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1. Introduction. An important and pertinent problem in connection with N + 1-
point Lagrangian Interpolation for a continuous real valued function defined on,
say, the interval [ —1, 1] is the choice of a set of points where we require the inter-
polating polynomial to coincide with the function. The set of zeros of Tchebychev
polynomial Ty, ,(x) is the classical solution of the problem [cf. [1] p. 262 appendix
II]. However, this is inapplicable in interpolation for a function of 2 or more variables,
because there is no adequate generalization of these polynomials to cover the case of
more than one variable.

In the present paper a method not depending on orthogonal polynomial is outlined
for choosing the best points for Lagrangian Interpolation for functions of one
variable.

If we make the interpolating polynomial agree with the function at the zeros of
a Tchebychev polynomial of appropriate degree, we obtain the best approximation
in terms of the uniform norm. We shall work with the ‘“least-squares norm” i.e., we
seek to minimize the average of ’

JIECREORY

over a class of functions which for the moment we shall denote by C. Obviously we
need a probability measure on C. If we denote this measure by u, then we seek to

e [ 10 - o adf s

We take C as the set of all functions

x(t) =Y xt'[-1<t<1]
i=0
where

el = Sl < 1.
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The set C, then, is clearly the unit ball S, of the sequence space I'. We observe that
given any x € I!, an appropriate scalar multiple « . x is in S,. Also I* includes all
polynomials of all degrees. EBERLEIN [2] defined an integral on W*-continuous real
functions on S, which we shall call Eberlein integral. The completely additive
measure induced on S, by this integral which we denote by dgx, is the measure
which we use in the following work.

I wish to thank Dr. V. L. N. SARMA, who has suggested the investigation and helped
me in various stages of the work.

II. Formulation of error. Let J = {ao, a;, ..., ay} = [—1, 1]. Consider the poly-
nomial

20) Pl = 50 (@)
where
1) s == e (=) =) (= a)

(a; = ao) ... (a; — a;-1) (a; = ;1) ... (a; — ay)

“Mean square error” in representing x(f) by py(?) is
1 1 n
(22) I[x(f) — pu()]* = 5'[ [x(t) = X si() x(a;)]* dr.
-1 J=

If we regard the root mean square error as a random variable over S, a global
measure for the error associated with our choice of interpolation points is given by
the variance of this random variable. Accordingly we write

(23) o*(J) = j [1{x(t) — pn()}*] dx
The intergrand in R.H.S. of (2.3) is

(2.4 I(x*) — ZJ;NOx(aj) I(s; . x) + iio jﬁox(ai) x(a;) I(s;s;) -

Now
o] -] e -] e
23)  I(x?) = z Y x, j mindr = Y Y Cmnrt
=0 n=0 -1 m=0n=1m+n+1

where e, = 0 (n is even) or e, = 1 (n is odd). As is easily verified that

(t)=~2( 1)ioj"" (0<j<N)
; i=0
where J

(254) =; =(a; — ao) (a; - a,) co(ay—a5-g) (a5 = aj44) ... (a; — ay).
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and

(2.5B) o} = Y Ay - gy -+ Ay,
m>m;>.. . >m;

where m, takes values 0,1,2,...,j — 1,j+ 1,..,Nandt =1,2,...,, i, and
g;=1 for j=0,1,..,N.

We have
1 N = o
s - — Y Y(=1)iaix N in
T; i=0 n=0
and
16,9 = =TIy sl
min=0 (i=0 N-i+n+1
Then
i ad N—it+n+1 i m
x(a)I(s; . x) = —,-mzo,.zo {.Zo(—l) —_—majaj}xmx,I
and

(26) ~23 x(a)1(5-) =
R I e L Ea

m=0n=0 (i=0 j=g —i+n+1
Again
(26A) I(s s)-—L% i(_l)q+pa.po.q €IN-p—g+1
. i+ 9j TL’i‘II’-p=0q=0 lJzN—p—-q-{.l
and

uMz

(2.7) Z ZX(a,) x(a) I(s; - s ,,20 2 i

i=0 j=0

s;) aval} Xpx, .

