
Czechoslovak Mathematical Journal

Ján Jakubík
The mixed product decompositions of partially ordered groups

Czechoslovak Mathematical Journal, Vol. 20 (1970), No. 2, 184–206

Persistent URL: http://dml.cz/dmlcz/100960

Terms of use:
© Institute of Mathematics AS CR, 1970

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/100960
http://dml.cz


Czechoslovak Mathematical Journal, 20 (95) 1970, Praha 

THE MIXED PRODUCT DECOMPOSITIONS OF PARTIALLY 

ORDERED GROUPS 

JÂN JAKUBIK, Kosice 

(Received July 3, 1968) 

The concept of the mixed product of partially ordered groups is a common gene­
ralization of the concepts of the complete direct product and the lexicographic product. 
The mixed products were used by CONRAD, HARVEY and HOLLAND [3] and by CONRAD 

[2] to the study of the structure of the abelian /-groups and abelian partially ordered 
groups. 

The main result of this paper consists in constructing the isomorphic refinements of 
any two mixed product decompositions 

where G is a partially ordered group and all factors Ai, Bj are directed, A^ Ф (0} Ф 
Ф Bj. An analogous result was proved by MAECEV [6] for the lexicographic 
^--products of linearly ordered groups. FUCHS ([4], Chap. II, Theorem 9) generalized 
Mal'cev's theorem for lexicographic cr-products with directed factors. Lexicographic 
products and lexicographic cr-products of a certain type of partially ordered grup-
poids were considered in [5]. 

L DEFINITIONS AND NOTATION 

For partially ordered groups we shall use the concepts and the notation from [1]. 
The group operation will be denoted additively (the commutativity not being 
assumed), f), \J, a and л , v are the usual set-theoretical and lattice-theoretical 
symbols, respectively. If X, Y are any sets, then Z \ У is the set of all elements of X 
that do not belong to Y. Let A and В be partially ordered sets; Л о Б is the lexico­
graphic product of A and В (cf. [1]). For a^, а2^ A. the symbol a^\a2 denotes that a^ 
and a2 are incomparable. 

1.1. Let / Ф 0 be a partially ordered set and for any i el let A^ be a partially 
ordered group. Let us denote by G^ the Cartesian product of all sets Л ,̂ i.e., Gj is the 
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system of all maps f :I -^ [JA^ such that f{i) e A^ for each / € / . The element/(/) is 
said to be the component of/ in Ai. For/(f) and / we shall use also the symbols/^ 
and {...,fi, ...)i6/5 respectively. I f / e G ,̂ let us put 

/(/) = {«• 6 / : / (0 + O}. 
Further we denote by 

the system of a l l / e Ĝ  such that /(/) satisfies the descending chain condition. Now 
we define in G2 the operation + componentwise. If/, g e G2,/ Ф g, we denote 

l{f,g) = {iEl:f{i)^g{i)}, 

Let min/(/, g) be the set of all minimal elements of the set /(/ , g). Let us pu t / < g 
if/(ï) < g(i) for each i e min/(/, g). Then (G2; +, ^ ) is a partially ordered group; 
G2 is the mixed product of partially ordered groups Ai. 

1.1.1. Analogously as in the case of direct products it is sometimes convenient to 
replace the partially ordered groups Ai by some subgroups Äi of G2 that are iso­
morphic to A I. Let I G / be fixed and let us put 

Äi = {/G G2 ' / (ч ) = О for each Ï\ G/, i^ Ф i] . 

Then Äi is a partially ordered group isomorphic toAi. For each gr G G2 we put (Pi{g) = f 
where/G J4̂ , g(^i) = / ( i ) . The mappings cpi have the following properties: if ij, 
/2 G/, Ï\ Ф Ï2, Ö̂  € Л^̂ , then ()9f̂ (ö') = g, cp^J^g) = 0. Moreover, the map g -^ (/)(Ö̂ ) = 
== (•••5 ̂ PiCö')? •••)̂ •6̂  ^̂  ^^ isomorphism of the partially ordered group G2 onto the 
partially ordered group [iQ^gj^J. 

