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THE MIXED PRODUCT DECOMPOSITIONS OF PARTIALLY
ORDERED GROUPS

JAN JAKUBIK, KoSice

(Received July 3, 1968)

The concept of the mixed product of partially ordered groups is a common gene-
ralization of the concepts of the complete direct product and the lexicographic product.
The mixed products were used by CONRAD, HARVEY and HOLLAND [3] and by CONRAD
[2] to the study of the structure of the abelian I-groups and abelian partially ordered
groups.

The main result of this paper consists in constructing the isomorphic refinements of
any two mixed product decompositions

G = QieIAi , G= QjeJBj

where G is a partially ordered group and all factors A4;, B; are directed, 4, + {0} *
+ B;. An analogous result was proved by MAccev [6] for the lexicographic
o-products of linearly ordered groups. Fuchs ([4], Chap. II, Theorem 9) generalized
Malcev’s theorem for lexicographic o-products with directed factors. Lexicographic
products and lexicographic o-products of a certain type of partially ordered grup-
poids were considered in [5].

1. DEFINITIONS AND NOTATION

For partially ordered groups we shall use the concepts and the notation from [1].
The group operation will be denoted additively (the commutativity not being
assumed). N, U, = and A, v are the usual set-theoretical and lattice-theoretical
symbols, respectively. If X, Y are any sets, then X \ Y is the set of all elements of X
that do not belong to Y. Let 4 and B be partially ordered sets; A - B is the lexico-
graphic product of 4 and B (cf. [1]). For a,, a, € A the symbol a, | a, denotes that a,
and a, are incomparable.

1.1. Let I + @ be a partially ordered set and for any i€l let A; be a partially
ordered group. Let us denote by G, the Cartesian product of all sets 4;, i.e., G, is the
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system of all maps f : I - UA,; such that (i) € A; for each i € I. The element f(i) is
said to be the component of f in A;. For f(i) and f we shall use also the symbols f;
and (..., fi, ...)ier, respectively. If f € G, let us put

I(f) = {i el :£(i) + 0).
Further we denote by
G, = [QiEIAi]
the system of all f € G, such that I(f) satisfies the descending chain condition. Now
we define in G, the operation + componentwise. If f, g € G,, f + g, we denote
I(f, 9) = {iel:f(i) + g(i)} .

Let min I(f, g) be the set of all minimal elements of the set I(f, g). Let us put f < g
if (i) < g(i) for each i € min I(f, g). Then (G,; +, <) is a partially ordered group;
G, is the mixed product of partially ordered groups A;.

1.1.1. Analogously as in the case of direct products it is sometimes convenient to
replace the partially ordered groups A; by some subgroups A4; of G, that are iso-
morphic to A;. Let i €I be fixed and let us put

A, ={feG,:f(iy) = 0 for each i, €I, iy * i}.

Then A4, is a partially ordered group isomorphic to 4;. For each g € G, we put ¢ (g) =
where f e 4;, g(i) = f(i). The mappings ¢; have the following properties: if z,,
iyel, iy % iy, g€ A,, then ¢, (g) = g, ¢,,(9) = 0. Moreover, the map g — ¢(g) =
= (..., 9(g); .- .)ies is an isomorphism of the partially ordered group G, onto the
partially ordered group [Q;,4,].

We can formulate now the definition of the mixed product decomposition of G.

1.2. Let G be a partially ordered group and let I + @ be an ordered set. For any
i el let A; be a subgroup of G (with the induced partial order). Assume that for each
i € I there exists a mapping ¢; of G onto A; such that

(@) xe ;= @(x) = x, ¢;(x) =0 forany i;el, i; + i
(b) the mapping ¢(x) = (..., p{(x), ...) is an isomorphism of G onto [Q;,4;].

In such case we will write
(1.1) G = Qiud;;

this equation represents a mixed product decomposition of the partially ordered
group G.

1.3. Assume that (1.1) holds. If the mappings ¢; are fixed, then we write also x,,
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x(A;) instead of ¢(x). For X = G we denote X(4,) = {x(4;)}xex- If I, = I and if B;
(i eI,) is a subgroup of A, (with the induced partial order) we define the partially
ordered group

H=Q.

iely

B,.
as follows: we put B; = {0} for each i e I\ I, and denote

H = (p_l([QieIBi]) .

1.4. Assume that (1.1) is valid and let another mixed product decomposition
(1.2) G =Q;,B;

be given. The decompositions (1.1) and (1.2) are isomorphic, if there exists an iso-
morphism  of the partially ordered set I onto J such that the partially ordered
groups 4; and B, ;, are isomorphic for each i e I The decomposition (1.2) is a refine-
ment of (1.1), if for each i e I there exists a subset J; = J such that 4; = Q;.;,B;.

1.5. Let X be a subgroup of the partially ordered group G. X is a factor in G if
there exists a decomposition (1.1) and an element i, € I such that X = A;,. A factor X
is nontrivial if X # {0}. An immediate consequence of the definition 1.2 is the fol-
lowing “substitution rule”’: Let X be a factor in G (under the notation just used)
and let

X = QG .

a way that on the set I \ {i,} we take the original partial order (induced by I) and for
any my eIN{io}, myeK we put m; < m, (m, < m,) if and only if m, < i,
(ip < m,). Now we put D,, = A4, if meI\{i,} and D,, = C, if m e K. Then G =
= Q,.,,D,, holds.

Denote M = (I\{io}) U K. On the set M we introduce a partial order < in such

1.6. Throughout the paper we shall suppose that G # {0} (our considerations
being trivial for G = {0}). Let us consider the decomposition (1.1) and denote

I'="{iel: A, + {0}}.
Then I’ = @ and from the definition 1.2 it follows
G=Q 4.

If M o I is a partially ordered set and if we put A; = {0} for each i € M \I, then
from 1.1 we get G = Q,,yA4,,- Hence any number of trivial factors can be removed
from or added to a decomposition. We shall often restrict ourselves to decompositions
with non-trivial factors only.
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1.7. Assume that (1.1) holds and I = {1, 2} (with the natural order). In such a case
we write

G=A10A2

instead of (1.1). From the conditions (a) and (b) in 1.2 it follows that each element
x € G can be uniquely written in the form x = x; + X,, x; € A;, x, € 4,; if, at the
same time, y = y; + y,, y; € 4;, then x < y if and only if either x; < y;,0orx; = y;
and x, < y,. Moreover, if A, = As o A,, then by 1.5 G = A, o (43 o A,). It is easy
to prove that this is equivalent with G = (4; o A3) 0 4, and therefore we write
simply G = A, o A3 o A4 (cf. also [5], section 6).