Thus ¢%(J) is integral of sum of the right sides of (2.5), (2.6) and (2.7) over S,,.
We now compute three integrals separately:

(2.8) J;ml(xz) dx =Y 3 (it—*l—) L Xy dgx =

m=on=0o\m + n + 1
Sagtd €min+1
= —_—tninrli cf. [2]] =
§ 5 () e
L+ =

LS AN on 1) = L tog | —B) = L
*\/32(\/3) /(2 = aE 23 eI

[
Sl-
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(29) J' ) [—2j§§0x(aj) 1(5,%)] dix =

-1 —N-il glgn c— =
i=0 j=0n= o( ) —z+n+1 T g1 m;
N 1 N ; 0 en—i+1 n N N
= — oty — N-itl = -2 (-1 JA
;n; 2l ..201\r—z+n+13"+1 .go,;o ) "
where we have used the abbreviation
Gt en_: a"
29A A=Yy — Cn-ivr 45
(2.94) ! n‘_‘-:oN—-i+n+13"“
and
N N 0 (aiaj)m
(2.10) [2 zx(a)x(a)l(slsl)] dex =% ¥ ¥ I(sis) A
S, i=0J=0 i=0 j=0 m=0 3m
Yo I(sis;)
- .go j;o 3 - aq;

Thus finally we have 6%(J) = the sum of right sides of (2.8), (2.9) and (2.10) i.e.

(2.11) ¢*(J) = Lo, 2+3) - 2.:20 ﬁ 1)' % A,, + f ﬁ o)

2\/3 i=0 j= o3—aa

The best choice, in the “least-squares norm”, of the points a,, a, ..., ay is that which
makes ¢%(J) a minimum as a function of a,, ..., ay.

III. Outline of method for the choice of the almost best symmetrical points with
respect to origin for Lagrangian interpolation in some special cases. First, take N = 1
then (2.11) reduced to

(3.1) o¥(J) = 3loge(2+\/3) 21 ;‘0(—;)" I I (O

\/ i=0 j j ;=01=o3—aa

take J = {—a, a} where a € (0, 1].

Substituting the values of ¢}, 7;, 4;;and I(s;s;) [which are obtained by usirg (2. $B)
(2.5A), (2.6A) and (2.9A)] in right side of (3.1) we get

2
]oge(2+\/3)+%+ 10 _3+a10g3+a

1
2.3 a* 309 - a*) a® 3-a

(32) ¢*(J) =
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For convenience we denote right side of (3.2) by f (@). Now the problem is to choose
the point ““a” for which f(a) is a minimum. To solve this problem we find f*(a) which
comes out to be

(3.3)

4043 9 + a? 34+a 1 [2a%® + 54
+ log, —— — —(——).
3(9 — a*)? a* 3—a a*\9-a*

(3.3) can be written as

3 4 8 2 3 5
(.4) R [y 20 30 0+ fa Ly Ly ]
35 9 92 a 13 33) 53

2a2+54{1 a> a* ab }

By truncating the term whose degree in a is greater than or equal to 6 from (3.4) we
get the polynomial

1 /136 3992 8
3.5 —[——a° - a®+=a).
(3.5) 3 (7. 3% T35 s

(3.5) has a real root in close neighborhood of point 0-6 which is approximately equal
to 0-61 ... Keeping this fact in mind, we started trial approach to find zero of f’(a)
and we obtained the point 0-607 ... as a better value for which f(a) is approximately
a minimum. We find f'(0-607) = -000013 and f(0-607) = -004288.

Secondly, take N = 2. In this case let J = {——a, 0, a} for 0 < a £ 1, then after
substitution and simplification in the same parallel way as in a previous case (2.11)
reduces to

9 + 3a2 3+a
2 —_ —
(3.6) o (J) = 28649122 g loge3 . +

1 (54 20 13 20, 1.,
M i e el
9—-a*)la* a* 5 9 3

we denote right side of (3.6) by F(a). The problem of minimization of ¢%(J) in this
case reduces to the problem of minimization of F(a). We get, therefore,

45 + 942 log 34a 18a% + 54
a® ‘34 a’(9 — a?)

+——~1' ij'—32—3ﬁ)+80a-——1944—ich—-igas .
O—-a*)¥la a a® 5 9

(3.7) Fa) =
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The polynomial that we obtain after cutting out the terms having degree 5 or
greater than 5 in a, is

1 56 12258 104
3.8 — at — a’> + —
(35) 3 (11.34 353 35)

(3.8) has a real root near 0-8. By the same trial approach as in a previous case 0-799
is obtained as a better value at which F(a) attains its approximate minimum, which
is equal to -000420.

The Method generalizes easily to functions of several variables; but useful results
cannot be obtained without the aid of computer.
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