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1. Introduction. Let C denote the Banach space of real-valued continuous functions f
defined on [0, 1] with the uniform norm ||f| = sup |f(x)|.

0=x=s1
BANAcH [1] and MAzurkiewicz [6] proved in 1931 that the non-differentiable
functions f e C form a residual subset of the space (see SAks [8, p. 211]). JARNiK
investigated further the nature of Dini derivates of a residual set of functions in C

and established the following result [5, p. 49, Satz 1] in 1933:

1. “There exists a residual set of functions fe C each of which possesses the
following properties:

(a) at every xe(0,1), [D_f(x), D™ f(x)] U [D, f(x), D* f(x)] = [~ 0, 0],

(b) at almost all x€(0,1), D* f(x) = D~ f(x) = o and D, f(x) = D_ f(x) =
= —o0,

(c) at every x €0, 1), max {|D* f(x)|, |D, f(x)|} = oo and at every x (0, 1],
max {[D” f(x)|, [D- f(x)[} = oo,

(d) there exist four nonempty perfect sets M*, M., M~, M_ in [0, 1] such that
at xe M*[M,], D* f(x) = D, f(x) = o[ -o0], and at xe M~ [M_], D™ f(x) =
= D_f(x) = 0o[—-].”

As remarked by Jarnik, the part I(c) is due to Banach [1] and Mazurkiewicz [6]
and I(d) is due to Saks [8].

The result I can be further strengthened by utilizing some of the author’s results
on non-differentiable functions [4] and some on continuous nowhere monotone
functions [3]. The theorem 1 of the present note is devoted to the same. Whereas
Jarnik referred to a result of Saks [8] for I(d), we shall see that Saks’ result as well as
I(d) both are already contained in the parts (a) and (b) of Jarnik (see remark 1).
Jarnik’s result also yields results on the nature of all but a countable number of level
sets of a residual set of functions in C (see theorems 2 and 3). In theorem 4 we establish
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independently the existence of a dense set of functions in C of which every level set is
perfect and of measure zero.

2. Derivates of a residual set of functions in C. Let, for every function fe C,

E(f) = {x:D"f(x) = D" f(x) = 0, D, f(x) = D_f(x) = -},
E\(f) [E(f)] = {x :fi(x) = 0[-0], D f(x) =0, D_f(x)=—oo},
Es(f) [EN)] = {x :f2(x) = o[ —e0], D*f(x) = 00, Dy flx) = =0},

and, for every r € R (the set of real numbers), let

E(f)={x:D"f(x)=r=D_f(x), D,f(x)= -0, D f(x)= oo},
E,(f)={x:D_f(x)=r £D*f(x), D,f(x)= -0, D™ f(x)= oo},
Es(f)={x:D,f(x)=r <D f(x), D*f(x)= o, D_f(x)= —oo},
E,(f)={x:D f(x)=rzD,f(x), D*f(x)= o, D_f(x)= —ow}.

The Jarnik’s result I can then be strengthened to the following form.

Theorem 1. There exists a residual set of functions fe C for each of which the
sets E(f), E{f) (i = 1 to 4) and E,(f) (i = 1 to 4, r € R) cover all the points of
(0, 1), whereas

i) E(f) is residual in (0, 1) with its measure equal to 1,

ii) each of the sets E(f) (i = 1 to 4) and E,(f) (i = 1 to 4, r € R) is of the first
category with its measure equal to zero and has the power of the continuum in
every subinterval of (0, 1), and

ii) for each r € R, the sets E;(f) N Ey(f) and Es(f) 0 E,(f) are both every-
where dense in (0, 1). .

Proof. According to Jarnik’s result there exists a residual subset C, of C such
that for every function f € C, the parts (a), (b) and (c) of I hold.