2. THE SUBGROUP A4(i)

In this section we suppose that there are given two decompositions
() G =Qiq4;,
(B) G = Q;esB;

of the partially ordered group G and that all factors 4;, B; are directed. For any
i, €I denote

Alip) =QA4; (iel, i 2 i),
A'io) =QA; (iel, i > ip).

The symbols B(j,), B'(jo) (jo € J) have the analogous meaning. Since all factors 4;
are directed, A(iy) and A'(i,) are directed as well.

2.1. A(io) is a convex subset of G.

Proof. Let x, ze A(iy), y€ G, x < y < z. Assume that y ¢ A(io). Hence there
exists i €I such that i % iy, y; + 0. Then x; # y; and therefore there exists i; €
eminI(x, y), iy £ i. Since x < y and x; = 0, we get y, > 0. At the same time
z;, = y;, = 0 for each i, < i, and z;, = 0. Hence i, € minI(y, z), y;, > z;,, a con-
tradiction.

2.2. Let x€ G, x > 0, i; e min I(x, 0). Then (a) 2x > x,,, (b) 2x 3 3x; .

Proof. Clearly min I(x, 0) = min I(2x, x;) = min I(2x, 3x;,). For any ie
e min I(x, 0), (2x); > (x;,); holds. Moreover, i, € min I(2x, 3x;,), (2x);, < (3x;,);,.

2.3. Let x € A(ip), x > 0. Then x; € A(iy) for any j € J.

Proof. For x; = 0 the assertion is trivial; let x; # 0. There exists j; € min J(x, 0),
ji < jwith 0 < x;,. By 2.2 x;, < 2x. Since 2x € A(i,), we get x;, € A(iy) by 2.1. If

187



J = J1, we have x; € A(io). Let j; < j. Then for each z € B 0 < z < x;, holds, and
thus by 2.1 B]” < A(i,)*. Each element of B, is a diference of positive elements of B,
(since B; is directed) and this implies B, = A(i,), whence x; € A(io).

By a dual argument the analogous proposition for x < 0 can be proved. Since A(io)
is directed, we have:

2.4. If x € A(io), then x; € A(iy) for each j € J.

Now we will prove that from x € G, x; € A(iy) + {0} for each jeJ it follows
x € A(i,). We need some auxiliary lemmas.

2.5. Let x,ve G, x > 0,v > 0 and let x; £ v for each i€l. Then x < 2uv.

Proof. Assume, at first, that x = 2v and let i, € min I(v, 0). Then 0 < v;, < 2v;,
i, e min I(v, 2v;)), hence 2v, £ v. But 20, = x; < v, a contradiction. Therefore,
x # 2v. If x = v, then x < 2v. Let x % v and let i, e min I(x, 2v). Suppose that
there exists i, < i, such that x;, + 0. Then there exists i3 < i,, i3 € minI(x, 0).
Since iy < iy, we have iy € minI(2v, 0) = minI(v, 0), hence 0 < x;, = 2v;, > v;,.
But, at the same time, i3 € min I(x;,, v), thus x;, < v;,, a contradiction. Therefore
x; = 2v; =v; = 0 for each i < i;. If x;, =0, then 2v; # 0, whence v;, + 0 and
i, e min I(v, 0), thus v, > 0, 2v;, > 0 = x;. If x;, & 0, then i, € min I(x, 0) and
x;, > 0. Now we have etiher x; = v, and x; < 2v;, or x; v, and i, €
e min I(x, v), whence x; < v;, X;, < 2v;,. The proof is complete.

2.6. Let x€ G, x > 0, x; € A(io) for each j e min J(x,0). If i < iy, then x; = 0.

Proof. Assume that i < iy, x; + 0. Then there exists i; e minI(x,0), i; < i.
According to 2.2 2x > x,,; clearly x;, > t for each t € A(i,), hence 2x > t for each
te A(iy). Let j, e min J(x, 0). We have x;, € A(iy), hence 3x;, € A(i;) and thus
2x > 3x;,. By 2.2 (b) 2x 3 3x;,, a contradiction.

27. Let zeG, z > 0, iy el. Suppose that z; € A(i) for each j, € min J(z, 0).
Then z; € A(iy) for each j e J.

Proof. Let j € J, j ¢ min J(z, 0). The case z; = 0 is trivial. Let z; # 0; then there
exists j; < j, j; € min J(z, 0). For each b; € B we have 0 < b; < z;,, thus, by the
convexity of A(io), b; e A(i,). Therefore, since B; is directed, B; = A(i,) and so
zj € A(io).

28. Let y,zeG,0< y <z igel and let zjeA(io)fO’” each je J. Then y; e
€ A(iy) for each je J.

Proof. Let j, € min J(y, 0). Then y; > 0. If j, e min J(y, 2), we get 0 <y <
< z;,, hence from the convexity of A(iy) it follows yj, € A(io). If jy ¢ min J(y, z),

Jj1?
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then there exists j, < j,, j, e min J(y, z) and 0 < y;, < z;,; therefore y; € A(i,).
According to 2.7 this implies that y; € A(i,) for each j € J.

29. Let xeG, x >0, igel, x;€ A(iy) for each jeJ. Let Ay + {0}. If iel,
i|io, then x; = 0. ‘

Proof. Let iel, i|i,. Assume that x; % 0. Then there exists i, e min I(x, 0),
iy £ i. According to 2.6 iy | iy. By 2.2 0 < x; < 2x. Let j € J. Since (2x); = 2x; €
e A(i,), by 2.8 we have

(2.1) (xi,); € A(io) -

At the same time x;, e A(i,), hence by 2.4 (x,,); € A(i;) and therefore from i, | i,
we get

(2.2) (x1);)i = 0.

It follows from (2.1) and (2.2) that i, > i, for each i, e min I((x;,);, 0). Since 4;, *
+ {0}, there exists a € A;,, a > 0. We have (x;,); < a,, for each j € J, hence by 2.5
x;, < 2a. From the relations 2a € A;, x;, € A, , i, | i, we obtain 2a | x;,, a contra-
diction.

