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CANTOR-BERNSTEIN THEOREM FOR LATTICE ORDERED GROUPS
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(Received October 7, 1970)

Orthogonally complete lattice ordered groups (,,/-groups™) and K-spaces were
studied in the papers [2], [3], [7], [9]- The purpose of this Note is to show that for
complete and orthogonally complete I-groups the following proposition analogous
to the Cantor-Bernstein theorem is valid: (*) Let G and H be complete and ortho-
gonally complete I-groups. Let G and H be the corresponding lattices. Assume that
there exists an isomorphism ¢ of the lattice G into H and an isomorphism s of the
lattice H into G such that ¢(G) is a convex sublattice of H and y(H) is a convex
sublattice of G. Then the lattice ordered groups G and H are isomorphic.

In particular, if G and H are l-groups such that G = H and if G is complete and
orthogonally complete, then G and H are isomorphic. The main step in the proof
of (%) is the theorem on the representation of positive elements of a singular I-group
(Thm. 3.2) that is analogous to the integral representation of elements of a K-space
(cf. [8], Chap. III). If the I-groups G and H are not complete or if they are not
orthogonally complete, then the assertion of the theorem () need not hold.

The standard notations for lattices and lattice ordered groups will be used [1],
[5]- Let G = (G; +, A, v) be a lattice ordered group. The corresponding lattice
(G: A, v) will be denoted by G. The lattice G is infinitely distributive. G is said to
be complete, if the lattice G is conditionally complete. A subset {x,},.; of G is disjoint
(or orthogonal) if x; = 0 for each iel and x;, A x;, = 0 for any pair of distinct
elements i, i, €. G is called orthogonally complete if V,;x; exists in G whenever
{x:}icr is a disjoint subset of G. Let a, be G, a < b. The interval [a, b] is the set
{xeG:a = x < b}. Let A be a subset of G such that a,, a, € 4, a; < a, implies
[ay, a,] = A. Then A is said to be a convex subset of G..Let L, be a sublattice of
a lattice L. Assume that from {x;} < L,, Vx; = x € Lit follows x € L, and that the
dual condition also holds. Then L, is called a closed sublattice of L. Let a, e€ G,
a 20, e> 0. The element g is singular, if x A (a — x) = 0 for each x € [0, a].
The element e is a weak unit,if e A x > 0foreach 0 < x € G. If e is a weak unit of G,
let B(e) be the set of all e, € [0, ] with the property that e, has a relative complement
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in the interval [0, e]. Let = X = G. The set X° = {y e G : [y| A |x| = O for each
x € X} is a polar of G. Any polar X? is a closed convex I-subgroup of G and the inter-
section X° n Y° of two polars is a polar [10]. If X = {a}, a > 0, then the element a is
a weak unit of the I-group X%. For any Y < G we denote Y* = {yeY:y = 0}.

The lattice ordered group G is a K-space provided there can be defined a multiplica-
tion Ax of elements x € G with reals A such that G turns out to be a linear space with
the property that Ax > 0 for each A > 0 and x > 0.

I. DIRECT PRODUCTS OF /-GROUPS

In this section there are given the basic definitions and described some properties
of the direct product of I-groups that we shall need in the sequel. (Cf. also [6].) Let
{Gi}iel be a system of I-groups and let H be the set of all mappings f: I - UG;
such that f(i) € G; for each i el. f(i) is the component of f in G,. The operations
+, A, v in H are performed componentwise. Then H = IT,;G, is the direct product
of I-groups G;. Let G be an I-group and let ¢ be an isomorphism of G onto H. For
each i e I denote

G} = {xeG:9(x)(j) =0 foreach jeI, j + i}.
G? is a closed convex I-subgroup of G and G? is isomorphic to G,. For each x € G
let x; be the element of G} satisfying ¢(x) (i) = ¢(x;) (i). The mapping
x = (oo Xy o ier
is an isomorphism of the I-group G onto IT;;G}. We shall write
G =1I;,G? .
Let x € G? for some i el. Then x; = x and x; = O for each jel, j + i. If ye G},
j # i, then M A [yl = 0.
1.1. Let {X;},., be a system of convex l-subgroups of an l-group G such that

(i) x' A x/ = 0forany0 < x'eX;and any 0 < x/ € X; whenever i,jel, i % j,
(ii) for each 0 < xe G there are elements 0 < x'€ X; such that x = Vx".

Then G is isomorphic to a subgroup of I1;.;X;.

Proof. Since G is infinitely distributive, the elements x' from (ii) are uniquelly
determined. Let xe G, iel. Denote x v O =1y, —(x A0) =z x'=y —z.
Then it is easy to verify that the mapping x — (..., X;, ...);c; is an isomorphism of G
into ITX ;.

A system S = {X},; of convex I-subgroups of an I-group G is called orthogonal,
if the condition (1) from 1.1 is fulfilled; S is maximal orthogonal, if S = S’, whenever
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S’ o S is an orthogonal system of convex I-subgroups of G. An orthogonal system S
is maximal orthogonal if and only if for each 0 < g € G there is iel and x,€ X;
such that 0 < g A x;.