We can formulate now the definition of the mixed product decomposition of G. 

1.2. Let G be a partially ordered group and let / Ф 0 be an ordered set. For any 
i G / let ylf be a subgroup of G (with the induced partial order). Assume that for each 
i G / there exists a mapping cpi of G onto Ai such that 

(a) X e Ai=> (pi{x) = x, (Pi^^) == 0 for any f,- G/, Ï\ Ф i; 
(b) the mapping (p(x) = (..., (Pi{x), ...) is an isomorphism of G onto [Q^gj^,]. 

In such case we will write 

(1.1) G = Qi^jAi ; 

this equation represents a mixed product decomposition of the partially ordered 
group G. 

1.3. Assume that (1.1) holds. If the mappings (p. are fixed, then we write also x̂ , 
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x{Ai) instead of (Pi{x), For X c= G we denote X{Ä^) = {х(Л|)}^ех- If ^i ^ I ^^^ if ^i 
(i G / I ) is a subgroup of Ai (with the induced partial order) we define the partially 
ordered group 

as follows: we put B^ = {0} for each i el\li and denote 

я = с>-'([о,,А])-

1.4. Assume that (1.1) is valid and let another mixed product decomposition 

(1.2) G = Qj^jBj 

be given. The decompositions (1.1) and (1.2) are isomorphic, if there exists an iso­
morphism ф of the partially ordered set / onto J such that the partially ordered 
groups Ai and B^^^ are isomorphic for each i e /: The decomposition (1.2) is a refine­
ment of (1.1), if for each i e I there exists a subset Ji a J such that Ai = Qj^j.Bj, 

1.5. Let X be a subgroup of the partially ordered group G. X is a factor in G if 
there exists a decomposition (1.1) and an element IQ G / such that X = Af^. A factor X 
is nontrivial if X ф (O). An immediate consequence of the definition 1.2 is the fol­
lowing "substitution rule": Let X be a factor in G (under the notation just used) 
and let 

X = O-keK^k -

Denote M = (/ \ (ioj) ^ K. On the set M we introduce a partial order ^ in such 
a way that on the set / \ {io} we take the original partial order (induced by /) and for 
any mi G/\{io}, m2 eiC we put m^ < Шз (ша < m j if and only if m^ < ÎQ 
(ï'o < mi). Now we put D̂„ = Л,„ if m G / \ [ÎQ] and D^ = C^ if m G К, Then G = 
= ^теМ^^т ^ O l d s . 

1.6. Throughout the paper we shall suppose that G ф {0} (our considerations 
being trivial for G = {O}). Let us consider the decomposition (1.1) and denote 

Г = {ieliAi^ {6}]. 

Then / ' Ф 0 and from the definition 1.2 it follows 

G = Q,,^,^,. 

If M 3 / is a partially ordered set and if we put Ai = (O) for each i e M\I, then 
from 1.1 we get G = Q„,gM m̂- Hence any number of trivial factors can be removed 
from or added to a decomposition. We shall often restrict ourselves to decompositions 
with non-trivial factors only. 
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1.7. Assume that (l.l) holds and / = {1,2} (with the natural order). In such a case 
we write 

G = Ai о A2 

instead of (1.1). From the conditions (a) and (b) in 1.2 it follows that each element 
X E G can be uniquely written in the form x = x^ + X2, x^ e Л^, X2 e Л2; if, at the 
same time, у = У1 + у2^ Уг ^ ^ь then x < у if and only if either x^ < y^, or x^ = y^ 
and X2 < у2- Moreover, if Л2 = -^3 о A^, then by 1.5 G = Л^ о {A^ о A^. It is easy 
to prove that this is equivalent with G = {A^ о A^ о A^ and therefore we write 
simply G = Ai о A2 о A4, (cf. also [5], section 6). 

2. THE SUBGROUP A(i) 

In this section we suppose that there are given two decompositions 

(a) G = Qi^jAi, 

iß) G = Qj^jBj 

of the partially ordered group G and that all factors Л,, Bj are directed. For any 
ÎQ G / denote 

A{io) = QAi (iel, i ^ ÎQ) , 

AXio) = QAi {iel, i > 1^) . 