2.10. Let x€ G, x > 0, ig €1, x; € A(io) for each j e J, A;, + {0}. Then x € A(i,).
This follows from 2.6 and 2.9.

2.11. Let xe G, x <0, iy el, x; € A(iy) for each j e J, A;, + {0}. Then x e A(i,).

Proof. Put y = —x. Then y; = —x; € A(i,), hence by 2.10 y € A(i,) and therefore
x € A(io)

2.12. The set A(io) 0 B; is directed.

Proof. Let d € A(iy) n B, d | 0. Since A(i,) is directed, there exists d’ € A(i,)
such that d’ > 0, d’ > d. Therefore from d = d; | 0 it follows that there exists
jireminJ(d,0), j, £j. If j, =j, then d}, >0 and j, € min J(d, d’), whence
dj, > d; =d, dj eB;. According to 2.4 d) e A(i,), hence dj e A(iy) n B;. If
ji1 < Jj, then 0 < b; < dj, for each b; e B}, thus with respect to the convexity of
A(io) and from dj, e A(i,) it follows b; € A(i,). Therefore B < A(i,) and B; <
< A(io)- Since B; is directed, there exists b; e B; such that 0 < b;, d < b;. This
proves that A(iy) N B; is up-directed; by a dual argument we can show that it is
down-directed.

2.13. Let x€ G, ig €1, x; € A(i) for each je J, A;, + {0}. Then x € A(i,).

Proof. The assertion is trivial for x = 0; let x & 0, j; € min J(x, 0). Then 0 +
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# x;, € A(io) N B;,. By 2.12 there exist elements u’', v’ € A(iy) N B;, such that
w' <0, ' < x;, v'* >0, o' > x;,. Assume that we have chosen such elements
ul!, v’ for each j, e min J(x, 0). There exist u, v € G satisfying u; = u/, v; = v for
Jjemin J(x,0) and u; = v; = 0 for j ¢ min J(x, 0). Then u < 0 < v and according
to 2.10 and 2.11 u and v belong to A(i,). Obviously u < x < v, and therefore
x € A(i).

2.14. Theorem. If iy €I, A;, + {0}, then
A(io) = Q;es(A(io) N B)).
The proof follows from 2.4 and 2.13.

2.15. A(io) 0 B; = A(io) (B;) for any iy €l, je J.

Proof. Obviously A(i,) (B;) = B;, hence by 2.4 A(i,)(B;) = A(io) n B;. Let
t € A(io) n B;. Then t € B;, hence #(B;) = . From t € A(i,) we obtain #(B;) € A(io) (B)),
whence A(io) N B; = A(io) (B)).

From 2.14 and 2.15 it follows:

2.16. If ig €I, A;, + {0}, then
Aio) = Qjey A(io) (B;) -

2.17. If A;, * {0}, then

A(io) = {x € G : there exist u,v e A;, such that u < x < v},

A'(ig)* = {xeG" :nx < a for any a € A;,, a > 0 and any positive integer n}.

Proof. If u,ve 4;, xe€G, u < x < v, then by the convexity of A(io) we have
x € A(io). Let t € A(io). Since A;, + {0} is directed, there exist u, v € 4;, such that
u<0<uvu<t,<v Thisimpliesu < t < v.

Denote Z = {x € G*, nx < a for any a € 4;,, a > 0 and any positive integer n}.
Obviously A'(i¢)" = Z. Let x€ Z, a € A;;, a > 0. Since x < a, we have x e A(i,).
Assume that x;, + 0. Then x;, > 0, x;, € 4;,, hence from x € Z we obtain 2x < Xx;,.
According to 2.2 X;, < 2x, a contradiction. Therefore x;, = 0 and x € A'(i,).

As an immediate consequence it follows from 2.17:

2.17.1. If A;, * {0}, then A'(iy) = {x — y:x€Z, y e Z} where Z has the same
meaning as in the proof of 2.17.

2.17.2. Let ig €I, jo € J.If Bj, = A, then B(jo) = A(io), A'(i0) = B'(Jo)-
2.18. Let iy, i, €1, iy # ip. Then [A(i;)\ A'(i,)] n [A(i)N 4'(i5)] = 0.
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Proof. Let x e [A(i;)\ A'(i,)] n [A(i)\ A'(i,)]. If iy, i, are comparable, we
may assume i; < i,. Then A(i,) = A'(i,). Since x € A(i,), we have x ¢ A(i;)\ A'(iy),
a contradiction. Let i, | i,. Since x € A(i;) and i, £ i,, we obtain x;, = 0. From thjs
and from x € A(i,) it follows x € A'(i,), hence x ¢ A(i,)\ A'(i,), a contradiction.

3. THE DECOMPOSITION G = Co D

In this section we shall consider the decompositions
(3.1) G=CoD,
(3.2) G = Q 4,

under the assumption that C, D, 4; (i €I) are directed.

3.. D = Qi (D A A4;) = Qi D(A4).

Proof. For D = {0} the assertion is trivial. Let D # {0}. Then by 2.14 D =
= Q,(D N 4;). According to 2.15 D n A; = D(4;).

3.2. Let ¢ : G — [Q;; A(C)] be a mapping defined by

o(x) = (-0, x{(C), -+ Jicr

for any x € G. Then the partial map ¢¢ : C - [Q;; A(C)] is an isomorphism with
respect to the group operation.

Proof. Obviously ¢ is a homomorphism (into) with respect to the group operation.
Letc, ¢’ € C, ¢(c) = ¢(c'). Then ¢(c — ¢’) = 0, hence (¢; — ¢;) (C) = 0 and therefore
¢; —cieDforanyiel. Thusby3.1c — c" e D.Sincec — c'eC,wegetc — ¢’ =0.
This shows that ¢ is 2 monomorphism. Let y € [Q,; A,(C)]. Then there exist elements
a' e A; such that

y =(..ai(C),..).

For a’(C) = 0 we can put a’ = 0. If we do so, then each non-empty subset of the set
I, ={iel:a"+ 0} = {iel:a'(C) + 0} satisfies the descending chain condition
(cf. 1.1). Thus there exists a € G such that a; = a' for each i e I. According to (3.1)
a=c+d,ceC,deD. Then we have a; = ¢; + d;, a(C) = ¢(C) + d(C). By 3.1
d; e D, hence d(C) =0, a{C) = ¢,(C). Therefore we have c,(C) = a'(C) for each
i eI and hence ¢(c) = y.

33.If xeC, x > 0, then ¢(x) > 0.

Proof. Let x € C, x > 0. By 3.2 ¢(x) # 0. Let i, € min I(¢(x), 0). Hence x; (C) *
=+ 0. Assume that there exists i € I such that i < i;, x; + 0. Then there exists i, < i,
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i, € minI(x, 0). Since i, < i,, we have x;,(C) = 0, hence x;, € D n 4,,. Fromx,, + 0
we get D n A;, + {0}. According to 2.12 D n A;, is directed, thus there exists
aeDn A, a>0.Then 0 <t < a for each t €(4;,)" and by the convexity of D
(cf. 2.1) (4;)* = D, whence 4; = D and x;, € D. This implies x;,(C) = 0, a con-
tradiction. Therefore i, € min I(x, 0). From x > 0 we get now x;, > 0. From x; =
= x;,(C) + x;,(D), x;,(C) * 0 it follows x; (C) > 0. Hence ¢(x) > 0.

