G and H need not be isomorphic. 

Example. Let E be as in 6.1, H = E o(E x É) and let G be the /-group with three 
generators desribed in [ l ] , p. 216, Example 6. Then G and H are isomorphic. The 
/-groups G and H are not isomorphic (Я is abelian and G is not). 
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