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1. INTRODUCTION

It has been pointed out, first by CATTANEO [1, 2] and then by VERNOTTE [7] that
the heat equation

(1.1) T

carries the physically unrealistic implication of instantaneous propagation of thermal
disturbances, though the impact of the disturbance attenuates greatly with distance.
Basing their arguments on thermodynamics and on statistical mechanics, they propose
the inclusion of an inertial term with a small coefficient:

(1.2) Uy + Uy =ty .

This immediately raises questions concerning the manner and degree to which
solutions of these two equations approximate each other. In particular the initial
value problems for these two equations are of a rather different character, both
requiring knowledge of

u(x,0) = f(x),

ulx,0) = g(x) ,

so that the question of the behavior of the solution of the initial value problem for
(1.2) as & — 0 falls in the category of singular perturbation problems.

One can argue physically that the solutions of these initial value problems should
not differ greatly when & is small. For (1.2) can be interpreted as describing the
vibrations of a string of small linear density moving in a Newtonian fluid. It would
thus seem reasonable that the effect of the initial velocity would be quickly overridden
by the damping of the fluid, and that, in the limit as ¢ — 0, this effect should vanish,
except possibly for an initial “boundary layer” which, in fact, does not occur.

and (1.2) in addition requiring

*) The work on this paper was supported in part by Marathon Oil Research Center, Littleton,
Colorado, :

683



In his Yale lectures HADAMARD [5] notes that the Riemann function for an equation
similar to (1.2) tends in the limit to the fundamental solution of the heat equation.
In a series of papers beginning in 1959, M. ZLAMAL (see especially [11] where he
surveys his results and refers to the previous papers) has studied this problem for
equations with variable coefficients. He has treated, for various cases, both the
Cauchy problem and the mixed initial-boundary value problem. He does however
require rather heavy smoothness of the initial data.

More recently KOPACKOVA-SUCHA [6] has treated a mildly nonlinear case which,
in its linearized form, is equivalent to the equation we discuss in the present paper.
She gets theorems on the structure of the solution, again under heavy smoothness
conditions on the data, and, for our purposes, an unnecessary positivity hypothesis
on a coefficient.

We show in this paper that for the case of constant coefficients, a simple direct
method based on Hadamard’s observation serves to show the convergence under
rather weak smoothness on f and g. In fact, we require little more than that the stan-
dard solution formulas make sense.

The most general second order hyperbolic equation in two dimensions with con-
stant coefficients can be reduced to

(1.3) U, +u, =uy +cu+ F

where F may depend on x and t. This equation is equivalent to the linear case discussed
by Kopackova-Sucha, except that she requires ¢ > 0. For our purposes this is the
simplest form in which to consider the general case of this equation. The Cauchy
problem asks for a solution of (1.3) satisfying the initial conditions

(1.4) u(x,0) = f(x), ufx,0)=g(x). ;
To write down the solution of this equation it is convenient to introduce the fol-
lowing notation:
B = /(1 +4e*c), R =R(x, 1) = /(1 —&x**),
and ©
I(z) = e ™2 J (ze™?) =Y (42)2**[[m!' T(m + v + 1)]

i=o
is the modified Bessel function of the first kind of order v. The formal solution of
our Cauchy problem (1.3), (1.4) is given by

u(x, t; &) = ;;3_1 [ﬁ erm:f(c) e™"2¢ [ (BtR(x — &, t)[2¢?) dé] +

2 x—tle

x+t/e
+ 3 I 9() 2 I(BiR(x — &, 1)26?) d —

x—t/e

t x+(t—1t)/e
— zl I dt j " F(& 7)) e 7922 [(B(t — 1) R(x — &, t — 1)[2e%) d¢
€Jo

x=(t—1)/e
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or

(13) u(rti) =30/(x + o) + 0x ~ 1] €5+

_1- r'x+t/:f(§) e,,/nz Io(BtR(x - ¢ t)/262) dé +
48u x—t/e
+ B[ ey e L L(BIR(x = & 0267) dé +
46.‘ x—t/e R
e px+t/e 2 2
£ [ g(e) e L(BIR(x — € )26 d¢ +
2 Jx—tle
r -0/
L j TR 8 1) e (Bt — 1) R(x — &, 1 — 1)[262) &
28.« 0 x—(t—1)/€

which can be derived by Riemann’s method, and is a well known, standard formula.