34. Let c€C, ¢(c) > 0. Then ¢ > 0.

Proof. For i eI we put d' = ¢; or d' = 0 if ¢(C) = 0 or ¢/(C) # 0, respectively.
There exists d € G such that d; = d' for each i €1. All d; belong to D, hence by 3.1
deD. Denote ¢ — d = ¢’. Thus ¢; = 0 if and only if ¢(C) = (¢(c)); = 0. This
implies min I(¢’, 0) = min I(¢(c), 0). Let ieminI(c¢’,0). Then ie minI(p(c),0),
hence (¢(c)); > 0, i.e., ¢(C) > 0. Since ¢; = ¢/(C) + ¢{(D), we get ¢; > 0. From this
it follows d' = 0, whence ¢; = c;, ¢} > 0. This shows that ¢/ > 0. From ¢’ = ¢ — d,
¢ # 0 (this follows from ¢(c) # 0) we conclude by (3.1) that ¢ > 0 holds.

From 3.2, 3.3 and 3.4 it follows:

3.5. ¢c is an isomorphism of the partially ordered group C onto [Q;; A(C)].
For c e C, i eI denote ¢/(C) = ¢c).

36. Leti,jel, i + j, ce A(C). Then ¢c) = c, c) = 0.

Proof. There exist elements a € 4;, d € D such that a = ¢ + d. From this we
obtain a; = ¢; + d,. Since a € A;, we have a; = a, hence

(3.3) ' c+d=c, +d,.
According to 3.1 d; € D(4;) = D n A,, thus d(C) = 0. From this and from (3.3) we
get ¢(C) = ¢(C). Since ¢(C) = ¢, we have ¢,c) = c. Further we have 0 = a; =
=¢; +d;, 0 =¢,(C) + d,(C). But d; € D implies d;(C) = 0 and therefore ¢(c) =
= ¢,(C) = 0. '

According to 1.2 it follows from 3.5 and 3.6:

3.7. Theorem. If (3.1) and (3.2) are fulfilled, then

C = Q. A(C).
Now we shall consider another decomposition with two factors

(3.4) G=A.B.

The following two statements were proved in [5] (under more general conditions):
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3.8. ([5]. 9 and 11.) Let (3.1) and (3.4) be valid. Then either D = B or B = D.
If D B, then B = B(C)+ D, B(C) = B~ C.

3.9. ([5], 13.4) Let G = A< B, G = C o B hold. The mapping f: A — C defined
by f(a) = a(C) is an isomorphism of the partially ordered group A onto C.
4. ISOMORPHIC REFINEMENTS
Let us consider the decompsitions «, § (cf. section 2). Throughout the whole paper

we will assume that 4; % {0}, B; & {0} for each i eI and each j e J. Let j, € J be
fixed. By 2.14

(4.1) B(jo) = Qiei(B(jo) N 4)) .
Obviously

(4.2) B(jo) = Bj, o B'(jo) -
Then according to 3.7 we have

(4.3) Bj, = Qi /((B(jo) N 4:) (By,)) -
Forany i €1, j € J denote

(4.3) (B(j) n 4;) (B)) = Cj; .

From the decomposition f and from (4.3) it follows
(4.3") G=20Q;;0,4Cj.

The right hand side member of (4.3") can be written in the form QC,((j, i) € J - I).
If we denote (J o I) = {(j, i) e J oI : C}; % {0}} (cf. 1.6), then we can write

(4.4) G =QC;((j,i)e(J-I)).

4.1. Let (jo, ig) € (J o I). The partially ordered group C;, is directed.

Proof. Let x € Cjy;,, x | 0. Then there exists a € B(jo) N A;, such that a;, = x.
By (4.2) a|0. According to 2.12 there exists a' € B(j,) N A;, such that a' > 0,
a' > a. Using (4.2) once more we get a = a;, + aj,, a' = a}, + (a'’);,, where
a},, (a');o € B'(jo)- Now the relation a | 0 implies aj, > x, a}, > 0. ’

Let us consider the partially ordered set (J o I)'.

4.2. Let (jy, i) € (J 1), j, <ji, iy > iy. Then (j,, ir) ¢ (J o I).
Proof. Let us suppose that (j,, i,) € (J o I)’ holds. Then by 4.1 there exist elements
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xeCj,,y€ Cjiy x>0, y > 0. From this it follows that there exist elements
ae B(Jl) N Ail’ be B(]z) n A,’z such that

4.5) a; =x, b, =y.

Jt

Since a € B(j1) a;, > 0, we have min J(a,0) = {j,}, hence a > 0. Analogously,
min J(b, 0) = {j,}, b, > 0, hence b > 0. From j, < j, we get {j,} = min J(a, b),
and since a;, = 0 < b;,, b > a holds. Moreover, since a € 4;, b e 4;, and since
i; < i, a > b is true; a contradiction.

43. Let (jy iy) e (J o), j, < i, iy | iz Then (j, in) ¢ (J o 1)

Proof. Assume that (j,, i,) € (J o I) and let x, y, a, b have the same meaning as
in the proof of Lemma 4.2. From j, < j, we get b > a nad from i, | i, it follows a | b,
which is a contradiction.

44. Let (jy, i) e (JoI), iy < iy, jy | jo- Then (jo, is) ¢ (J o 1)

Proof. Let us suppose that (j,, i,) € (J o I)’. Under the same notation as in the
proof of 4.2 we have a > b. Since min J(a, b) = {j,j,} and a;, > 0 = b;, b;, >
> 0 = a;,, a | b holds; a contradiction.

From 4.2, 4.3 and 4.4 it follows:

4.5. Let (jy, iy), (joiz)e(Jol), jo *Jjy iy * iy Let se{<,>,|}. Then j,
Sjy iy S i,

Let us now denote (I o J)* = {(i,j) €I o J : (j, i) € (J o I)'} and consider the trans-
formation  : (j, i) — (i, j) of the set (J o I)" onto (I - J)*.

4.6. y is an isomorphism with respect to the partial order.
Proof. Let (jy, iy), (jo, i) €(J o I). If j; * j,, iy = i,, then by 4.5
(4'6) . (jx, il) < (jz, iz) = (ilsjl) < (iz,jz)-

If j; = j, or i; = i,, then (4.6) obviously holds.
By changing the roles of 4; and B;, we get analogously as in (4.4)

(4.7) G = QE,((i,jy e (I - J)
where
4.7 E;; = (A()) n B)) (4)),

(IoJy ={(i,j)eloJ:E; =+ {0}}.
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Now we intend to prove that C;; and E;; are isomorphic. Let i, €1, j, € J be fixed
elements and denote

X = A(iy) n B(jo) »
D =0, (40 X),
D'=Q,,(B,nX).