The symbols B{jo), B'(JQ) (JQ e j) have the analogous meaning. Since all factors Ai 
are directed, (̂1*0) and A'ijo) are directed as well. 

2.1. ^(ïo) is a convex subset of G. 

Proof. Let X, z G A^IQ), y e G, X < y < Z. Assume that y ф A{io). Hence there 
exists i el such that i ^ IQ, y^ Ф 0. Then x, ф yi and therefore there exists i^ e 
Gmin/(x, y), 1*1 ̂  i. Since x < j and x,̂  = 0, we get yi^ > 0. At the same time 
1̂2 ~ У il ^ ^ ^^^ ^^^^ Ь < h ^^^ ^ii = Ö. Hence i^ e min/(j^, z), yi^ > Zi^, a con­

tradiction. 

2.2. Let X E G, X > 0, i\ G min/(x, 0). Then (a) 2x > x,-̂ , (b) 2x > Зх^ .̂ 

Proof. Clearly min/(x, 0) = min/(2x, x^J = min/(2x, 3x^J. For any i e 
G min/(x, 0), (2x)i > (xfjj- holds. Moreover, z\ G min/(2x, 3XfJ, (2х),-̂  < (Зх;^,^. 

2.3. Let X G А(лд), x > 0. Then Xj G A(io)for any j G J. 

Proof. For Xj = 0 the assertion is trivial; let x̂ - ф 0. There exists j i G min J(x, 0), 
j i ^ j with 0 < Xj^. By 2.2 x̂ ^ < 2x. Since 2x G A{io), we get x̂ .̂  G А{1О) by 2.1. If 
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j = j i , we have Xj e Ä(io). Let j i < j . Then for each z e B^ 0 ^ z < Xj^ holds, and 
thus by 2.1 BJ^ С A^IQ)^ . Each element of Bj is a diference of positive elements of Bj 
(since В J is directed) and this implies Bj <= yl(fo), whence Xy G ^(I'o)-

By a dual argument the analogous proposition for x < 0 can be proved. Since А{1о) 
is directed, we have: 

2.4. If X e AQQ), then Xj e А(1о)/ог each j e J, 

Now we will prove that from x G G, Xj e А{1о) ф {0} for each j e J it follows 
X e v4(io). We need some auxiliary lemmas. 

2.5. Let X, V e G, X > 0, V > 0 and let x^ ^ v for each i e L Then x < 2v. 

Proof. Assume, at first, that x = 2г; and let i^ emml(v, 0). Then 0 < Vi^ < 2vi^, 
ï\ emml{v,2vi^), hence 2vi^ ^ v. But 2vi^ = х,-̂  й v, a, contradiction. Therefore, 
X Ф 2i;. If X = V, then x < 2v. Let x Ф f and let г\ Gmin/(x, 2v). Suppose that 
there exists /2 < h such that x̂ ^ Ф 0, Then there exists /3 ^ 1*2? з̂ emin / (x , 0). 
Since 1*3 < i\, we have Ï3 Gmin/(2i;, 0) = min/(î;, 0), hence 0 < х̂ з = 2vi^ > Vi^. 
But, at the same time, /3 G min/(x^3, v), thus х,-з < v^^, a contradiction. Therefore 
X. = 2vi =Vi = 0 for each i < ii. If x̂ ^ = 0, then 2vi^ Ф 0, whence Vi^ Ф 0 and 
i\ G min/(i;, 0), thus Vi^ > 0, 2vi^ > 0 = x,^. If x̂ ^ Ф 0, then i\ G min/(x, 0) and 
Xj.j > 0. Now we have etiher x̂ -̂  = v^^ and x̂ ^ < 2^^^ or x̂ -̂  Ф Vi^ and fj G 
Gmin/(x, г;), whence x̂ -̂  < Vi^, Xi^ < 2vi^. The proof is complete. 

