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1. INTRODUCTION

Presently, the treatment of dependence in the lattice theory follows much the same
line (e.g. G. BIRKHOFF [ 1], M. L. DUBREIL-JACOTIN, L. LESIEUR and R. Croisor [10],
H. HerwMes [11], D. E. RUTHERFORD [16] or G. SzAsz [18]):

A finite subset I of atoms of a lattice Lis said to be (linearly) independent if, for

any ael,a ¥ V x.If Lis an (upper) semimodular lattice of finite length, then
xel\ (a)
all maximal independent subsets of atoms of L have the same cardinality called the

rank of the lattice L.

Hand in hand, the concept of linear dependence, as well as the restriction to the
atoms and to a particular type of lattices in this formulation impose limitations for
certain algebraic applications. In some problems of universal algebra, the appropriate
concept of dependence is that of direct dependence which may be defined as follows:')

A set I of elements of a (finitary) universal algebra o is said to be directly indepen-
dent if, for every x e I, the subalgebras generated, respectively by {x} and by / \ {x}
intersect trivially (i.e. in the subalgebra of all constants of 7).

Such a concept has proved to be of value in abelian groups and, more generally,
in modules and rings (e.g. L. Fuchs [9], the author [3], [5], [6] and [7]).

Observe that direct dependence is, in fact, defined on the set of all monogenic (i.e.
one-generator) subalgebras of o/ and can be therefore naturally extended to the lattice
of all subalgebras of .o/. The next obvious step is to modify the definition of direct

1) To be distinguished from some other concepts of dependence in algebras (cf. e.g. E.
MArczewski [12] and J. ScumipT [17]). As one would expect, in algebras of some type the notions
coincide; for example, Marczewski’s dependence coincide with direct dependence in v- and
v*-algebras of [13] and [14], respectively. Incidentally, this may explain the fact that the authors
have succeeded in establishing an invariant rank in these cases.
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dependence for arbitrary lattices (Definition 4) and study this concept in the frame-
work of the lattice theory; this is the modus operandi of the present paper.

We shall introduce certain properties of lattices to be able to prove the invariance
of the rank of a lattice, as well as of some other cardinal numbers (useful in universal
algebra applications). In effect, we shall show that, with respect to direct dependence,
a subset of a lattice is under certain conditions a GA-dependence structure of [2]
(see also [4]). We can see in [8] that these conditions are very natural. For, in [8],
every (abstract) GA-dependence structure is shown to be of such a lattice direct
dependence type.

As an application of our results to an arbitrary (upper) semimodular lattice, we
get the following extension of the result mentioned at the very beginning of our
introduction:

All maximal independent subsets of atoms of a semimodular lattice have the
same cardinality.

Also, the relation between direct dependence and J. voN NEUMANNS’s dependence
of [15] is described.

2. PRELIMINARIES

~ Unless stated otherwise, Lis always a lattice with the least and the greatest element,
denoted by 0 and 1, respectively. The symbols A and v are used to denote the meet-
and join-operation in L; in particular, for a subset X = L, A(X) and V(X) denote
A x and V x (provided that they exist), respectively.

xeX xeX |

Definition 1. Two non-zero elements a, b of L are said to be essentially equal
(in symbol, a ~ b) if, for every x € L,

xAa=*0 ifandonlyif x Ab+0.

If, in particular, a < b, we shall say that a is essential in b.

One can S,ee_easily that a meet of two elements essential in b € Lis essential in b,
as well, and that for every triple a < b < ¢ of non-zero elements of L, a is essential
in cif and only if a is essential in b and b is essential in c.

. Definition 2. A non-zero element u € Lis said to be uniform if every x € L such
that 0% x < wis essentlal in u. Denote the set of all uniform elements of Lby Uy,.

. Notice that 0 #.v.< u and u € Uy, imply that v e U;. We shall need also the fol-
lowmg concept of a tidy lattice or, more generally, of a tidy subset of a lattice.
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Definition 3. A4 subset S of a lattice L is said to be tidy if, for every non-zero
a € S, there is a uniform element u € S such that u < a.