47. X = Quy(4; 0 X) = Qi5,(4; 0 X) = (4;, 0 X) » D.

Proof. It suffices to prove the first equality, since 4; N X = {0} for i % i,. Let
x € X. Then x € B(j,), hence by 2.4 (and replacing A; and B;) x; € B(j,). Since x €
e A(io), obviously x; € A(i,), thus x; € 4; N X. We get x € Q;,(4; n X). Conversely,
let xe G and let x; € A; n X for each i el. This implies x € A(i,) and according
to 2.13 x € B(j,), hence x € X.

Analogously we have

X =0Q,,(B;nX)=0Q;,,(BjnX)=(Bj,nX)oD.

jZJjo
47.1. D = A'(i;) 0 X.

Proof. Let x € D. Then, clearly, x € A'(iy). By 4.7 x € X, hence x € A'(ip) N X.
Conversely, let x € A'(ip) N X. By 4.7 x; € A; n X for each i € I; moreover, x; = 0
for any i $ i,. From this it follows x € D.

Analogously D’ = B'(j,) n X.

48. X = E;;, - (D U D).

ojo
Proof. Consider the decompositions
X=(XnA4,)-D, X=(XnB;).D.
By 3.7
(X 0 B,) (X 0 Ay,) = (A(io) N By,) (4s,) = E
X =E;j,o[D'(X nA4;,)]-D.

iojo

iojo *

According to 4.7 and 3.8 either D = D’ or D’ = D. In the first case we have by 3.8
D =[D(X4)]-D,

hence X = E;

iojo o D' = Ej, o (D L D). In the latter case, by 4.7

iojo
D'(X n A;) = D(4;, n X) = {0} .
From this it follows

lojo°{0}°D=E O(DUDI).

iojo
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Replacing A; by B; we get

48.1. X = C;;, (D U D).

Joio

and E;

iojo

4.9. The partially ordered groups C
This follows from 4.8, 4.8.1 and 3.9.

ioio are isomorphic.

4.10. Theorem. Let two decompositions of a partially ordered group
(a) G = QiEIAi N (ﬁ) G = QjEJB_]

be given, where all factors A;, B; are directed and distinct from {0}. Then the
decomposition

() G =QE(i.j)e(I-J))
is a refinement of o and the decomposition '
(5) G = QC_”((J., 1) € (J ) I)’)

is a refinement of p (E;; and C;; being defined by (4.7") and (4.3"), respectively).
The decompositions y and o are isomorphic. ’

Proof. From the construction of ¢ it follows that ¢ is a refinement of f; analogously,
y is a refinement of «. By 4.9 (I o J)* = (I - J), hence by 4.6 x : (j, i) = (i, j) is an
isomorphism of the partially ordered set (J oI) onto (I.J). Since, by 4.9, C;;
and E;; are isomorphic, the proof is complete.

5. EQUIVALENT DECOMPOSITIONS

In this section we shall consider pairs of decompositions «, f which are reproduced
by the construction of isomorphisms from the theorem 4.10, i.e., for which y = a,
0 = B is fulfilled.

Let o and § have the same meaning as in Theorem 4.10 and let the suppositions of
this theorem be satisfied. The decompositions « and B are said to be equivalent (this
fact we denote by o ~ f) if there exists an isomorphism y of the partially ordered
set I onto J such that

(5.1) A(i) = B((i)),
(52) () = B(0)

holds for each i e I.
5.1. Equivalent decompositions are isomorphic.
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Proof. Let o ~ . From

A; o A'()) = A(i) = B(i)) = By o BW(i)) = By o 4'(i)

and from 3.9 it follows that the partially ordered groups A; and By i, are isomorphic.

5.1.1. Remark. Two isomorphic decompositions o, f need not be equivalent.

Example: Let K be the set of all real numbers. For any k € K let G, be the additive
group of all integers (with the natural ordering). Put G = [Q,xG,]. Let I and J be
the set of all even integers or odd integers, respectively, and for any i €1, j € J put

A;={xeG:x, =0 for k¢[i,i +2)},
B;={xeG:x, =0 for k¢ [jj+2)}.

Then the following decompsitions hold:
(@) G =Qiq4;, (B) G =9Q;,B;.

Consider the transformation y(i) = i + 1.y is an isomorphism of I onto J and the
partially ordered groups 4; and By ;) are isomorphic. Thus the decompositions o and
are isomorphic. o and B are not equivalent, since A(i) % B(j) for any i €I and any
jed.

Let us now consider the decompositions y, 8 from 4.10. For (i, j) e (I - J) and
(j,i)e(J oIy let the symbols E(i,j), E'(i,j) or C(j, i), C'(j,i) have analogous
meaning as A(i), 4'(i) (for example, if (iy, jo) € (I - J), then E(ig, jo) = QE;;((i,j) e
€ (I ° J),7 (i’ j) ; (iOajO))‘

5.2. Let (i,j)e(IcJ). Then C(j,i) = E(i,j) = X, C'(j,i) = E'(i,j)=Du D’
(where X, D, D’ are the same as in Section 4 for i = iy, j = jo).

Proof. Since X = A(i) n B(j) and since A(i), B(j) are convex subsets of G, X is
a convex subset of G as well. Moreover, by 4.8 X = E;; o (D U D’). According to 4.1
there exist strictly positive elements in E,;. Thus by 2.17 E(i,j) = X, E'(i,j) =
= D u D'. By the same argument we can prove C(j, i) = X, C'(j,i) = Du D".

5.2.1. If (i,j) e (I o J), then E'(i, j) = [A'(i) v B'(j)] n E(i, j).
Proof. According to 5.2 and 4.7.1 we have

E(i,j)=Du D = (4() n X)u (B(j) n X) = [4(i) v B(j)] » E(i, ) -
52.2. If (i,j) e (I J), then A'(i) = E'(i, )), E(i, j) = A(i).

This follows from 2.17.2 and from the fact that E;; is a factor in A4;.
Let us denote y = f(«, ). Under this notation, clearly, 6 = f(, «).
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5.3. f(a’ ﬁ) ~ f(B’ a)'

This follows from 5.2, since the mapping (j, i) = (i, j) is an isomorphism of (J o I’
onto (I J).