2.6. Ler X G G, X > 0, Xj e A(io) for each j G min J(x, 0). / / i < ÎQ, then x^ = 0. 

Proof. Assume that i < IQ, X,- Ф 0. Then there exists г\ Gmin/(x, 0), Ï\ ^ f. 
According to 2.2 2x > x^ ;̂ clearly x,-̂  > t for each t e А(1о), hence 2x > t for each 
t G А{1о). Let j \ G min / (x, 0). We have x̂ ^ G ̂ (fo), hence 3xŷ  G ̂ (lo) and thus 
2x > Зху .̂ By 2.2 (b) 2x > Зх^ ,̂ a contradiction. 

2.7. Lef z G G, z > 0, Ï0 ^^- Suppose that Zj^ e Л(го) / o r ^acli ji G min J(z, 0). 
Then Zj G ^(io) /o r each j e J, 

Proof. Le t ; e JJ ф min J{z, 0), The case Zj = 0 is trivial. Let Zj ф 0; then there 
exists Ji < j , Ji G min J(z, 0). For each bj e B^ we have 0 g by < Zŷ , thus, by the 
convexity of А{1^), bj G ̂ (io). Therefore, since Bj is directed, Bj с A{io) and so 
zy G A{io), 

2.8. Le? y, z G G, 0 < >̂  < z, fo e / and let Zj e A(io) M each j G J . Then yj e 
e Aijo) for each j e J. 

Proof. Let j \ G min J{y, 0). Then yj^ > 0. If/^ e min J(y, 2), we get 0 < j;y^ < 
< Zŷ , hence from the convexity of A{io) it follows yj, ^ (̂̂ *o)- If A ^ mm J{y, z), 
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then there exists J2 < Л , jz ^ ™"̂  J{y, ^) and 0 < yj^ < Zj^; therefore j / ^ ^ e A^ÎQ). 
According to 2.7 this imphes that yj e A^ÎQ) for each ; e J. 

2.9. Let X e G, x > 0, IQ el, Xj e A(io) for each j e J. Let Л,^ ф (O). / / i el, 
i I ÎQ, then Xi = 0. 

Proof. Let iel, i | /Q. Assume that x, Ф 0. Then there exists i^ Gmin/(x, 0), 
г\ g i. According to 2.6 /̂  | /Q. By 2,2 0 < x̂ ^ < 2x. Let j e J. Since (2x)y = 2x̂ - e 
G А(1о), by 2.8 we have 

(2.1) {^n)j^A{io). 

At the same time x,-̂  e ^ ( Ï \ ) , hence by 2.4 (x^Jy G ^(/1) and therefore from i^ | fo 
we get 

(2.2) (Ы;).„ = 0. 

It follows from (2.1) and (2.2) that 12 > ô f̂ ^ ^^^^ 2̂ ^ niin/((xfjj, 0). Since A^^ Ф 
Ф {0}, there exists a e Ai^, a > 0. We have {x^)j < а,̂  for each j e J, hence by 2.5 
Xfj < 2a. From the relations 2a e Ai^, Xi^ e A^^, ÎQ \ i^ we obtain 2a | Xj^ a contra­
diction. 

2.10. Let X G G, X > 0, ÏQ ^^> ^j ^ A{}o)f^^ ^(^ch j e J, Л̂ ^ ф (0}. T/ien x e A{iQJ. 

This follows from 2.6 and 2.9, 

2.11. Let X G G, X < 0, 1*0 ^ Л -̂ j ^ A{iç^for each j e J, Ai^ ф {0}. Then x G Л(/о). 

Proof. Put у = — X. Then yj = — ^j ^ ^(^o)? hence by 2.10 у G ^ ( ÏO) and therefore 
X G yl( ïo) . 

2.12. Т/гв set А{1о) n Бу /5 directed. 

Proof. Let d e А{1о) n Bp d | 0. Since A^ÎQ) is directed, there exists J ' G V4(ÏO) 
such that d' > 0, J ' > d. Therefore from d = dj\0 it follows that there exists 
j \ G min J(c?', 0), j i S j ' If 7*1 = Л then J}^ > 0 and 71 e min J(J, d'), whence 
dj^ > dj = d, dj^ e Bj. According to 2.4 d]^ e А{1о), hence d)^ e A{iQ) n Bj. If 
j \ < j , then 0 ^ bj < dj^ for each by G Б / , thus with respect to the convexity of 
A{io) Sind from dj^ e A{io) it follows bj e A^IQ). Therefore B^ cz Л(/о) and Bj с 
с ^(ïo). Since В J is directed, there exists bj e Bj such that 0 g by, d ^ fey. This 
proves that A(io) n By is up-directed; by a dual argument we can show that it is 
down-directed. 