Since every atom of Lis trivially a uniform element of L, we can conclude that every
subset S of Lhaving the property that each of its elements contains an atom of Lwhich
belongs to S, is tidy. In particular, every lattice satisfying minimum condition, or
having finite length is tidy. More generally, an atomistic lattice, i.e. a lattice L such
that, for every x € Lthere is an atom a € L with a < x, is tidy. Observe that, if Lis
tidy and the join V/(U) exists, then V/(U,) is essential in 1 € L.

3. THE CONCEPT OF DIRECT DEPENDENCE

Although we assume, as before, Lto be an arbitrary lattice with 0 and 1, the reader
may find it helpful to specialize the formulations to the case when Lis a complete
algebraic lattice, i.e. a lattice of all subalgebras of a universal algebra (see [2]); in
view of [8], this is a very natural test case. In our presentation, we include several
brief remarks to this effect.

The letter S denotes again a (fixed) subset of non-zero elements of L; the set of all
non-zero elements of L will be denoted by L*.

Definition 4. A4 subset I of Lis said to be d-independent (directly independent) if
I = L* and if, for every a €I and every finite subset F of I\ {a},

a AV(F)=0.

A subset of L* which is not d-independent will be called d-dependent.

Given a subset S of L*, denote the set of all d-independent subsets contained in S
(0 including) by S, and the set of all maximal (by inclusion) elements of S,
by M, ; furthermore, denote by g ; the set of all independent subsets of uniform
elements of S and by .#3 ; the set of all maximal elements of £ ;.

Trivially, every subset of a d-independent subset is d-independent. Equally easily,
we can see that a subset I belongs to s 1 if and only if every finite subset of I belongs
to S 1.?) Thus, applying Zorn’s lemma we have the first part of the following

Proposition 1. For every I € S5, or 1°€ S5, there exists M € Mgy, or M° e
€ M3 1, containing I, or I°, respectively. In particular,

Mgy +0 and Mgy + 0.
?) Le. (S, S s,1) is an A-dependence structure in the sense of [4].
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Evidently, always $5 ; = I 1. If S is a tidy subset, then also
ﬂ;,L g ‘/”S,L .

Proof. In order to complete the proof, assume that the last inclusion does not hold,
i.e. that there exists

o o
M°e Mg\ My .

In view of the first part of our proposition, there is a set M € .#s, properly con-
taining M°. Take a € M \ M°. Since S is tidy, there exists u € Uy such that u < a.
Now, obviously, M° U {u} ¢ # , and thus, there is a finite subset F of M° and an
element v € F U {u} satisfying

v AV((Fou {up)\{v}) =0.
Hence, if v & u, i.e. if ve F, then

o A V((F o {a)n{o}) + 0

and if v = u, then
a AV(F)zu AV(F)*+0;
therefore, F U {a} ¢ F5,, — a contradiction.

Remark. Let us point out that in an atomistic complete algebraic lattice L,
a subset I of L* is d-independent if and only if

a AnV(I\{a}) =0 forevery ael.

Definition 5. A subset S of L* is said to be balanced if, for every u;e S n U and
every finite I° € #g 1 such that u; A V(I°) = 0 (j = 1,2),

u; A (uy v V(I®) + 0 if and only if u, A (u, v V(I°) 0.
If U, is balanced, we call simply the lattice Lbalanced.

Remark. Notice that every modular lattice is balanced. For, in such a lattice,
avixga(f@vx)]=@vx)a(@avx)=av[x,Aavx)]
holds in general for any three elements; thus, if

anx,=aAnx,=0,
then

xy Aa v x,)=0 isequivalentto x, A (a v x;)=0.
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On the other hand, not every (upper) semimodular lattice is balanced; this can be
illustrated simply by the following diagram:

However, one can see easily that the set of all atoms of a semimodular lattice is balan-
ced (cf. G. SzAsz [18], p. 150).