1.2. Let S = {X,};;; be a maximal orthogonal system of convex l-subgroups of
a complete and orthogonally complete I-group G. Assume that each X; is a closed
l-subgroup of G. Then G = I, X,.

Proof. Let 0 < xe G, iel. Denote x' = sup {yeX,;:y < x}. Since X is closed,
x' belongs to X ;. The system {x'}, is disjoint and hence there exists z = A;,x'in G
and 0 < z < x. Suppose that z < x’. Then v = x — z > 0. Since the system S is
maximal orthogonal, there is an element i eI and te X, such that 0 < v A t = u'.
Clearly u' e X;. We have x' < x' + u' < x and x' + u'€ X;, which is a contra-
diction. Thus x = V,;x. According to 1.1 the correspondence ¢ : x — (..., x,...)
is an isomorphism of G into IT,;X;. In order to verify that ¢ is onto it suffices to
show that ¢(G*) = (IT,,X;)*, since ecach element of an I-group is a difference of
positive elements. For each i eI let 0 < y' e X,. Then Vy' = x does exist in G and
x'=x" A x =Vjulx' A y)) =x" A y'. Since y' £ x, we have y' = x/, thus ¢(x) =
= (..., ¥, -..). This shows that ¢ is an isomorphism onto. If x € X, then x' = x
and x/ = 0 for each j eI, j & i. From this it follows X} = X, and therefore we may
write G = I, X .

1.3. Let e be a weak unit of a complete and orthogonally complete I-group G.
Assume that e = Ve, and e; A e;, = 0 for any pair of distinct elements iy, i,
of I. Denote X; = {e}}**. Then G = Iy, X .

Proof. Each X; is closed convex I-subgroup of G and e;e€ X,;. Since {e;}; is
a disjoint set in G, the system S = {X},; is orthogonal. If 0 < g € G, then 0 <
<gne=V.g A e,henceg A e; > 0for some e;. This shows that S is a maximal
orthogonal system of convex I-groups in G. Now it suffices to apply 1.2.

An I-subgroup Y of G is called a direct factor of G if there is a direct decomposition
G = II}.,Y; of G such that Y = Y; for some j e J.

Each direct factor of G is a closed convex [-subgroup of G. For g € G the com-
ponent g; of g in the direct factor Y; will be denoted also by g; = g(¥;). The following
assertions 1.4 and 1.5 are known (cf. [6]):

1.4. Let Y be a direct factor of G, 0 < g € G. Then the component g(Y) of ginY
is the element g(Y) = sup{yeY:y < g}; therefore g(Y) <g. If gAy=0 for
each 0 < yeY, then g(Y) = 0.

1.5. Let Y be a direct factor of G and let G = 1%, X;. Then Y = IIj(Y n X)),
the l-subgroups Y n X; are direct factors of G and for any g € G,
g(Y 0 X)) = g(¥) (X)) = g(X)) () -
In particular, if Y < X, for some i €I, then g(Y) = g(X,) (Y).

161



1.6. Let A, B be direct factors of G such that A n B = {0} and let C be the sub-
group of G generated by A U B. Then C is a direct factor of G and C = A x B.

Proof. Since A4, B are direct factors of G there are [-subgroups A’, B’, of G such
that G = A4 x A, G = B x B'. According to 1.5 B=(Bn A4) x (Bn A’) and
similarly 4" = (4’ nB) x (A’ nB)=B x (A’ nB), thus G=A4 x B x (4 n
N B). Denote C ={geG:g(4' nB)=0}. Then clearly C = A x B. Each
element ¢ € C can be written in the form ¢ = a + b, with a € A, b € B; hence C is
generated by the set A U B.

1.7. Let e be weak unit of a complete and orthogonally complete I-group and
assume that the element e is singular. Let e = x; + ... + X, 0 < x; (i =1,..., n),
X; = {x}® Then G = X; x ... x X,.

Proof. From the definition of a singular element it follows that x; A (x, + ...
o+ x,,) = 0,hence x; A x; = Ofori = 2, ..., n. Since G is commutative, x; A X; =
=0 for distinct i,je{l,...,n}. Therefore x; + ... + x, = X; V ... V x,. Our
assertion now follows from 1.3.

1.8. Let e be a weak unit of a complete and orthogonally complete I-group and
let e be singular,0 < a £ e,a =x+ y,0 £ x,0 < y. Denote {a}”® = A, {x}* =
= X, {y}? =Y. Then A, X, Y are direct factors of G and a (X) = x.

Proof. Puta' =e —a. Then0 <a'ande=a + a = x + y + a’. According
to 1.7 A, X and Y are direct factors of G. If y = 0, then Y = {0} and thus x(Y) = 0.
If y > 0, then y is a weak unit of the I-group Y. Since x A y = 0, wehavex A y, =0
for each 0 < y; € Y, thus according to 1.4 x(Y) = 0. Therefore a(X) = (x + y)(X) =
= x(X) = x.