2.13. Let X e G, ÎQ G / , Xy G А{1^) for each j e / , Ai^ ф {O}. Then x e A{iQJ. 

Proof. The assertion is trivial for x = 0; let x Ф 0, j ^ e min j(x, 0). Then 0 Ф 
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ф Xj^e А[1о) n Bj^. By 2.12 there exist elements u^\ v'^ e А{1о) r\ Bj^ such that 
u^^ < 0, u^^ < Xj^, v^^ > 0, v-'^ > Xj^. Assume that we have chosen such elements 
u^\ v^^ for each j ^ e min J(x, 0). There exist u, v e G satisfying Uj = u-', Vj = v^ for 
j e min J(x, 0) and Uj = Vj = 0 for j ф min J(x, 0). Then w < 0 < t; and according 
to 2.10 and 2.11 и and v belong to A{io). Obviously и < x < v, and therefore 

2.14. Theorem. / / lo e / , Ai^ Ф {O}, then 

Ä{io) = ^j.j{A{io) n Bj) . 

The proof follows from 2.4 and 2.13. 

2.15. A{io) n В J = ^(ïo) {Bj)for any ÎQ elje J. 

Proof. Obviously A{io){Bj) Œ BJ, hence by 2.4 Дг'о) (B^) cz yl(zo) n B^. Let 
t G Л(1*о) п Б^. Then t e Bj, hence t{Bj) = Г. From r e A{io) we obtain г(В^) e A{io) (Bj), 
whence A{io) n Bj cz AQQ) (BJ). 

From 2.14 and 2.15 it follows: 

2.16. / / io e / , Ai^ Ф {0}, then 

A{io) = nj,jA{io){Bj), 

2.17. IfA,^ Ф {0}, r/ien 

^(j^j) = {x G G : öftere exzs^ w, f G ̂ 4̂-̂^ such that и ^ x ^ v], 
Л'(|*о)^ = (x G G^ : nx < a for any a e Af^, a > 0 and any positive integer n}. 

Proof. ïf u,v e Ai^, X e G, и ^ x ^ v, then by the convexity of ^(I'o) we have 
X G А(ло). Let t G Л(го)- Since Ai^ Ф (0} is directed, there exist u,v e Af^ such that 
и < 0 < V, и < ti^ < V, This implies и < t < v. 

Denote Z = (x G G"̂ , их < Ö for any a e Ai^, a > Q and any positive integer n}. 
Obviously ^'(10)"^ ^ ^- Let x G Z, ae A^^, a > 0. Since x < a, we have x G Л(го). 
Assume that x.^ Ф 0. Then x̂ ^ > 0, x̂ ^ G Л^^, hence from x G Z we obtain 2x < x̂ .̂ . 
According to 2.2 x̂ ^ < 2x, a contradiction. Therefore Xi^ = 0 and x G yl'(io). 

As an immediate consequence it follows from 2.17: 

2.17.1. / / Ai^ Ф {0}, then A'{iç^ = {x — y : x e Z, y e Z] where Z has the same 
meaning as in the proof of 2Л1. 