We define k,, k, and k by

L -z [ (BtR(x, 1)[262), e2x* < 12,
ko(x, t; &) = < 2¢
0, e2x2 = 1%
R(x, t)] e~ "% I,(BtR(x, 1)[2¢?), &*x> < ¢,
ki(x, t; &) = {[8/28 x (BHRG. 0]22°) 2.2 5 g2
0, ext 2 t7,;

and
k(x, t) — (47”)—1/2 ect-—x2/4t ;

where we assume ¢ > 0 in all three formulas. With these definitions (1.5) becomes
(16) u(x, t; 8) = 7[f(x + 1/8) +f(x - 1/8)] o128 +
e R R B O L

+¢? J-w ko(x — &, t; 8) g(£) dE — j dtho ko(x — &t — 1;€) F(§, 1) dE.
0 -

With ¢ = 0 equation (1.3) reduces to
(1.7) U, = Uy + cu + F.
The initial value problem for this equation requires only the data
(1.8) u(x, 0) = f(x)
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for the unique determination of a solution, which is then formally given by

(19) u(x, ) = j ”

K(x — & 1) £(&) dé —J"drf K(x — & t — ©) F(&, 7) dé .

In the following we want to compare these formulas for u(x, t; &) and u(x, t) for
small ¢.

2. ESTIMATES ON THE KERNELS
We establish the following

Theorem. Let T > 0 be given. If ¢ > —1/4¢?, then there is a constant C,, depending
only on the lower bound of B = /(1 + 4ca2) and a constant C,, depending only
on the upper bound of B for which .

(2.1) 0 < ko(x, t; ) < Coel*\Tk(x,7), 0<t<T;
(2.2) 0 < ky(x,t;8) < Cre!Tk(x,1), 0<t<T;

and if ¢ 2 0, then

(2.1) 0 < ko(x, t; &) < 4k(x, 1), 0<t;

(2.2) 0 < ky(x, t; €) £ Cik(x, 1), 0<t.
Proof. We remark that for z = 0 we have

(2.3) 0=<1I4(z) S €, 0=1(2) < €z,

the first being of interest for small z, and the second for large. That Io(z) can be
estimated by some constant times e, and by some constant times e’/\/ z, follow from
continuity and the standard asymptotic formula for Io(z), and that is all that is
really needed here, except for the verification of the constant C, = 4 on the right
hand side of (2.1), and the number 4 plays no significant role in the following. The
estimates (2.3) as stated, however, can easily be calculated, for example, from formula
(7) p. 81 of [4].

Choose r between 1 and 2 and consider the case |x| < ¢ (2r — 1)"/?[er so that
R(x,t) = R > (r — 1)[r. Then we have by (2.3),

172
ko(x, t; &) < e "/2¢ ePtRI222g(BtR [262)1/% < o c¥*/2! (____B(27tr 1)) k(x, ).
r —

If ¢ = 0 we estimate the exponential by unity. If ¢ < 0, the exponent is positive and
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x*[t < t[e? so
1/2 1/2
Kofx, 1; ) < e~c1/2 _3.1’_’_) Kx, 1) < T (=2 N k).
B(r — 1) B(r — 1)

With the same choice of r we consider the case t (2r — 1)‘/2/gr < lx| < tfe, so
that R < (r — 1)[r. Then

ko(x, t; 8) < e—t[ZczeBtR/Zt:z/zs < e—ci/recte~t/2a2r/28 )
The first factor e~ is estimated by unity for ¢ = 0, and by el<IT for ¢ < 0. Thus
1/2 ~t/4e%
ko(x, t; &) < €°IT (4m)*/2 L e~ (1482 =n)r ___\_/e"e v .
= 4¢? (4mr)i 2

Again t[e* > x?, so the bracketed factor is bounded by k(x, ). And by observing
that ze™ %" < 1/(2ea)'/? for z = 0, we get

‘ 2nr \Y2
ko(x, t;e) S ellT{ ——— ) k(x,t).
192 8 (T5) e

Equating the coefficients in these estimates we choose
leading to the common estimate

2 1 1/2
ko(x, t; &) < eleIT (Zn (B + —)) k(x, 1),
e

with el¢IT replaced by unity for ¢ = 0. It only remains to get the estimate 4 for the
radical if ¢ = 0. But then B 2 1, e > 2 and = < 3.2, whence ko(x, t; &) < 4k(x, f).
For |x| = t[e the theorem is trivial. Similar estimates on ky, using I;(z) <

r = (2e + B)/(e + B)

ze* and
I,(z) £ ¢°[{/z, establish
ki(x, 1; 6) < (2nB)!2 [2 + 3Be]*'2 el1Tk(x, 1)
with e!¢IT replaced by unity for ¢ = 0.
We close this section by observating that

L[~ 1 (e 2
(2.4) —J ko(x, t; &) dx = —J ko(x, t; ) dx = B~'e™">*" sinh (Bt]2¢?)