The following lemma is obvious.

19. Let G = 12,X;. Then G is complete (orthogonally complete) if and only
if each X; is complete (orthogonally complete).
2. COMPLETE /-GROUPS AND K-SPACES
We need the following result due to CONRAD and MCALISTER:

2.1. ([4], Thm. 4.9, Corollary 2) Let S be the set of all singular elements of
a complete I-group G. Then G = S° x S% and S° is a K-space.

We denote S° = K(G), S* = K'(G). Let G, H be complete and orthogonally com-
plete I-groups and let G, H be the corresponding lattices. Assume that

0:G->H
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is an isomorphism of the lattice G into H such that ¢(G) is a convex sublattice of H
and ¢(0) = 0. In this paragraph we shall prove that the I-group K(G) is isomorphic
with a convex Il-subgroup of K(H) Let S and S’ be the set of all singular elements
of G and H, respectively.

2.2. Let 0 < a be an element of an I-group G. Then a is singular if and only if
[0, a] is a Boolean algebra.

Proof. If a is singular and x € [0, a], then the element a — x is the relative
complement of x in [0, a], hence [0, a] is a Boolean algebra. Conversely, let [0, a]
be a Boolean algebra, x € [0, a] and let y be a relative complement of x with respect
to the interval [O, a]. Thenx A y=0,hencey + x =y v x =a,thusy =a — x,
therefore x A (a — x) = 0.

23. Let xe G. Then x € S if and only if ¢(x)e S’

Proof. According to 2.2 x € S if and only if [0, x] is a Boolean algebra and this is
fulfilled if and only if [0, ¢(x)] is a Boolean algebra.

24. Let 0 < x € G. Then x €(S°)™* if and only if ¢(x)e(S”)*.

Proof. Since x = 0, we have ¢(x) = 0. Let s’ € S, ¢(x) A s" = s,. From 2.2 it
follows s, € S’. Since 0 < s; < ¢(x) and ¢(G) is a convex sublattice of H, we have
s; € (G), thus there is y € G such that ¢(y) = s, and by 2.3 ye S. Clearly y < x.
If xeS% then x A y = 0, hence y = 0. This implies s; = 0 and therefore ¢(x) e
€ (S”®)*. Conversely, assume that ¢(x) € (S’°)* and let se S. Then by 2.2 ¢(s) € S,
hence ¢(x) A ¢(s) = 0 and from this we obtain x A s = 0, thus x € (5°)*.

2.5. Let 0 < ye G. Then y € (S*)" if and only if o(y) € (S'?)*.

Proof. Since y = 0, we have ¢(y) = 0. Let x' €(S”)*, ¢(y) A x' = x{. Then
x; €(5”)" N ¢(G), thus there is x; € G such that xj = ¢(x,). According to 2.4
x, € 8% and clearly 0 £ x; < y. If y € §%, then x; = 0, hence x; = 0 and therefore
o(y) € (8")*. Conversely, let ¢(y) e S'°, x € (S°)*. Then by 2.4 ¢(x) e (S”’)* and
s0 @(y) A @(x) = 0. This implies y A x = 0 and thus y € (S%)*.

Let H; and H, be the intersection of all closed convex orthogonally complete
l-subgroups of H that contain ¢((S°)*) or ¢((S%)*), respectively. According to 2.1
we have

H = 8" x §%,

and thus S’ is a closed convex orthogonally complete I-subgroup of H. By 2.4
o((S°)*) = S and therefore H, is a closed convex I-subgroup of S’. Since S is
a K-space, H, is a K-space as well. Analogously according to 2.5 H, is a closed convex
I-subgroup of S'%.
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Let {x,} be a maximal disjoint subset of G. Then x = Vx; exists in G and x is a weak
unit in G. Put x(S?) = e,. The element e, is a weak unit in $° whenever $° + {0}.

2.6. Let S° & {0}. Then ¢(e,) is a weak unit in H,.

Proof. Let0 < y' e H,. If y A x" = Oforeach x’ € ¢((S?)*), then {y'}’is a closed
convex orthogonally complete [-subgroup of H, ¢((S°)*) = {y'}° and thus H, =
< {y'}°. Clearly y’ ¢ {y’}® which is a contradiction. Therefore there is x" € ¢((S°)*)
with ’ A x" = x| > 0. Because of 0 < x} < x’ € ¢(G), we have x| € ¢(G) and hence
there are elements x, x; € G with ¢(x) = x’, ¢(x;) = x{. Then by 2.4 xe S and,
since S° is a convex I-subgroup of G, x, belongs to S? as well. We obtain x; A e; > 0,
thus y' A ¢(e;) = xi A ¢(e;) > 0.