2.17.2. Let io e / , Jo e J. //JB^.^ с Л^ ,̂ t/ien B{jo) c= ^(zo), ^'(zo) c: F( io) . 

2.18. Le^ il, i2 ^^ ' *̂i + h- Then [A{i,)\A'{ii)] n [A{i2)\A'{i2)] = 0. 
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Proof. Let ^ e [^(f i) \yl ' ( i i )] n [^( i2)\^ ' ( î2)]- If h^ h are comparable, we 
may assume i^ < Ï2- Then (̂1*2) с Ä'{i^). Since x e ^(12), we have x ф Ä{i^) \ ^ ' ( i \ ) , 
a contradiction. Let i^ | 1*2. Since x e ^( i \ ) and 1\ $ Ï2» we obtain x,., = 0. From this 
and from x e ^(^2) it follows x G ^ ' ( Î ^ ) , hence x ф 4̂(1*2) \ ^'(^2)» a contradiction, 

3. THE DECOMPOSITION G == С о D 

In this section we shall consider the decompositions 

(3.1) G = Co D, 

(3.2) G = Q, ,H. 

under the assumption that C, D, Ai (i el) are directed. 

3.1. D = Q,,X^ ^ ^0 = ^.•e/^(^f). 
Proof. For D = (0} the assertion is trivial. Let D Ф (O). Then by 2.14 D = 

= 0,e/(^ -̂  ^ 0 - According to 2.15 D n A^ = D{A,), 

3.2. Let (p :G -^ \P-iei ^ i (^)] ^^ ^ mapping defined by 

(p{x) = (..., x^(C), ...),.e/ 

/ o r a n j X e G. Then the partial map cpc • ^ ~^ If^tei ^ i (^)] ^̂  ^'^ isomorphism with 
respect to the group operation. 

Proof. Obviously ф is a homomorphism (into) with respect to the group operation. 
Let c, c' G С, (p{c) = (p{c'). Then (p(c — c') = 0, hence (c^ — c[) (C) == 0 and therefore 
Ci — c\e D for any i e 1. Thus by 3.1 с — c' e D. Since с — c' G C, we get с — c' = 0. 
This shows that cp̂  is a monomorphism. Let у G [0,^^ ^i(C)]. Then there exist elements 
a^ E Ai such that 

y = (...,a'(C),...). 

For fl'(C) = 0 we can put a* = 0. If we do so, then each non-empty subset of the set 
/1 = (ï G / : â  Ф 0} = [i el : a\C) ф 0} satisfies the descending chain condition 
(cf. 1.1). Thus there exists a e G such that â  = a^ for each i el. According to (3.1) 
a = с + d, с e C, d e D. Then we have â  = Ci + J,-, ai(C) = c^(C) + di{C). By 3.1 
(if G D, hence ^,(С) = 0, ai{C) = с^(С). Therefore we have Ci{C) = a\C) for each 
i G / and hence (p(c) = y. 

3.3. If X e C, X > 0, then (p(^x) > 0. 

Proof. Let X G C, X > 0. By 3.2 (p{x) ф 0. Let i^ e minl((p{x), 0). Hence х^^(С) Ф 
Ф 0. Assume that there exists i el such that i < i\, x̂  Ф 0. Then there exists 1*2 S h 
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Î2 e min/(x, 0). Since 1*2 < b , we have х^^(С) = О, hence х^^ e D n A-^. From x^, ф 0 
we get D n Ai^ Ф {O}. According to 2.12 D n Af^ is directed, thus there exists 
a e D n Ai^, a > 0. Then 0 ^ ^ < a for each t G ( Л , - J ^ and by the convexity of D 
(cf. 2.1) {Ai^Y ^ ^ ' whence Л̂ ^ с D and x̂ ^ G D. This implies Xj-̂ (C) = 0, a con­
tradiction. Therefore z\ G min / (X, O). From x > 0 we get now x̂ .̂  > 0. From x̂ ^ = 
= Xf^C) + Xi^{D), Xilc) Ф 0 it follows x^^C) > 0. Hence (p{x) > 0. 

3.4. Let CEC, (p{c) > 0. Then с > 0. 

Proof. For Ï G / we put d' == ĉ  or J^ = 0 if Ci{C) == 0 or c^(C) ф 0, respectively. 
There exists d e G such that di = d' for each i el. All di belong to D, hence by 3.1 
d e D. Denote с ~ d = c'. Thus c- = 0 if and only if Ci{C) =^ {(p{c))i = 0. This 
implies min/(c' , 0) = min/(ф(с), 0). Let z G min/(с' , 0). Then i G min/((p(c), 0), 
hence {(p{c))i > 0, i.e., с^(С) > 0. Since ĉ  = c^(C) + Cj.(D), we get ĉ  > 0. From this 
it follows d^ = 0, whence c- = ĉ -, c- > 0. This shows that c' > 0. From c' = с — d, 
с Ф 0 (this follows from (p{c) ф 0) we conclude by (3.1) that с > 0 holds. 