Proposition 2. Let S = L* be a balanced subset. Then, for every finite I = Land
u¢l,

Ivu{u}e s, ifandonlyif IeS &ueSnU,&u A V(I)=0.

Proof. Only sufficiency requires a proof. Assume that I U {u} ¢ #3 ,; this means
that there is u’ € I such that

w A (v VIN{u})£0.
Hence, since S is balanced,
u A vVIN{E})=urVI) %0,
in contradiction to our assumption.

Remark. Evidently, in an atomistic complete algebraic lattice L, the condition in
Definition 5 that I be finite can be waived. The same remark applies to several proposi-
tions of this section; as a matter of fact, some formulations can be simplified as
a consequence. Also, for the same reason, some results can be extended; a typical
instance is the following corollary of Proposition 2:

M°e 3, ifandonlyif u A V(M°)+0 forevery ueSnU,.

Lemma. Let S = L* be a balanced subset. Let y be a one-to-one mapping of
a subsetI of S n Uy into S n Uy such that

Y(x) ~x forall xel.
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Then,
Ie#3, ifandonlyif Y(I)esg, .

As a consequence, in the case when I € Jg ; is finite,

u AV(I) %0 ifandonlyif u A V() *0,
for everyueS nU,.

Proof. It is sufficient to prove that I € Sg ; implies Y(I) € #3 ;. For, the opposite
implication can be obtained in the same manner (considering the mapping ¥ ™! in
place of /) and the rest of the lemma follows easily from the preceding Proposition 2.

First, notice that, for every finite subset F of I and every x € F,
Y(FN{x})u {x} e s3, implies y(F)e S35, .
For, if Y(F) ¢ 43 1, then, in view of Proposition 2,
Y(x) A VW(EN{x}) # 0,

and thus
x A V(EN () # 0,

because of (x) < x. But the latter relation contradicts our hypothesis. Hence, by an
induction argument, we can easily deduce that all finite subsets of y(I) belong to
J3.1; thus, Y(I) € F5 1 as well, as required.

The preceding lemma enables us to formulate several consequences. The following
one expressing the “canonic zone” property of U, is important.?)

Proposition 3. Let S = L* be a balanced subset. Let I° € Fg | be finite and u e
€ S n Uy such that

uAV(I?)*0.
Let a € Lsuch that x A a + 0 for each x e€I°. Then, also u A a * 0.
Proof. But, for each x € I°, Y(x) = a A x; clearly, y(x) ~ x. Hence, by Lemma,
u A VW) *0.

Since, obviously, a = V(y(I)), we have a A a = 0, as required.
The following proposition is of basic importance.

3) In the terminology of [2] (cf. also [4]), U 1. NS & S possesses the properties of a canonic
zone of (S, Fg,1); the closure operation ¢: Jg ; — 25 of [4] is related to our present notation,
evidently, by () = {x | x € S& x A V/(F) == 0 for a finite F S I} and Proposition 3 therefore
represents the implication “I° < ¢(I) implies <(I°) < ¢(I)”.
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Proposition 4. Let S = L* be a balanced subset. Let M} and M3 belong to M5 ;.
Then
card (M \ M%) = card (M5\ M3).

Proof. We propose to give a proof in three steps. Notice that, for every x e
€ M35\ M1, there is a finite subset F, of M] such that

x AV(F) 0.

Denote the union U F,bylI;hence, I = MjJ.
xXeM0N\ M0

(i) First, we show that
MINM;<1I.

For, assuming that u € M\ (I U M3), we can find a finite subset F of M3 such that
u AV(F)£0.
Also, writing a = V(U F,), evidently

xeF

x Aa=+0 foreach xekF.

Hence, according to Proposition 3, u A a = 0 — a contradiction of d-independence
of M3.

(ii) Let M35\ M3 be infinite. In view of (i),
card (M{ \ M3) < card (I).
On the other hand, evidently
card (I) £ N, card (M5 \ M3) = card (M3 \ M3).
Hence
card (M§ \ M3) < card (M5 \ M3$),

and the equality follows because of symmetry.