2.7. The I-groups S° and H, are isomorphic.

Proof. S°and H, are orthogonally complete K-spaces with weak units e; and ¢(e,),
respectively. We have defined B(e,) as the set of all x e [0, e,] that have a relative
complement in [0, e, ]. By 2.6, ¢(e,) is a weak unit in H, and thus it follows from
¢(0) = Othat ¢(B(e,)) = B(¢(e,)), thus the lattices B(e,) and B(¢(e,)) are isomorphic.
This implies (cf. [8], 2.21) that the K-spaces S° and H, are isomorphic.

3. SINGULAR /-GROUPS

An I-group A with the set S of singular elements is said to be singular, if S° = {0},
or, equivalently, % = A. In this section we assume that the I-group 4 + {0} is
complete, orthogonally complete and singular and we are searching for a representa-
tion of positive elements of 4 by means of elements of an appropriate Boolean algebra.

3.1. There is a weak unit e of A such that e€ S.

Proof. Let {s;},.; be a maximal disjoint subset of S. Since 4 is orthogonally com-
plete, there exists e = Vs, in 4. From the fact that {s;},.; is a maximal disjoint subset
of S it follows that e is a weak unit in A. Let x € [0, e]. Then

x=Vx;, X,=XAS;.

According to 2.2 [0, s;] is a Boolean algebra, thus there is a relative complement y;
of x; in the interval [0, s;]. The system {y;},; is disjoint, hence there is y = Vy;
and y € [0, e]. It is easy to verify that y is a relative complement of x with respect to
the interval [0, e]. By 2.2, e belongs to S.

In this section we shall use several times the lemmas 1.6, 1.7 and 1.8 without
mentioning it explicitely. For a € A we denote {a}*® = [a] and for any xe A we
write x[a] instead of x([a]).
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In the sequel we suppose that we have chosen a fixed weak unit e of 4 such that
e€S. Let 0 < fe A. We construct two sequences

)] €05 €15 €2y vny Cpy +- v s
2 er, e el .

in the following manner.

Pute, =f A e ey =e— e.Thenwehavee, A e, =0,e, v e, = ¢5 + €, = ¢,

(3) eOAf:O) el§f‘
Denote

(291—f)V0=e’;‘

We have ((2¢; —f) v 0) —e; = (e; = f) v (—e;) £ 0, thus ef < e,. Put ¢, —
— e} = e,. Then

4) e=¢e t+ e +e,,
therefore according to 1.7
G = [eo] * [ef] x [es] -

From (3) it follows f[eo] = 0, whence f < f, + g,, f, = flet], 92 = f[e,]- There-
fore

(2¢, —f) vO= ((2ef = f1) v 0) + ((2e, — g,) v 0).
Since (2¢; — f) v 0 = ef e[e]], we obtajy
(5) (Zef_fl)v0=e’f,
(6) (2¢,-92)vo=o0.

(5) implies (e — f1) V (—e) = 0, thus (fi — €f) A ef = 0. Since ¢f is a weak
unit in [ef] and 0 < f1 — el e [eT], we 8et £, — ¥ — 0, thus

S =f[9T] = e’;_

From (6) we infer 2e; < g, and clearly 9, < £ therefore

2¢é; <f.

Let 0 < x < e}. Denote y = e¥

— X .
* According to.(4) e =ey + X + y + e,
hence by 1.7 (4) 0 2

G = [eal * [¥] s [y] x [e].
Since [x] < [e}] we have (cf. 1.5 and 1'8)f[x] = f[ef][x] = €f[x] = x, thus
@ =N =2 — f[x] = x > 0
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and therefore 2x £ f. Let us assume that for some positive integer n we have
constructed elements €g, €45 - - -» €y €nsq1 and €35 ..., e¥ with the following properties:
(@) 20, 20(i=0,...,n+1;j=1..,n),
B)e=eo+ e + ... + € + €1
NOo<x=ef=(+)x£f (i=1,...n),
(6) (n + 1) en+l éf’
) flef]=ief (i=1,.., n).

As we have already proved the condijtions (x) — (¢) hold for n = 1. Now we
distinguish two cases.

(a) Assume that e,,; = 0. Then by (B)
G = [eo] x [ef] x ... x [€}],

F=flef]+ ... + flef] = et + 265 + ... + ne},

hence

and since the system {ie;};—, ., is disjoint, we have

In this case we put ef = ¢; =0fori>n+ 1,j = n + 2.
(b) Suppose that e,+; > 0. Denote f[ef] =f; (i=1,....n), flens1] = Gns1-
From () it follows
G =[eo] x [ef] x ... x [€f] x [ess1]>

hence

(n+2 e —f=—fi— o~ fut ((n+2)ear = dns1)>
therefore
(7) ((n+2)€,,+1-—f)v0=((n+2)e"+1—g"+l)\/0‘

Denote ((n + 2) e,s1 —f) v 0 = ¢, ;. From (7) we get e;y; €[e,;]. Clearly
*
en+1 g 0