2 - 2 —tle

and

© t/e ‘
(2.5) %J ky(x, t;8)dx = %J ky(x, t; &) dx = e”"/?**[cosh (Bt[2¢?) — 1] .

- ® —-t/e

These formulas follow by expanding I, and I, by their power series and integrating
termwise.
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3. ASe—~ 0.

On the basis of the asymptotic formula

I(z) ~ €[{/(2nz) as z—> o
one easily establishes

ko(x, t; €) = k(x, t) as &0
ky(x, t; €) = k(x, 1) ’

and even that the convergence is uniform on compact subsets of the half plane ¢t >
= t, > 0. From this observation, and from growth conditions on f and g of the
form

()] < Aee, Jg(x)] < e

it follows easily that u(x, t; &) converges to u(x, t) for 0 < t < a, and in fact that the
convergence is uniform on compact subsets of the strip {0 < t < a, —0 < x < o0}.
This still leaves open the possibility of a boundary layer effect for small ¢. It is, for
example, clear that such an effect must occur for u,: suppose f € C2, then u(x, 0) =
= f"(x) while u(x,0,¢&) = g(x) for ¢ > 0, and the convergence of u/(x, t;¢) to
u,(x, t) is, by the same sort of arguments outlined above, uniform on compact sub-
sets of the strip. That no such effect occurs in the case of u itself is of some interest.
It is perhaps physically surprising that the difficulty in establishing this arises not
from the contribution of u(x, 0; £) = g(x) but rather from u(x, 0; ¢) = f(x), though
a glance at the formulas for u(x, t; s) shows that f enters the solution in a much more
complicated way than g, and that the integral involving g has an &2 factor compared
to a similar integral involving f.

Theorem. Let A, a, M, b be positive constants with b < a. Let g be locally
integrable on the reals and F on the strip {0 < t < a, —o0 < x < oo}. In addition
let f be continuous,

(3.1) [f(x)] < 4e/*, |g(x)| < Ae™/*
and
(3:2) |F(x, o) < 4%, 0<t<a.

Then given n > 0, there is an ¢, > 0 such that
(33) Iu(x, t;€) — u(x, t)l <n for 0<e<eg

uniformly for |x| SMO<t=Zbh

Before we begin the proof we comment that for u(x, t; &) and u(x, t) to be classical
solutions of the problems posed in Section 1, additional smoothness is required, and
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the growth conditions (3.1) and (3.2) are not needed for u(x, t; €). For example, it is
sufficient that fe C2, ge C', Fe C' for u(x, t;¢) to be a classical solution of its
Cauchy problem, and it is sufficient that f be continuous, F € C* and f and F satisfy
(3.1) and (3.2) for u(x, t) to be a classical solution of its problem. Under the assump-
tions of the however, both are generalized solutions.

We assume 0 < ¢ < 1, and is so small that £ < B < 3 so that C, and C, in the
theorem of Section 2 are absolute constants. We will use K as a generic symbol for
absolute constants, and H as a generic symbol for constants depending on at most
A, a, M, b, and the coefficient ¢. The Landau symbols 0 and “0” may also depend
on A,a, M, b, and c. In particular, all constants and Landau symbols will be in-
dependent of both & and the symbol D which we will shortly introduce.

Initially we suppose F = 0 and return to the case F = 0 later.

First we dispose of the contribution arising from u,(x, 0; €) = g(x). We have

A

]szjmo ko(x — & t; €) g(&) dél < azACOeIC'"J.w k(x — & 1) /% dE =

-0

IIA

a 12 2/4(a—
= 82Acoe|c|aec! e ex/ (a—1t)

2 a 1z 2/4(a—b
e2AC el [ — ) MU4ab) _ g2p
a—t

a—b

We make some preliminary estimates on f. If « = 0 then

2
2My gﬁz +a?y?,
o

which follows from (ay — M/x)* 2 0. Thus from (3.1) we get, for |x| < M
lf(x + y)l é Ae(x+y)2/4a .S_ Ae(M+[y])2/4a § AeM2(1+1/12)/4a eyz(l +a2)/4a .
Choosing « = ((a — b)/(a + b))'/* gives

(3.4) If(x + v)l < He2@h) |

for |x| < M.