From 3.2, 3.3 and 3.4 it follows: 

3.5. (pc is an isomorphism of the partially ordered group С onto [O^^j yli(C)]. 

For с e C, i el denote c,(C) = (Pi{c). 

3.6. Let i,i el, i ^ j , с e Ai[C). Then cpi{c) = c, (Pj{c) = 0. 

Proof. There exist elements a e A^, de D such that a = с + d. From this we 
obtain â  = ĉ  + d^. Since a e A^, we have â  = a, hence 

(3.3) с -\- d — Ci + di . 

According to 3.1 d^ e D{A^ = D n Ai, thus J^(C) = 0. From this and from (3.3) we 
get c(C) = Ci[C). Since c[C) = c, we have (p,(c) = c. Further we have 0 = aj = 
= с J + dj, 0 = Cj{C) + J / C ) . But dj e D imphes J / C ) = 0 and therefore (pj{c) = 
= Cj{C) = 0. 

According to 1.2 it follows from 3.5 and 3.6: 

3.7. Theorem. / / (3.1) and (3.2) are fulfilled, then 

C = ni,jAi{C). 

Now we shall consider another decomposition with two factors 

(3.4) G = AoB . 

The following two statements were proved in [5] (under more general conditions): 
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3.8. ([5], 9 and П.) Let (3.1) and (3.4) he valid. Then either D a В or В a D. 
If D cz B, then В = B{C) о D, B{C) = В n C. 

3.9. ([5], 13.4) Let G = AoB, G = CoB hold. The mapping f : A -> С defined 
^y fip) ~ ^^(^) ^^ ^^ isomorphism of the partially ordered group A onto С 

4. ISOMORPHIC REFINEMENTS 

Let us consider the decompsitions a, ß (cf. section 2). Throughout the whole paper 
we will assume that Ai Ф (O), Bj ф {0} for each i el and each j e J, Let JQ e J be 
fixed. By 2.14 

(4.1) B{jo) = n,,j{B{jo) n A,) . 

Obviously 

(4-2) 5(jo) = £;„ о B'iJo) • 

Then according to 3.7 we have 

(4.3) B,„ = Q,,,((ßO-o)n^,)(ßJ). 

For any i e I, j E J denote 

(4.3') ( В О - ) п Л , ) ( В , ) = С , , . 

From the decomposition ß and from (4.3) it follows 

(4.3") G = Qj^j Q,,rCji. 

The right hand side member of (4.3") can be written in the form ÇÎCji{{j, i)e J о I). 
If we denote (J о / ) ' = {{j, i)e J d : Cji + {O}) (cf. 1.6), then we can write 

(4.4) G = QCj,{{j,i)e{Joiy). 

4.1. Let (jo, io) e («/ о l)- The partially ordered group Cj^.^ is directed. 

Proof. Let X G Cj^i^, X I 0. Then there exists a e B{jo) n Ai^ such that aj^ = x. 
By (4.2) a I 0. According to 2.12 there exists a^ ^ B{JQ) n Ai^ such that a^ > 0, 
a^ > a. Using (4.2) once more we get a = aj^ + a}^, a^ = a]^ + {a^')j^ where 
^io' (^^ )jo ^ ^'(Jo)- Now the relation a | 0 implies a]-^ > x, a]^ > 0. 

Let us consider the partially ordered set ( j о / ) ' . 

4.2. Let (ji , z'l) G (J о / ) ' , J2 < ./i, I'l > 4 . та^?1 (j2. Q Ф {j oiy. 

Proof. Let us suppose that (J2, b ) ̂  (-̂  ° ̂ )' holds. Then by 4.I there exist elements 
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^ ^ ^71 u' У ̂  ^hii^ X > 0, j ; > 0. From this it follows that there exist elements 
a G B(ji) n Ai^, b G B{J2) n Ai^ such that 

(4.5) a,.̂  = x, bj^ = y. 