Let f € C,. It follows from I(a) and I(b) that f is a non-differentiable function of the
Weierstrass type [4, p. 135], i.e. the knot-points of f, viz. E,(f), cover almost all the
points of [0, 1]. It, therefore, follows from author’s [4, p. 141, prop. 3] that each of
the sets E(f) (i = 1 to 4) has the power of the continuum in every subinterval of
[0, 1]. Moreover, since every non-differentiable function is a nowhere monotone
function of the second species [3, p. 83], it follows from author’s [3, p. 87, th. 5]
that E,(f) is a residual subset of [0, 1], and from [3, p. 86, th. 4] that, for every reR,
each of the following four sets

EL(f) = {x: D7 f(x) = r}, Ep(f) ={x:D_f(x) =1},
E5(f) = {x:Dsf(x) = r}, E(f) = {x: D™ f(x) = 1}

538



has the power of the continuum in every subinterval of (0, 1). The part i) of the
theorem thus holds for every f € C,, and since the complement of E;(f )‘is a set of the"
first category with its measure equal to zero, the same is true for each of its subsets.
Moreover, at x € E1,(f) it follows from I(c) that D, f(x) = — oo and from I(a) that
D~ f(x) = o and D_ f(x) £ r. Thus E}(f) = E,(f), and similarly E;(f) = E,(f)
for each of i = 2 to 4. The part ii) of the theorem thus also holds for every f e C,,.

It is clear from I(a) and I(c) that for every f € C,, the sets E,(f), Ei(f) (i = 1 to 4)
and E,(f) (i = 1 to 4, r € R) together cover all the points of (0, 1). The sets E,(f)
(i=1tod,re R) are, however, not all mutually disjoint. Since f is a nowhere mono-
tone function of the second species, for every r € R, the function g(x) = f(x) — rx
(0 <x = 1) is continuous and nowhere monotone and so has maxima and minima
at sets of points S, and S, both everywhere dense in (0, 1). At x € S; we have
D* g(x) £0 < D_g(x), i.e. D* f(x) < r < D_f(x), whence by I(a) we have
D* f(x) = r = D_f(x) and by I(c), D, f(x) = —o0, D~ f(x) = co. so that x e
€ E(f) n E;(f). Thus E(f) N E,(f) o Sy, and similarly E3,(f) n E,(f) = S,
whence both the sets are everywhere dense in (0, 1). This completes the proof of the
theorem.

Remark 1. In the above proof only the first three parts of Jarnik’s result I are used.
The part I(d) was deduced by Jarnik from the following result of Saks [8, §2): “Every
continuous function with the exception of a class of the first category in the space C,
has a right-sided derivative + oo at a non-denumerable set of points”. Clearly, this
result of Saks as well as I(d) both follow from the above theorem.

Remark 2. It remains to determine exactly one derivate of f e C, at the points
of E,(f) (i = 1to 4, reR). As suggested by the derivates of the Weierstrass’ non-
differentiable function [4, p. 142, th. 2], perhaps the undetermined derivate at each
point of E;(f) is either r or infinite (the sign being uniquely determined by the ine-
quality satisfied by that derivate).

3. Level sets of a residual set of functionsin C. If a function fe C is non-differentiable,
all of its level sets f ~*(c) = {x : f(x) = ¢} (c € R) are non-dense and except for a set
of values of ¢ that is of the first category [2, p. 60, th. 1] and of measure zero [7, pp.
31, 33], all the level sets f ~*(c) are perfect sets of measure zero. The same is, therefore,
true of the level sets of a residual set of functions in C. The Jarnik’s result I, however,
yields even further

Theorem 2. There exists a residual set of functions f'€ C of which every level set
is non-dense and except for at most a countable number of them, each level set is
a perfect set of measure zero.