And for 0 < t < b we have

1 1 _2-a-b_ _ a-b
2a+b) 4 4a+b)t 4a+b)t
so that
(3.5) eyz/Z(a+b)—y2/4t < e—yz(a—b)/4(a+b)l - e—-yzaz/4t

for0 <t < b.
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Since f is assumed continuous it is uniformly continuous on any compact interval,
and there is, for each such interval a uniform modulus of continuity  such that

|f(x) = 7)] = 8(]x = »l)
for any x and any y in the interval. We take the interval to be of the form
|x| =M +2D

where D will be specified later.

We examine [f(x + tfe) — f(x)] e"* for |x| £ M, 0 < t < b. Then for any D
with 1[2¢® < D we have

[f(x £ tle) = f(x)] 77" < &(tfe) < 6(2D),
and for t[2e> > D we have
If(x)| e” 7% < He P,
By (3.4) we have

2
x + tle)| e7?¥ < Hex ——(—tie—)—-————t < Hex _t_a < He P2
4 P - p[Z(a +b) 2%] PL” 224 +b]

so that

Fx £ tfe) = 1) €% < e
Given n > 0 we choose D so large that

He ™ P? < y[2.
With D chosen, ¢ is determined, and we choose ¢ so small that

5(2De) < nf2.
Thus, for le < M,0 <t =< b we have

|F(x £ tfe) — f(x)| e™* < n[2

if ¢ is sufficiently small. In particular

$[/x + 1) + £(x — 18] €7 = f(x) €72 + o(1),

and so

(36) o) = f ) [ko(x = & 158 + Ku(x — & 136)] dE +
h + f(x) e="2 + o(1)

where o(1) is small for small ¢, uniformly for le <SMO0<t=Zhb.

690



We have been at pains to elaborate this simple argument for the following reason.
The main body of the argument follows this one in outline: we estimate the difference
u(x, t; €) — u(x, ¢) first for #/2¢* < D, then for t[2¢* > D, then choose D large and ¢
small. While in outline our argument now proceeds to repeat itself, the details are
more complicated and the estimates more tedious.

We assume now #[2¢* < D, and estimate u(x, t; ¢), as given by (3.6), by the mean
value theorem and (2.4) and (2.5) to get

u(x, t; &) = e~"*[(1/B) sinh (Bt[2¢?) + cosh (Bt[2¢?) — 1] f(%) +
+ f(x) ™22 + o(1)
where |x — X| < tfe < 2De. Since 1/B = 1 + O(&?) we calculate
u(x, t; ) = e®V2 £(3) + [f(x) — f(F)] e™%* + 0(g?) 2P + o(1).

After sorﬁe reduction this is easily seen to yield

u(x, t; &) = f(x) + O(De?) + O(8(2De)) [P + 1] + O(e?) P + o(1) .

The given n > 0, for arbitrary but fixed D, we have

|u(x, t; €) — f(x)| < n/2

if ¢ is sufficiently small, ¢[2e* < D, and |x| <M.
It is a well known property of the kernel k(x, t) that

u(x, 1) = f °° k(x — & 1) /(€) &

tends to f(x) uniformly on compact sets as t — 0. Hence

lu(x, 1) = f(x)| < nf2

if t < 2De?, and ¢ sufficiently small, and |x| < M. This, together with the previous
estimate yields

]u(x, t;€) — u(x, t)| < r]

for arbitrary but fixed D with #/26* < D, |x| £ M, and ¢ sufficiently small.
We now assume #[2e> > D, and consider

u(x, t;8) — u(x, t) = % Jf [ko(x — & t;8) — k(x — & 1)] f(£) A& +

e[ D=6 5K 017045 410) 1) =
=T, + T, + Ty + o(l) respectively .
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Clearly
() 1) < [ 5 <m0

for [xl < M, and we proceed to estimate 7.

In the integral defining T substitute £ = x + y and write

1 —t/2¢ t/2¢ ©
- _{f +J' +f }f(x ) [koy. 13 6) — k(s )] dy =
2 )-w —1)2¢ 1/2¢

=Ty, + Ty, + T;3 respectively.