We have
{((" + 2) Cnt1 "f) v 0} — 1 T ((" + 1) €ny1 "f) v (_en+1) =0

*
because of (x) and (8), hence ey ; < €, ;. Denote €45 = €n+1 — €uer1- Then €45 2

> 0 and
— * * *
e=¢e +e +...+te +e41t iz

From ep+1 = €541 + €42 We get (since e,,, € S and ¢,4, is a weak unit of [e,])
(8) [en+l] = [e:“] X [e,,+2]-
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Put gn+1[e:+l] = fa+1s gn+1[en+2] = Gn+ 5. Clearly fu+1 =f[e:+1], In+2 =f[en+2]‘
From (7) and (8) it follows

it = {((n + 2 efy — far1) VO + (0 + 2) €rsz — Gusz) v O},
whence
©) e =((n+2) ety = furr) v O,
(10) 0=((n+2) e, — guu2) v O.
From (9) we get 0 = ((n + 1) ef,, — fas1) v (—€r+1)s thus
0= (fasr = (n+ 1) 1) A € -

Since f,+1 — (n + 1) ey, belongs to [e}, ;] and e;+1 is a weak unit in [e},,], we
get f,41 — (n + 1) ef,; = 0, therefore

f[e:+1] =(n+ 1) enit-

From (10) we obtain (n + 2) e,,, < g,+, and since g+, = f[e,—,] < f, we have

(n+2e.,<f.

Let 0 < x =< ¢€,,;. Then f[x] = flef,][x] =@ + 1) eysi[x] = (n + 1) x,

thus
(n+2)x=f)[x]=x>0,
therefore (n + 2) x £ f.

We have proved that the conditions («) — (¢) hold for the positive integer n + 1.
Hence we can construct the sequences (1) and (2) such that the conditions («) — (&)
are satisfied forn = 1, 2, ...

If ¢, = O for some positive integer k, then according to (a) we have

k
f=Vie.
i=1
Assume that ¢, > 0 for each k = 1, 2, ... and consider the system

% * ¥
(11) €0s €1y €y anes €y enn

Since for each positive integer n the equation () holds and e e S, the system (11) is
disjoint and therefore there exists the join p of the system (11). Clearly p < e, hence
e — p=q=0. Assume that ¢ > 0. We have p A g = 0, hence ¢, A g = 0 and
e¥ A g=0forn=1,2,... According to ()

n
* % _ i
e=¢ +e +..+e¢, +en+1~eoV(Vei)ven+1,
i=1

<
Il

q/\e=(q/\eo)V(.yl(qAeT))V(qu..+1)=qu.,+1,
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whence 0 < g < e, for each integer n. According to (9)
m+1Dg=sf

for each positive integer n. Since G is archimedean, we have a contradiction. Hence
p = e, and so

e=-¢ v (Aé€).
i=1
According to 1.3 this implies
0
G = [eo] x [I°[]-
i=1
Since f = 0 and (e) holds, we have (because of f]e,]| = 0)
=V flef] = Vief.
i=1 i=1
Let N be the set of all positive integers, N(f) = {i e N : ¢/ # 0}. Then
(12) f=Vief (ieN(f)).
By summarizing, we have the following assertion:

3.2. Theorem. Let G be a complete and orthogonally complete singular l-group,
0 < feG. Let ee G be a weak unit of G and let the element e be singular. Then
there is a subset N(f) = N and a disjoint system {€} (i e N(f)) such that e >
= ef > 0 for each i e N(f) and f = Vie} (i e N(f)).

Let us assume that for the given 0 < f € G there exists another subset Ny = N
and a disjoint system {ej} (j € N,) such that e > ej > 0 for each je N, and f =
= Vje; (je Ny). Let je N,. Then

(13) je; = je; n [ =V(je; A ief) (ieN(f)),

hence there is io € N(f) such that jej A igej, > 0. This implies e} A e} = x > 0.
Suppose that j # i,. If j < iy, then €] = x + y, x A y = 0, thus

SIx] = flg] [x] = jeilx] = jx. (iox = /) [x] = (io = j) x > 0,

therefore igx £ f. But from x < e}, we obtain ipx < igel < f, which is a contradic-
tion. Thus j = i,. Analogously we can verify that i, > j and hence i, = j. This
implies that N; = N(f) and similarly N(f) = N,, thus N(f) = N,. Further we have
e; A ef =0 whenever i, j are distinct elements of N,. Hence it follows from (13)
je; = jej A jej and similarly jef = jej A jef, thus je; = jef. Therefore e) = e}
for each j € N;. We obtain:
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3.3. Under the same assumptions as in 3.2 the set N(f) and the system {e}}
(i € N(f)) satisfying the assertion of 3.2 are uniquelly determined.