Now we can formulate a strengthened version of Theorem 4.10 (cf. 5.1 and 5.1.1):

5.4. The decompositions o. and B have equivalent refinements.

A new characterization of equivalent decompositions is given by

5.5. Theorem. o ~ f <> f(o, ) = o, f(B, @) = B.

Proof. Assume that « ~ f. Then according to 5.1 it can be supposed that J = I
and A(i) = B(i), A'(i) = B'(i) for each i € I. By (4.7') we have

(53) Ey = (4(i) 0 B) (4;) = (B(i) 0 B) (4)) = B(4)).

From A; . A'(i) = B; - B'(i) = B; o A'(i) and from 3.9 it follows B/(4;) = A,. Thus

by (5.3) 4; = E;;. Since 4; = QE;; (j €I), E;; n E;; = {0} for any j €1, j + i. Hence

E;;=E;nA;=E;nE;={0} for each j + i. This shows that f(a, f) = a.

Analogously, f(B, «) = B. Conversely, if f(a, B) = a, f(B, &) = B, then by 5.3 o ~ B.
From 5.3 and 5.5 it follows: ’

5.6. f(f(e B), f(B,®) = f(e, B).
Let o; and B; be decompositions of G such that all factors occuring in these
decompositions are directed and non-trivial.

57. If ay ~ o, By ~ B, then f(xy, B;) ~ f(a, B).
Proof. Let a; ~ a. Then a, can be written in the form
(“1) G = Qi 4} .
where A'(i) = A(i), A''(i) = A'(i) for each i eI. Let us denote by E}; the factors of
the decomposition f(«;, f). Then by 5.2 |
E'(i, j) = A'(i) n B(j) = A(i) n B(j) = E(i, j) .

From this and from A'(i) = A"(i) with regard to 5.2.1 we get E' (i, j) = E'(i, j).
This proves that f(«, ) ~ f(o;, B). Analogously, f(a,, B) ~ f(, B;). The relation ~
being transitive, f(a, B) ~ f(ay, B;).

5.8. The following conditions are equivalent:

(@) f(% B) = o, :
(b) to each i€l there exists an element (i) e J such that B'(Y(i)) = A'(i),

A(i) < B((i).
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;j» there exists j, € J such that 4; =
and E;; = {0} for each j € J, j # j,. Put j; = y(i). With the aid of 5.2.2,

B'(j,) = C(js» i), C(jy, i) = B(j,)-
Moreover, by 5.2 we have E'(i, j;) = C'(j,, i), E(i, j;) = C(j,, i). From A4; = E;; it
follows E'(i, j,) = A'(i), E(i, j;) = A(i); hence (b) holds.
Conversely, let us suppose that (b) is true. Let i €I be fixed and denote Y (i) = j.
Obviously E;; = (A(i) n B;) (4;) = A;. Let a € A;. According to (b) a € B(j), hence

a=x+y, xeB;, yeB(j). Since x = a; and a € A(i), it follows from 2.4 that
x € A(i), whence x € A(i) N B;. Moreover, by (b) y € A'(i), thus y(4,) = 0. Therefore

Proof. Let (a) be fulfilled. Since 4; = Q;,E

ij1

a = a(4;) = x(4;) + y(A4;) = x(4;) € (A(i) n B;) (4)) = E,; .

This implies E;; = 4. Then we have E;;, = {0} forany j, € J, j, * j; thus f(a, f) = 0.

5.9. Let a be a refinement of . Then f(x, f) = o.

Proof. Let i e I. There exists j; € J such that 4; is a factor of B;,. Hence according
to 2.17.2 B'(j,) = A'(i), A(i) = B(j,). Therefore by 5.8, f(a, f) = a.

Remark. From f(«, f) = « it does not follow that o is a refinement of .

Example: Let G be the set of all pairs (x, y) of real numbers with the group opera-
tion + that is performed component-by-component and with the lexicographic
order.Put A = {(x,y)eG:y =0},B={(x,y)eG:x=0},C={(x,y)eG:x =
= y}. Then we have the decompositions («) G = A4 o B, () G = C - B. The decom-
positions o and B are equivalent, hence f(«, ) = a, but neither « is a refinement of
nor f is a refinement of a. It is easy to see that « and  have no common refinement.

6. THE PARTIALLY ORDERED SET &

Let G # {0} be a partially ordered group. Let ¢ be the set of all mixed product
decompositions o of G such that each factor occuring in o is directed and non-trivial.
By & we shall denote the system of all classes of the partition of the set ¢ that is
defined by the equivalence relation ~. For o € 4 we put & = {0, € G : a; ~ o} and
for &, B € % we put & < B if and only if there exist elements «, € &, ; € B such that o,
is a refinement of §,.

6.1. Let @ fe%. Then @ < B if and only if f(a, B) = .

Proof. Let @ < B. Then there exist elements o, §; € 4 such that o, €&, f; € B
and ¢, is a refinement of §;. According to 5.9 f(a,, B;) = oy, hence o, and f, satisfy
the condition (b) of Lemma 5.8. Since « ~ o, B ~ B, the condition (b) holds for the
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decompositions o« and f as well. Therefore by 5.8 f(a, ) = a. Conve'rsely, let f(o, B) =

= o be fulfilled. According to 5.3 f(a, ) ~ f(B, «) and f(B, «) is a refinement of B,
thus & < B.

6.2. (9, <) is a partially ordered set.

Proof. The relation < is reflexive. Let ¥ < B, B < 7 where y has the form
(?) G = QukFy .

Then by 6.1 and 5.8 the condition (b) of 5.8 holds and to each j e J there exists
x(j) € K such that

F(x()) = B(), B() = F(x())) -
From this it follows '
Fo(@) = 40), A>G) = Fx(w(),

hence by 6.1 and 5.8 & < 7. If & < 5, B < &, then by 6.1 f(x, B) = o, f(B, a) = B,
and thus, according to 5.3, & = B.

For &, ff € G put (& ) = f(« B) (by 5.7, f(«, B) does not depend on the choice of
aed, pep).

63. Let &, B, 7€ 9, a < B. Then f(7,a) < f(7. B).

Proof. We can suppose that « is a refinement of . The factors on the decomposi-
tion f(, «) are

(F(k) 0 4;) (F) = T
and, analogously, the factors of f(7, p) are
(F(k) n B;j) (Fi) = Si; -

For each i e there exists Y(i) € J such that 4; is a factor of B;, hence 4; = B,
Therefore we have T,; = Sy, ;- Thus by 2.17.2

S'(k, y(i)) = T'(k, i), T(k,i) = S(k, p(i)).
According to 5.8 and 6.1 this implies f(y, o) < f(y, B).