By (2.1) and (3.4) we have

0 2 eclH @© 2 2
|| + |Ths| £ HJ‘ &2@*D k(y, 1) dy = H-f @2ty g=yAt gy
t/2¢ ’

t/2e \/t

By (3.5) we estimate further:

T + |Tia| = = j " emmrrsngy < Hmaiaa J' Temmrisigy <
\/t t/2¢ \/ 0

< He— /3282 < He~**D/16

To estimate T;, we use |Io(z) — €*/(2nz)' ?| < Ke*[z*/2, z = 0, which follows from
the continuity of Io(z) and the standard asymptotic expansion. It is of interest only
for z bounded away from zero, which is precisely the circumstances here. We get
immediately

t/2¢ .
2(a+b
lleléf Qe
0o

- 2 2 —y2
e t/2¢ eBtR/Z: ecte y2/4t

26 2nBIR[26%)' 2 (an )”2

dy = Ty,; + T,,, respectively,

t/2¢e ey2/2(¢1+b)e—t/ZBZeBlR/Z»:2
+H 2)\3/2
0 2¢(BtR[2¢2)%

where R = (1 — ?y?[t?)"/?, B = (1 + 4ce®)'2.

In the integrand we have 0 < y < t/2¢, so R /3/2 and using \/(1 +h) <
<1+ hJ2 for h 2 —1 we compute

TIZZ < 3/2J 2/2(a+b)e—l/21:1 t/2e2+ct— y2/4t —ce2y2/2¢ dy <

2
< Heg e._azyzl,“d < H

He” & H
I N \/
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And in Ty,, we factor
ete™"1%_ /(4ntBR)

out from the absolute value, use (3.5) and gt

t/2¢
Tiay < EJ e™**lexp [y?[4t — ct — 1|26 + B1R|2e?] —

Vtlo
— exp [4log (1 + 4ce?) (1 — &2y*[1*)]| dy .
The exponents of both exponentials inside the absolute value signs are bounded

above. Then, since |e’ - e5| < K[C - zl < K([C| + |z|) if { and z are bounded
above, we get

H t)2e _
T2y £ — e w4t +

=7,

+ 3log (1 + 4ce?)| + 4 log

2 2,2 2,4\1/2
t t 4
Yoo - b L[ pdeer - 28 L 2YE
4t 262 2¢? 1? 12

82_}72
(-5 )

J(L+h)=1+h]2+E where 0<E<h*2

We estimate the square root by

if h > —1,and
llog (1 + h)| < K|h| for |n| <3.

We observe that in the first absolute value, the first three terms arising from the
square root cancel with the three standing in front of the square root. Then estimating
y[t by 1/2¢, and t by a we get finally,

t/2¢ 2.2
Tz H Pl Rty P
JtJo 1?

where, as usual, H has a new, but constant value. Substituting z = ay[2 ,/t, and
integrating from 0 to oo we get

Ty», < H[e* + &2[t] = He?[t < H|D .
The integral T, can be estimated in a similar way. Then our argument is as before:

We choose D sufficiently large that

lu(x, t; &) — u(x, )] < n

for t/2e* > D. Then choose ¢ sufficiently small that the inequality holds for 1/2e> < D.
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To complete the proof we have only to discuss the case where f = g = 0 and F
satisfies (3.2). Then

]u(x, t; &) — u(x, t)l < A‘[‘dr J”w]ko(x —Et—t58) — k(x — &t — r)I e de =
1] -
= AJ.'_”erwo |ko(x — &t — 158) — k(x — &t — 1)| /% dE +
V] - 00

+ AJW er\aO [ko(x —&t—te)—k(x — &t — ‘L')I e dE =
t—3 -

= T, + Ts respectively .

We estimate Ty first.

t w :
Ts < A(Co + 1) e"'[“.“ d‘rJ‘ k(x — &t — 1) e84 dE =
t—o - ©

1/2
= A(Co + 1) elela ‘ =9 a ! ex2/4[a-(l—t)] dr <
E a—(t—1)

t—

a 1/2
< A(Cy + 1) elel@+d (———) M4@=b) 5
- a—b

for]xl§M,0<t§b.

As for T,, we remark that the previous calculation (for t[2e> > D), contains a proof
that '

J‘oo 'ko(x - 6, t —1; 8) _ k(x —_ 6’t — T)' e§114a dé

converges uniformly to zero for 0 < § < t — 7 < a, and hence so does T}.

4. THE HIGHER DIMENSIONAL CASE

We comment very briefly about the higher dimensional case. The solution formula
(1.5) is available there. For example, these are given explicitly for dimensions 2 and 3
for the equation

u, + u, = Au

in [3] p. 695, and can be written out for any given dimension by the metths used
there. Then a change of scale of £ on the t axis and ¢ in the x space reduces this
equation to

e*u, + u, = du .
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The solution of the initial value problem for this equation can then be written out,
and the argument, only slightly more complicated, in detail can be carried out,
yielding the same result.
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