Let 0 < feG, 0 < geG. Let N(f), {ef :ie N(f)} be as in 3.2 and let N(g),
{e} : j € N(g)} have an analogical meaning with respect to the element g. Put e* =
= Ve (ieN(f)), ¢ = Ve)(j e N(g)). Under these denotations we have:

34. f< gifandonlyif e* < ¢ and ef A e;>0=1iZ<j.
i J

Proof. Let f < g. Denote e — e* = ey, e — ¢ = e;. Then ey(ep) is the comple-
ment of e*(e') in the Boolean algebra [0, e]. Since g = Vje; (j e N(g)), we have
g A ey =0, thus f A ey = 0. Because of e* < f, it is also e* A e, = 0 and hence
e* < ¢. Let ¢ A ¢; = x > 0and assume that i > j. Then ix < ief < f < g, but
according to 3.3 and (y) from 0 < x < ¢j it follows that ix £ g. This is a contradic-
tion; therefore i < j.

Conversely, let e* < ¢’ and i < j whenever ef A ¢; > 0. Then e} < ¢ for each
i € N(f), thus
ef = ef Ae =Vjwgle A e
and hence

e=eo vV (Vv Vienol€i 1 €))-

Since the system {e,, €f A e} is disjoint, according to 1.3 we have
G = [eo] % TL(eF A s (1) N(T) x No)
Further wehave g[eo] = 0 = f[eo]. If e A €; = 0,theng[ef A e}] = flef A ¢] =
= 0.If ef A ¢} > 0, then
flef A €] = flef][ef A ef] = ief[ef A €] = i[ef A e]]

and similary g[e} A €] = j[e] A e]]. Since j = i, we have g = f.

4. ISOMORPHISM OF SINGULAR /-GROUPS

In this section we assume that 4 and B are complete and orthogonally complete
I-groups with weak units e and &', respectively, such that the elements e and e’ are
singular. Suppose that ¢ is an isomorphism of the lattice [0, €] onto [0, ¢']. We intend
to prove that then the I-groups 4 and B are isomorphic.

Let 0 < fe A. According to 3.2 and 3.3 there is a uniquelly determined disjoint
system {ef} (i € N(f) = N) such that 0 < e < e for each ie N(f) and f = Vie}
(i e N(f)). Then 0 < ¢(e]) < p(e) = ¢’ and {¢(e)} is a disjoint system in B. Thus
there is f* = Vi ¢(e}) (i € N(f)) in B. From 3.2 and 3.3 (applied for the I-group B)
it follows that the correspondence

yif->f, y0)=0
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is a one-to-one mapping of the set A* onto B*. According to 3.4 for any f,ge 4™
we have

Thus we have proved:

4.1. Y is an isomorphism of the lattice A onto B*.

Foranyxe Aweput0x = 0. Let 0 < fe 4,0 < g € A. Let e,, ey have the same
meaning as in § 3 and put ej = ey, N'(f) = N(f) U {0}, N'(g) = N(g) v {0}. Then

f=Vief (ieN(f)), g =Vijej(jeN(g),
e=Vel (ieN(/). e =Ve(jeN(q)

and the systems {¢} : i e N'(f)}, {¢} :j € N'(g9)} are disjoint. Denote ef A e; = hy;.
Then
e =Vh; ((i,/)) e N'(f) x N'(9))

and the system {h;;} is disjoint. Therefore
A =T plhy] -
Denote f + g = t and define d(i, j) as follows: -
d(i,j) = 0 ifeither (i,j) =(0,0) or h
d(i,j) =i +j otherwise.

;7 =0, and
Fork =0, 1,2, ... put M, = {(i,j) : d(i, j) = k},
e = Vi jemhij -

If k,, k, are distinct elements of the set {0, 1,2, }, then M, n M,, = 0, whence
the system {#¢} is disjoint and 0 < #; < e. Denote

(14) ©=Vkty (k=0,1,2,..).
We have
tlh] = (f + 9) [his] = fThi] + glhi] = ihi; + jhi; = (i + j) by,
| ©°[hi;] = L6 [hi] = (@ + ) tlhi] = (@ + ) by
for each (i, j) € N(f) x N'(g) and therefore t° = ¢. From this and from (14) it follows
WS + 9) = w(f) + ¥(a).

hence  is an isomorphism of the lattice ordered semigroup A* onto B*. Clearly the
l-groups A, B are isomorphic if and only if A* and B* are isomorphic. We obtain:
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4.2. Let A, B be complete and orthogonally complete singular I-groups with
weak units e and €', respectively, such that e and e’ are singular elements. If the
lattices [0, e] and [0, ¢'] are isomorphic, then the l-groups A and B are isomorphic.

Now let G and H have the same meaning as in § 2. Under the same denotations as
in §2 we have $% = {0} if and only if H, = {0}. Let us assume that S% + {0}.
Since S% is a singular l-group, according to 3.1 there exists a singular element
0 < e e S% such that e is weak unit of S%. Let such an element e be fixed.

4.3. ¢(e) is a weak unit in H,.