Proof. Let C, be the residual set of functions f e C for which I(a) holds, and let
feC,. Thena point x € (0, 1) is an isolated point of the level set f ~*(c), where f(x) =
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= ¢, if and only if f has a strict maximum or minimum at x. Hence if G denotes the
set of strict extremum values of f together with f(0) and f(1), G is at most count-
able and for every ¢ ¢ G, each point of f ~*(c) is a limit point of the set. As f is conti-
“nuous, each of its level sets is closed, and so f ~*(c) is perfect (possibly void) for every
¢ ¢ G. Also since f cannot have a line of invariability, f~*(c) is non-dense for every
ceR. :
The function f is obviously measurable and so is each of its level sets. Let H denote
the set of values of ¢ for which f ~*(c) is of positive measure and let, for every natural
number n, H, = {ce R :mes f "*(c) > 1/n}. Since the level sets of f are mutually
disjoint and their union has its measure equal to 1, each of the sets H, is finite,

o0

whence H = |J H, is at most countable. Clearly, G U H is also at most countable and
n=1

for every ¢ ¢ G U H, f*(c) is a perfect set of measure zero. Hence the theorem.

We next observe that if fe C; and A€ R, then the function g(x) = f(x) — Ax
(0 < x < 1) is again a function belonging to C,. The above Theorem 2 can therefore
be strengthened to the following form:

i Theorem 2'. There exists a residual set of functions f € C such that for every real
value of A, the graph of f intersects with the line y = Ax + c in a perfect set of linear
measure zero except possibly for a countable set of real values of ¢ (depending on f
and ).
Let, again, feCy, A€R, g(x) = f(x) —Ax(0<x <1) and m,; = inf g(x),
0=sx=1

M; = sup ¢(x). As g is nowhere monotone, we have m, #+ M, and as g is conti-

0=<x=s1
‘nuous, there exist two distinct points X,, x, in [0, 1] such that g(x,) = m, and
" g(x,) = M,. Forany ce(m;, M,), the function h(x) = g(x) — ¢ (0 < x < 1) still
‘belongs to C, and we have h(x;) < 0 < h(x,). Using a result due to ZAHORSKI [11,
p. 43, I1] it then follows that the set h™*(0) = {x : g(x) = ¢} = {x : f(x) = Ax + ¢}
has the power of the continuum. Thus we further have the following

Theorem 3. There exists a residual set of functions fe C such that its graph
intersects with the line y = Ax + ¢, for every A€ R and for all values of ¢ in
‘between its two extreme values for which they intersect (not necessarily inclusive),
‘in a set which has the power of the continuum.

4. Level sets of a dense set of functions in C. A natural question that arises from

_ Theorem 2 is whether the exception to a countable number of level sets in it is

necessary or not. The existence of functions f e C of which every level set is a perfect

set of measure zero is known. A. N. SINGH [9] has constructed a class of such non-

+ differentiable functions. In the following theorem we answer the question partially by
establishing that such functions are at least everywhere dense in C.

t..540



Theorem 4. There exists a set of functions everywhere dense in C of which every
level set is a perfect set of measure zero.

Proof. Let U be an arbitrary open subset of C. There exists a nowhere monotone
function g € U since such functions are everywhere dense in C. Moreover, U being
open, there exists & > 0 such that f € U whenever fe Cand |[f — g| < e.

As g is as well uniformly continuous on [0, 1], there exists a 6 > 0 such that

l9(x) — g(x')] < 3¢ whenever x,x'e[0,1] and |x —x'| <$.
Let
O=agp<a;<..<ag;<...<a,=1

be a finite partition of [0, 1] such that d; — a;_, < & forevery i = 1,2,...,n. We
shall further assume that this partition is so chosen that g(a;) + g(a;-,) for every
i =1,...,n, the existence of such a partition following from the fact that g has no
lines of invariability. Thus for each i for which g(a;) = g(a;-), there exists a point
aje(a;-y, a;) such that g(a;—,) * g(a}) * g(a;), adding such points to the original
partition we obtain a new finite partition with the desired properties.

We shall employ the Singh’s non-differentiable function ®; ;3 [9, p. 3] of which
every level set is a perfect set of measure zero [9, p. 16] (or see [10], pp. 53, 89), to'
construct a function fe U with the same property. Let every point x € [0, 1] be
expressed as a radix fraction with base 3, viz.

a a a
X=—4 24 4+ 24,

3 32 3"

where each a, = 0,1 or 2. Let for every a = 0, 1,2 and for every s =0, 1, 2, ...,
K%(a) = a or 2-a according as s is even or odd. The Singh’s function is then defined
at x as

b, b, b,
D(x)=L+24+ ..+ 2+,
(x) 3 32 3"

where b, = a, and for every natural number n,
by, = K@Taatastas T taan-atam(g, ).