6.3.1. Under the same assumptions as in 6.3 f(&, 7) < f(B, 7) holds.

Proof. The assertion follows from 6.3 and from f(a, 7) = f(7, @), f(B,7) =
= (5 B) (cf. 5.3).
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6.4. Theorem. f(&, B) = & A B for any &, Bed.

Proof. Since f(x, B) is a refinement of «, we have f(& B) < & Analogously,
f(B, @) < P and thus according to 5.3 f(&, f) < B. Let ¥ < &, 7 < B. Then by 6.3
and 6.3.11(a, B) Z f(7. B) = f(7,7) = f(v,v) = 7.

Let o, f€ % and let us denote y = f(«, f). Now we intend to construct a new
decomposition ¢ of the form

(61) G= QreTFt

such that § = & v B be valid.

We define a binary relation & on the set (I - J)' as follows: (i, j) ~ (i’, j) if there
exists a finite sequence of elements of the set (I - J)'

(i> ]) = (ilajl)’ (iZst)’ bt (im .]n) = (i,u]‘l)

such that either i; = i;,, or j, = j,,+; holds for s = 1, ..., n — 1. Obviously = is an
equivalence relation on the set (I o J)'; the class of the corresponding partition that
contains the element (i, j) will be denoted by #(i, j) and let T be the system of all such
classes. For (iy, j,), #(i, j) € T we put (iy, j;) < (i, j), if i, < i3 and j, < j; holds
for each element (i,, j,) € #(iy, j;) and each (i3, j;) € #(i, j). The relation < determines
a partial order on the set T.

6.5. Let (iy,j1) (izsja)€(IoJ), iy <iy jy <jao, Hiy,jy) # (izsjo). Then
iy, j1) < t(is J2)-

Proof. Let (iy, j;) € (I o J). Consider the elements (iy, js), (i, )2). If j3 = Jja,
then (iy, j1) = (i, jo), hence 1(iy, j;) = #(i, j,), a contradiction. Thus j; # j, holds.
Since i; < i,, it follows by 4.5 that j; < j,. Analogously we can prove: if (i3, j,) €
€(I o J), then iy < i,. From this we get by induction that i, < i, j, < j, is true for
each element (i, j,) € #(is, j;). In a similar manner it can be proved that i, < is,
Jja < Js for any (ist) € t(iz’jz)'

For a fixed t, = 1(iy, jo) € T we denote

(62) Ffo = QEii((i’ J) € t(i07 JO)) ;
further we put
H = [Q,F,].

Let to = 1(iy, jo) € T, g € G. We shall denote by g,, the element of F, satisfying
9(E;;) = 9.,(E;;) for each (i, ]) € t,. Clearly there exists exactly one element of F,
fulfilling this condition. For each ¢ e T consider the mapping ¢, : G - F, defined
by ¢(9) = g,foranyge G.If geF,t' e T, t' + t, then ¢,(9) = g, ¢,(g9) = 0.
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For completing the proof that (6.1) is valid it remains to show that the mapping

?@9) =(.gs..)(teT)

is an isomorphism of the partially ordered group G onto H (cf. 1.2).

Let g € G and consider the decomposition y = f(a, B). Since (I o J) (g) satisfies
the descending chain condition, according to 6.5 the set {te T: g, & 0} fulfils this
condition, too. From this it follows ¢(g) € H for each g € G. Clearly ¢ is a homo-
morphism with respect to the group operation. Let h = (..., h',...) e H. For any
(ios o) € (I o J) put to = t(io, jo) and denote h"(E;,;,) = h*°. Let M = {(i,j) €
e(IoJ) :h %0}, (ipj)eM (n=1,2,3,..), (i;,j1) = (iz,j2) = ... According
to 6.5 and 4.5 we have then t; > t, > ... where 1(i,, j,) = t, € T(h). Since this set
satisfies the descending chain condition, there exists a positive integer m such that
t, = t, for n = m. Hence h" = h™, h™" = h™(E, ;) for n > m. Since h™ e
€F, < G, the set M, = (I o J) (h™) satisfies the descending chain condition and
(is js) € M, for n = m. Thus there exists a positive integer m; = m such that (i,, j,) =
= (> jm) for n = my. This proves that M fulfils the descending chain condition and
there exists an element g € G satisfying g;; = h" for each (i, j) € (I - J)'; then ¢(g) =
= h holds. If g € G, ¢(g) = 0, then g, = 0 for each t € T, hence for (i, j) € t we have
9(E;;) = g(E;;) = 0; this implies g = 0.

Let g€ G, g >0, ¢(g9) = (.., gp ---) = h. Let (ig, jo) € min (I - J) (g, 0). Then
to = t(io, jo) € T(h, 0) and (i, jo) € min (I o J)' (g, 0). This implies g,,;, > O, hence
gi >0, h > 0. Conversely, let h >0 and let (i, jo,) € min (I o J) (g, 0). Then
to = t(ig, jo) € min T(h, 0), (io, jo) € min (I o J)' (g4, 0), thus g,, > 0 and g;,;, > 0.
Therefore g > 0 holds.

We have proved that (6.1) is valid. Let us denote this decomposition by & = f;(2, f)-
Since E;; are directed nontrivial factors, each F, is directed and nontrivial, hence &
belongs to ¥.

6.6. The decomposition o is a refinement of fy(x, p).

Proof. For any iy €I and any j;, j, € J. such that (io, j;), (iq, j;) € (I o J)' we have
(i0s 1) = (ig, j2), hence

Aiy = QsEip; < QE, ((i,j) e to) = F,,

where 1(iq, j;) = 1.

6.7. p <&

Proof. According to 6.1 and 5.8 it suffices to verify that for each j, € J there
exists 1, = Y(j,) € T such that F'(¥(jo)) = B'(Jo), B(jo) = F(¥(jo)). Since B, + {0},
by (4.3) there exists i, € I such that C;,;, + {0}. By 4.9 we have E, ;, + {0}, hence
(i0sjo) € (I o J). Let one such i, be fixed and denote y(j,) = t, = (i, jo)-
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Let x € F'(¥(jo)) and let (iy, jo) € (I » J). Then (i1, jo) € to, hence by (6.2) E;,;, =
c F,, and therefore according to 2.17.2, F'(to) = E'(iysJo)- By 5.2 E'(iy, jo) =
= C'(jo, ;). Thus we have
(6:3) X(Cji) = 0

for each iel. (If (i,jo) ¢ (IoJ), then E;; = {0}, C;; = {0} and x(C;,;)) = 0.)
Clearly C'(jo, i) = C(jo, i) and by 2.17.2 C(jos i) = B(jo), hence x € B(jo). Thus
x; = 0 for any j % jo. Let us now consider the component x;,. By the construction
of the decomposition (4.3”) for any z € G we compute z(C; ;) as follows: we find at
first the element z(Bj;,) = z;, and then we construct the component of z;, in Cj,;
with respect to the decomposition (4.3); hence z(C; ;) = z;,(C;.:)- By (6.3) x(C;;) = 0
for each i €1, thus x;,(C;,;) = 0 for each i e I. From this we get x;, = 0 according to
(4.3), hence x; = O for any j € J, j % j,. This proves that x € B'(jo).