(iit) If M3\ M3 is finite, then, by (i), M{\ M3 is finite, as well. We shall prove
the following statement equivalent to the required equality (the equivalence can be
shown easily in a routine manner by induction):

Given an arbitrary u, € M \ M3, there is u, € M3 \ M{ such that
(M3~ {u ) v {u,} e s, .
For, given u; € Mj \ M3, we know by (i) that there is u, € M3 \ M such that
u, A V(M3 {u,})=0.
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Hence, in view of Proposition 2, we conclude

Mo = M\ {u,}) U {u,} e F5 1.
Notice that ’
uy A V(M) £ 03
this follows from the fact that u, A (u; v V(MS~{u,})) % 0and that S is balanced.

But then we obtain, using Proposition 3 (taking a = V(M,)) that M, € .3 ;.
The proof of Proposition 4 is completed.

The necessity for assuming in the above proposition the subset S to be balanced is
obvious: The subsets {u,, u,} and {u,, uy, us} of the lattice given by the diagram

both belong to .4} ;, but have different numbers of elements.

Now, we can introduce the following concept of rank of a lattice.

Definition 6. Let S be a balanced subset of non-zero elements of L. Then the
common cardinality of all maximal d-independent subsets of S n Uy is called the
S-rank t5(L) of the lattice L; in the case when S = L, we speak simply about the
rank r(L) of L.*)

Theorem. If S is balanced tidy subset of non-zero elements of a lattice L, then
card (M) < card (M}) = card (M3) = r¢(L)

#) We can call this rank uniform (or irreducible; cf. [6]) in contrast to the (total) rank of L

which can be defined as sup card (M). The tidiness of L ensures equality of both these cardinals
(cf. Theorem). Medr,L
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forall M e Mg, and M7, M5 € Mg 1, i.e.

rs(L) = sup card (M).

eMs, L

Thus, if Lis a balanced tidy lattice, then

t(L) = sup card (M) =’rs(vL)

Medlr, L

for every subset S containing UL.S)

Proof. Since S is tidy, there exists — for every ae M — an element y(A) e U,
such that Y(a) < a. Notice that in view of d-independence of M, the correspondence
is one-to-one. Moreover,

W(M) egsL-

For, otherwise there is @ € M and a finite subset F = M \ {a} such that

¥(a) A V(U(F)) + 0,

and therefore
a AV(F)*0,

a contradiction of M € £ ;. Now, the first part of Theorem follows easily from
Propositions 1 and 4, and the second part is obvious.

Since the set of all atoms of a semimodular lattice is balanced, we get the following

Corollary. If L is an (upper) simimodular lattice, then any two maximal d-
independent subsets of atoms of L have the same cardinality. If L is moreover,
atomistic, this cardinality equals to the rank t(L) of L.

Let us conclude this section with a remark on the following stronger concept of
independence in lattices (cf. J. vON NEUMANN [15]):

A subset I of lattice L is said to be d*-independent if I = L* and if, for every
two finite disjoint subsets F, and F, of I,

V(Fy) A V(F,) =0.

Evidently, if I is d*-independent, then it is also d-independent; in general, the
converse is not true. However, here we like to show that, in a balanced, tidy lattice,
both concepts lead to the same rank invariant and that our Theorem interpreted

5) Or, more generally, for every subset S satisfying Jg_L N Jli'L =4 (. Notice also that if in a
balanced lattice L the first equality does not hold, i.e. if Lis not tidy, necessarily sup card (M) =
_2_ NO' Medy,, 1

611



with respect to d*-independence holds, as well. This can immediately be deduced
from the following

Proposition 5. If Lis a balanced tidy lattice and I < Uy, thenl is d*-independent
if and only if it is d-independent.