Clearly, ®(0) = 0, &(1) = 1 and 0 < &(x) < 1 for every x € [0, 1].
Let a function f be defined in each interval of the partition {a;:0 < i < n}
separately as follows:

1) = 8(ai-:) + {g(ar) — gar_)} @ (;-) G Sxsa,

a; — ;-4
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A ) he poirs di ©<i < n), f is uniquely defined. Also @ being
Cosn{i sie;: \S;v(:t?s gf] .ziitetfeepgllgi ‘ évery x € [0, 1], there exists an i such that a;_; <

< x £ a;, and since then fx - a,.,1| <a;—adi-1 < d, we have
110 — o] < /) — 9as-1) + 196 = alaic)| <
< lo(a) — gai_y)|. |2l * lo(x) — 9(ai-)] < le. 1+ 3 = 3¢.

Thus |f — g = sup |f(x) - g(x)l < 2¢ < ¢, and hence fe U.

O0=x=s1

Let ce R. For each of i = 1,2, -1, a8 g(a;) + g(a;-,), we have xe f*(c) n
A [a;-y, a;] if and only if

x—@i-1\_ _ ¢~ g(a;_,)

*(Zen) s sy

or, equivalently, if and only if

x=a;_, +(a; — a;_,) &, where (et {:&)—}
g(ai) - g(ai—l)
As the level sets of @ are perfect sets of measure zero, it follows that f~*(c) n
N [a;-1, a;] is such a set for every i, and the set f ~*(c) being in turn a finite union of
such sets is again a perfect set of measure zero. This completes the proof of the
theorem.
A slightly general version of Theorem 4 follows as a

Corollary. For every real number A, there exists a set of functions f everywhere
dense in C such that the graph of f intersects with every straight line of which the
slope is A in a perfect set with linear measure zero.

Proof. Let A€ R, f;(x) = Ax (0 < x < 1) and U be an arbitrary open subset of C.
Then V= {f — f,:fe U} is also an open subset of C. According to Theorem 4,
there exists a function h € V' such that each of its level sets is a perfect set of measure
zero. Then f = h + f; € U and for every real number ¢, h™*(c) = {x : f(x) = Ax + ¢}
is a perfect set of measure zero. This being the projection of the set in which y = f(x)
intersects with y = Ax + ¢, the later set is also a perfect subset of the line y =
= Ax + ¢ with linear measure zero.

As for the perfectness of all the sets in which non-vertical straight lines intersect
with the graph of a function f € C, we have the following

Theorem 5. There exists a set of functions f everywhere dense in C such that.for
every real value of A, the graph of f intersects with the line y = Jx + c in a perfect

set for all but a finite number of real values of c.
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Proof. As in the proof of Theorem 4, let g be a nowhere monotone function
belonging to a given open subset U of C, and let {a; : 0 < i < n} be a partition of
[0, 1] as defined there. Let {4;:0 < i < n} be the points on the graph of g cor-
responding to the points of the partition. Then none of the segments 4, 4, (i =
=1, ..., n) is parallel to any of the coordinate axes. Using a geometrical method of
construction due to J. GILLIs [12], starting with the segment A4;_,A; we can define
a continuous function f on [a;_, a;] such that f agrees with g at the end points of
the interval,

min {g(a;-,), g(a,)} < f(x) < max{g(a;—,), g(a;)} for a;_; <x<a;,

and the graph of f intersects with every non-vertical straight line in a perfect set,
except possibly the ones passing through A;_, and A;. Defining the function f
likewise in every interval of the partition, f has the requisite properties and, as before,
If — 9] < % <& sothatfeU.
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