Let x € B(jo)and letj e J, i €I, x(C;;) = 0. Since x(C;;) = x,(C;;), we have x; + 0,
hence j = jo. Put t = 1(i, j). If ¢ * t,, then j > j, and by 4.5 i > i,, thus t > t,.
Further we have x(C;;) e C;; = C(j, i) = E(i, j), and since (i, j)et, E;; = F,, by
2.17.2 E(i, j) = F(f) = F(t,). Therefore x(C;;) € F(t,) for each i €I and each je J.
Then by 2.13, x € F(t,) holds.

6.8. Suppose that the decomposition
(%) G = QusH,
belongs to % and that % = &, % = B. Then % = &.
Proof. Let t, € T, (i, j) € t,. By 6.1 and 5.8 there exist elements s,, s, € S such that
H'(s)) = 4'()), A(i) = H(s,),
H'(s;) = B'(j), B(j) = H(s,) .-
At the same time we have
A'(i) = E'(i,j), E(i,j) < A(®i),
B(j) = Ei,j), E(i.J) = B(j).
Any x € E;;, x + 0 belongs to E(i, j)\ E'(i, j), hence
x & [H(s,) H(s1)] o [H(s2)\ HY(s5)]

According to 2.18 s; = s,. If E;;, # {0} or E,; + {0}, then, as we have already
proved,

H/(s’) c E'(i,j1) , E(i,jl) < H(sl) s

H'(s,) < E'(iy,j), E(iy,J) = H(s;) -
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By induction we get

(6-4) H,(sl) < E'(iz,jz) > E(iz,jz) < H(Sx)

for any (i, j,) ~ (i, j). Let x € F,,. For each (i, j,) € t, we have by (6.4) x € H(s,).
According to (6.2), for (is, j3) ¢ to x(E;,;,) = 0 holds. By 2.13 x(E;;) € H(s,), thus
F,, = H(s,). Since H(s,) is a convex subgroup of G, it follows from 2.17

(6.5) F(to) = H(sy) .

Let x€ H'(sy), te T, x, + 0. Then there exists (i3, j;) et such that x;,;, + 0.
We have x;,;, € H'(s;) and by (6.4) x,,;, € E'(i5, j,). Therefore (is, j3) > (iz,J,) for

3J3 i3j3

each (i,, j,) € to. This implies ¢ > t,. Hence x € F'(t,) and thus
(6.6) H'(s,) < F'(to) -
By 6.1 and 5.8 from (6.5) and (6.6) it follows & <7

From 6.6, 6.7 and 6.8 we get:

6.9. If «, B ¥, then fi(a, p) = & v .

6.9.1. Corollary. If o, B, a;, By €9, o ~ ay, B ~ By, then fi(oy, By) ~ fi(e B).
From 6.4 and 6.9 it follows:

6.10. Theorem. The partially ordered set % is a lattice.

7. SOME GENERALIZATIONS AND PROBLEMS

7.1. Let ¢ be an ordinal with the property that the sum and product of any two
ordinals less than o are again less than . Let
G, = [QisIAi]

be the mixed product of directed groups 4;. If f € G,, R = I and if R is a chain, then
(since I(f) satisfies the descending chain condition) the set I(f) N R is well-ordered.
Let G, be the system of all f € G, such that the order type of I(f) n R is less than
for any chain R < I. Then G, is the mixed o-product of partially ordered groups 4;;
we shall denote it by

G; = [(U) QieIAi]

(cf. [6] and [4] for the case of a linearly ordered set I). Analogously as in 1.2 we can
define now a mixed g-decomposition of a partially ordered group

G = (0) Qer4: ;
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the only difference consists in taking [(o) Q,;4;] instead of [Q,,4,] in the condition
(b) of Definition 1.2.

Let there be given two o-decompositions
@) G=(0)Qudi, (B) G=(0)QuB,.

It can be easily verified that the constructions described in Sections 2—6 applied on
these a-decompositions lead to o-decompositions f(a, B), f(B, «), f1(«, B) and f,(B, «).
In this manner, each proposition from Sections 2—6 can be replaced by the cor-
responding ““‘o-proposition’’ concerning g-decompositions. Then the g-theorem 4.10
generalizes Theorem 2 of Malcev [6] and Theorem 9 of Fuchs [4, Chap. II].

7.2. Let (G; +, <) be a gruppoid with respect to the operation + (neither the
associativity nor the commutativity of + are assumed) that is partially ordered and
satisfies

xsy<(x +z)s(y +z), xsy<(z+x)s(z +y)

for any x, y,z € G and any se {<, >, |}. If there exists 0 € G such that x + 0 =
= 0 + x = x for any G, then G is called a u,-gruppoid [5]. For a u,-gruppoid G
we can define a mixed product decomposition G = Q,;4; analogously as in 1.2.
Consider the following condition for G:

(C) if A, B; are factors of G, then 4 = B} = A, = B;; A = B; = A, < B;. .
(For any subset X =« G we put X* = {xeX :x 20}, X~ ={xeX:x < 0}.) It
can be proved that if a u,-gruppoid G satisfies (C), then the propositions from Section
2 are true for mixed decompositions of G (some, but not all, proofs remain verbatim
valid).

Problem 1. In what extent the results of Sections 3 — 6 remain true for u,-gruppoids
satisfying the condition (C)? (Cf. [5] for the case of decompositions G = Q4
where I is linearly ordered.)

7.3. Let G be a partially ordered group. Let & be the system of all factors 4; in G
for which there exists a decomposition o € % such that A4, is a factor of «. For 4;, B;e &
put A; ~ By, if A(i) = B(j), 4’(i) = B'(j). Then ~ is an equivalence relation on &;
the class of the corresponding partition containing the element 4; € & will be denoted
by t(Ai) and the system of all such classes by %. We define a partial order on the

set & by
1(4;) £ (B;) < B'(j) = A'(i), A(i) = B(j).

Problem 2. Under which conditions is & a lattice?

7.4. Problem 3. Characterize the class of lattices L for which there exists a partially
ordered group G such that Lis isomorphic to the corresponding %.
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