Proof. Let 0 < y' € H,. Assume that )’ A @(e) = 0. Let x’ € ¢((5%)*), x' > 0,
x" = ¢(x). According to 2.5 0 < xeS¥. If y' A x' = x| > 0, then x} e ¢(G),
xj = @(x,), where 0 < x; < x, thus x, € S* and therefore e A x; = ¢t > 0. This
implies )’ A ¢(e) = x| A ¢(e) = o(x;) A ¢(e) = ¢(x; A €) > 0, which is impos-
sible. Therefore y' A x' =0 for each x'e€¢((S*)*). Denote X = {y'}°. Then
#((S*)*) = X and X is a closed, convex and orthogonally closed I-subgroup of H.
Hence according to the definition of H, we have H, < X. Clearly y’ does not belong
to X and this is a contradiction.

4.4. The I-group H, is singular.

Proof. Let S, be the set of all singular elements of H,. For any § + Z < H, let
Z° = {teH, :|t| A |z| = Oforeach z e Z} (i.e., the operation Z’ is taken with respect
to H,). We have ¢(e) € S, and hence {¢(e)}*> = SP. Since ¢(e) is a weak unit in H,,
{o({e)}® = {0}, thus {p(e)}** = H,. Therefore S’ = H, and so H, is singular.

4.5. The l-groups S° and H, are isomorphic.

Proof. Let e have the same meaning as in 4.3. $% and H, are complete and ortho-
gonally complete. The element e(¢(e)) is a weak unit in S? (in H,) and both elements e
and ¢(e) are singular. Moreover, [0, ] is isomorphic to [0, p(e)]. Obviously S* is
singular and by 4.4 H, is singular as well. Thus according to 4.2 the I-groups S%
and H, are isomorphic. '

4.6. The l-groups H, and H, are orthogonal.

Proof. Let 0 < xe Hy, 0 < ye H, and assume that x A y =t > 0. Since H,
and H, are convex in H, we have t€ H; n H,. Let e, be as in § 2 and let e have the
same meaning as above. Since ¢, € S° and e € S?° we have e, A e = 0, thus ¢(e;) A
A ¢(e) = 0. Since ¢(e;) and ¢(e) are weak units in H, and H,, respectively, we have
0<tA gle)eH, 0<tA ¢le) n ¢e), which is impossible.

4.7. The l-subgroup H, of H generated by H, U H, is a direct factor of H and
the l-groups G, H, are isomorphic.
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Proof. The I-subgroups H, and H, areclosed and convex in H. Since H is complete,
according to [1], Chap. XIV, Thm. 19 H, and H, are direct factors of H. Now it
follows from 4.6 and 1.6 that H, = H,; x H, is a direct factor of H. Then we obtain
from 2.1, 2.7 and 4.5 that G and H,, are isomorphic.

5. PROOF OF THE THEOREM(*)

Let G and H be complete and orthogonally complete l-groups. Assume that there
is an isomorphism ¢ of the lattice G into H and an isomorphism y of the lattice H
into G such that ¢(G) is a convex sublattice of H and y(H) is a convex sublattice of G.

For each g € G put ¢o(g) = ¢(g9) — ¢(0). Then ¢, is an isomorphism of G into H
such that ¢@o(G) is a convex sublattice of H and ¢4(0) = 0. The mapping Yo(h) =
= y(h) — Y(0) of H into G has similar properties. Hence in proving the theorem (*)
we may assume without loss of generality that ¢(0) = 0, ¥(0) = 0. Then according
to 4.7 there is an isomorphism

¢,:G—>H
of the I-group G into H such that (pl(G) is a direct factor of H. Analogously, there is

an isomorphism
l//] H-> G

of the I-group H into G such that y/;(H) is a direct factor of G. Let x(G) = ¥(¢4(G)) =
= A,. Then y is an isomorphism of G onto 4, and A, is a direct factor of B =
= y,(H). Hence there are I-subgroups C,, D, of G such that

(15) B

i

Dy x A,

(16) Ay =G=C, x D, x 4.

We define by induction C,, D,, 4, (n = 2, 3, ...) according to the rule X, = x(X,_,)
for X = C, D, A. Then from (16) it follows

(17) A, = Coyy % Dyyy X Ay

forn = 1,2,... Put ) 4, = A°. Consider the system & of I-subgroups

n=1
A% C.D; (i,j=1,2...).
Since A4;_, = C; x D; x A; and A° < 4,, the l-groups C,, D;, A° are pairwise

orthogonal. If i < j, then D; = A; and thus C; and D; are orthogonal. Analogously,
if j < i, then C; and D ; are orthogonal. Therefore the system & is orthogonal.