Proof. Only sufficiency requires to be verified; we present an indirect argument.
Let I € #7 | and let
V(Fy) AV(F))=a=*0

for suitable disjoint finite subsets F; and F, of I. Since Lis tidy, there is u e U,
such that u < a. Thus, F; U {u} ¢ #7 ;. Let us take a minimal dependent subset X of
F, U {u}; evidently,

/ X=Fu{u} with 0%+FcF,.
Using Proposition 2, we obtain
uo A V(FU {u})\{ug}) # 0 with ugeF.
Now, denoting the subset (F \ {uo}) U F, of I by F,, we have clea;rly
x A V(Fo) # 0 foreach xe(Fu {u})\{uo}.
Therefore, applying Proposition 3, we deduce

g A V(Fo) £ 0,

a contradiction of I € #7 ;.

4. ADMISSIBLE DECOMPOSITIONS AND RANKS

In this final section, we intend to deal- briefly with a method of decomposition of
a given invariant of a lattice into more refined ones in a certain admissible manner.
Lattice-theoretical presentation of dependence enables us to treat this question quite
easily. Let us point out that the results are useful for applications (cf. [6], [7]).

Definition 7 (cf. H. WHITNEY [19]). By a circuit of a lattice L we understand
a minimal d-dependent subset of L.

Given a subset S, denote the set of all circuits of L contained in S, or in S n U,
by €s,1, or by €3, ,, respectively. Thus, C € €, if and only if C ¢ S5, 1, but C\ {x} €
€ S, for each x € C. Evidently, if I € £5; and a € S such that I U {a} ¢ £, then
there exists C € 5, with a € C and C < I U {a}. Notice also that a circuit is always
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finite and that, if S is balanced, then every circuit C° € 5 | satisfies

x A (C°\{x}) + 0 foreach xeC°
(cf. Proposition 2).

Definition 8. Let S be a subset of L*. A partition {S, | we Q} of S is said to be
d-admissible if, for every C°e %5, and every we Q, the intersection C° N S,
equals C° or .

Notice that if S is balanced, then all S, are balanced. Also, if all S, are tidy, then S
is tidy. The main result of this section reads as follows.

Theorem. Let {S, | w e Q} be a d-admissible partition of a balanced subset S
of L*. Let X, = S, for each we Q and X = Y X,,. Then,

we

Xeds, ifandonlyif X,e3, , forall weQ.

As a consequence,

rs(L) =a§ﬂrsw([*) .

Proof. In order to prove sufficiency notice first that X is obviously d-independent.
For, otherwise there is a circuit C contained in X and thus C = X, for a suitable
o € Q — a contradiction. Maximality of X in g ; is trivial.

On the other hand, suppose X € .#g ;. Trivially, all X, =X n S, weQ, are
d-independent. Taking an arbitrary w, € Q and ug € (S,, N U)\ X,,, we deduce
X U {uo} ¢ F5, 1 and, consequently, the existence of C° € ¥y, such that

upeC® and C° < X U {ue}.

Thus, C°n S,, # 0 and therefore, C° = X, U {ue}; the maximality of X, in
J;(WL follows.

There is always a particular d-admissible partition of a given subset S = L*,
namely
{So, S\ So}

with S, being defined as the subset of all neutral elements of S, i.e. of all elements not
belonging to any circuit in S. Thus,

S\So= U C,
) Ce¥%s,L
or alternatively,

So= N M.

Meds,L
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The equivalence of both' deﬁhitions is obvious; for,

S\Sp=S\ N'M= U (5S\M)= U C.
Meds, 1. Mets, L Ce¥s,L
Hence, for a balanced S, the rank rg(L) always splits into rg (L) and rg\ 5,(L). Notice
also that in the case when S is tidy, necessarily S, < U, and therefore

rs,(L) = card (So) .

Let us point out that, given S = L*, one can very easily describe the finest d-
admissible partition of S: Two elements a, b of S belong to the same subset of that
partition if and only if there is a finite sequence of circuits Cy, C,, ..., C, in S such
that

CinCiyy +0 for 1<is<n—-1 and aeCy, beC,

(notice that this condition defines an equivalence). Correspondingly, this partition
yields the “finest” d-invariants of the lattice Lderived from rg(L).
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