Let 0 < ge G such that g A ¢; =g A d; =0 for each 0 < ¢;e C; and each
0<deD; (i=1,2..). Then g(C;) = g(D;) = 0 and thus according to (17)
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ged;fori = 1,2, ..., therefore g € A°. This shows that the system & is a maximal
orthogonal system of convex I-subgroups of G. Since C;, D;, A; are direct factors
of G, they are closed and thus A° is closed as well. Therefore it follows from 1.2

- ©
(18) G = [1°C; x [I°D; x A°.
i=1 i=1
From the fact that & is a maximal orthogonal system and from (15) we obtain that
the system

Ao’ D1= Cb Dj (l,] = 2, 3,)

is a maximal orthogonal system in B; therefore

(19) B =[]°C; x []°D; x A°.
i=2 i=1
Obviously C,, is isomorphic to C, for n, m = 1, 2, ... Therefore G is isomorphic to B.
Since B = y/,(H), the I-groups G and H are isomorphic. The proof of () is complete.
As a corollary, we obtain from (x):

(#x) Let G and H be complete and orthogonally complete I-groups. If the cor-
responding lattices G and H are isomorphic, then the l-groups G and H are iso-
morphic.

6. EXAMPLES

6.1. Let G and H be orthogonally complete I-groups. Assume that there is an
isomorphism ¢ of the I-group G into H and an isomorphism y of the I-group H into G
such that ¢(G) is a convex I-subgroup of H and y(H) is a convex I-subgroup of G.
The I-groups G and H need not be isomorphic.

Example. Let E be the additive I-group of all integers with the natural order.
If X,Y are I-groups, their lexicographic product is denoted by X o Y (cf. [5]). For
i=1,2,...let B, = Eo E and

0
G=]]B;, H=ExG.

Both I-groups G and H are orthogonally complete. Obviously there is an isomorphism
¢ of the I-group G into H and an isomorphism / of the'l-group H into G such that
¢(G) and y(H), respectively, is a convex I-subgroup of H or G. The I-groups G and H
are not isomorphic.

6.2. Let G and H be complete I-groups. Let ¢ and y be as in 6.1. The I-groups G
and H need not be isomorphic.
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Example. If a < b are reals we denote by F(a, b) (B(a, b)) the set of all real
functions (all bounded real functions) defined on [a, b]. Let G = F(0,1), H =
= F(0, 1) x B(2, 3). Clearly G is isomorphic with a convex I-subgroup of H. Let G,
be the set of all fe F(0, 1) such that f is bounded on [%, 1] and f(¢) = 0 for each
te(4, %). Then G, is a convex [-subgroup of F(0, 1) isomorphic to H. The I-groups G
and H are not isomorphic (G is orthogonally complete and H is not).

6.3. If G, H are complete and orthogonally complete and if ¢, i satisfy the as-
sumptions of (*), (0) = 0, y(0) = 0, then ¢ and ¥ need not be isomorphisms with
respect to the group operation; ¢(G) and Y(H) need not be a subgroup of H or G,
respectively.

Example. Let G = H = E (= the additive group of all real numbers with the
natural order). There exists an isomorphism ¢, of the lattice E onto (—1, 1) such that
©0(0) = 0.Put @ = ¥ = ¢@,. Then ¢(G) is not a subgroup of H and y(H) is not a sub-
group of G.

6.4. Let G and H be complete I-groups such that the corresponding lattices G
and H are isomorphic. Then the I-groups G and H need not be isomorphic (i.e., the
Proposition () cannot be generalized for complete I-groups).

An element 0 < e € G is a strong unit if for each g € G there is a positive integer n
satisfying g < ne. Let G, be the additive I-group of all real functions defined on the
interval (0, o0) the lattice operations being defined by f v g = max (f,g), f A g =
= min (f, g). Let G be the set of all bounded functions f € G, and let H be the set
of all functions f € G, with the property

V&) = e

for some positive integer m = m(f) and for each x € (0, o). Let f;(x) = 1 identically
on (0, c0). Then G and H are I-subgroups of G, and f; is a strong unit in G. On the
other hand, H has no strong unit, thus G and H are not isomorphic. Both I-groups G
and H are complete.

Denote g,(x) = ™ (m = 1,2,3,...) and let go(x) = 0 for each x € (0, «). For
each fixed x € (0, o0) let ¢(y) be a real increasing continuous function defined on
the set (— 0, 00) = R such that

@m) = g,fxX), @—m) = —g,(x) (m=0,1,2,..).
Let f € G. We define of € G, by the rule

9 f(x) = o:(f(x))

for each x & (0, ). If [f| < nf, for some positive integer n, then |pf| < g,, hence
of € H. Conversely, if he H, [hl < g, then there is a uniquelly determined element
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f € G such that [fl < nf, and ¢f = h. Since :(px is an automorphism of R, we have
f29<9f =09

for any f, g € G. Therefore ¢ is an isomorphism of the lattice G onto the lattice H.

6.5. Let G and H be orthogonally complete [-groups such that the lattices G and H
are isomorphic. Then the I-groups G and H need not be isomorphic.

Example. Let Ebe asin 6.1, H = Eo (E x E)and let G be the I-group with three
generators desribed in [1], p. 216, Example 6. Then G and H are isomorphic. The
I-groups G and H are not isomorphic (H is abelian and G is not).
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