Since a G B{ji), a^^ > 0, we have min J{a, 0) = { j j , hence a > 0. Analogously, 
min J{b, 0) = {J2}, bj^ > 0, hence Ь > 0. From J2 < j i we get {7*2} = min J(a, b), 
and since â ^ = 0 < bj^, b > a holds. Moreover, since a e Ai^, Ь G Л,^ and since 
г\ < 1*2, a > fe is true; a contradiction. 

4.3. Let ( j i , il) G ( J о J)', J2 < j i , il | 12. T/ï^n (;2, 1*2) ^ {J о / ) ' . 

Proof. Assume that (J2, i2) G ( j о / ) ' and let x, y, a, fo have the same meaning as 
in the proof of Lemma 4.2. Ргош^'з < j i we get Ь > a nad from ii | 12 it follows a | b, 
which is a contradiction. 

4.4. Lef (Ji, il) G (J о I)\ i^ < f̂ , j ^ IJ2. r/zen (J2, 1*2) Ф {J о / ) ' . 

Proof. Let us suppose that (7*2, i2) ^{J Q^)'- Under the same notation as in the 
proof of 4.2 we have a > b. Since min J(a, b) = {71,7*2} and aj^ > 0 = bj^, bj^ > 
> 0 = aj^, a I b holds; a contradiction. 

From 4.2, 4.3 and 4.4 it follows: 

4.5. Let {juii),{J2J2)^{J oiy, ji ф 72, ii Ф i2. Let se{<, > , |} . Then j \ 
s 7*2 о il s 12-

Let us now denote (/ о J)* = {(i, j) e I о J : (7, i) G (J о /)'} and consider the trans­
formation X • (л i) -^ {U 7) of the set (J о / ) ' onto (/ о J)*. 

4.6. X is an isomorphism with respect to the partial order. 

Proof. Let (71, il), (72, i2) e (J о / ) ' . If 7i ф 7*2, ii Ф i2, then by 4.5 

(4.6) (71, il) < (7*2, h) ^ ihJi) < {hJz) ' 

If 7i = 7*2 or il = i2, then (4.6) obviously holds. 

By changing the roles of A^ and BJ,WQ get analogously as in (4.4) 

(4.7) G = QE,j{{ij)e{lojy) 

where 

(4.7') E,j = {A{i)nB^)iA,), 

(lojy = {{i,j)eIoJ:E,j + {0}}. 
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Now we intend to prove that C^ and Eij are isomorphic. Let IQ e /, j ^ e J Ы fixed 
elements and denote 

X = A{io) n B{jo) , 

D'-Qj^jXBjnX), 

4.7. X = 0,,X^, n X) = 0,^,,(Л, n Z) = (Л,, n Z) о D. 

Proof. It suffices to prove the first equality, since Ai n X = {0} for i J IQ, Let 
xeX. Then x e JB(JO), hence by 2.4 (and replacing Ai and Bj) x̂  e B(jo). Since x e 
e A(io), obviously x̂  G ^(io), thus x̂ - G Л̂  n Z. We get x G 0£е/(Л -̂ n Z). Conversely, 
let X G G and let x^e A^ n X for each f G /. This implies x G A^ÎQ) and according 
to 2.13 X G B(jo), hence x G Z. 

Analogously we have 

Z = Qj^jiBj nX) = Qj^j^Bj nX) = {Bj^ nX)oD\ 

4.7.1. D = А'^о) n X. 

Proof. Let X e D, Then, clearly, x G A^ÎQ). By 4.7 xeX, hence x G A'QQ) n Z. 
Conversely, let x G Л'(^О) П Z. By 4.7 X| G Л̂  n Z for each i G/ ; moreover, X| = 0 
for any i > ÎQ. From this it follows x e D. 

Analogously D' = B'(jo) n X. 

4.8. Z = £,,,, о (Du/ ) ' ) . 

Proof. Consider the decompositions 

X = {Xn Л,.„) о D , Z = (X n B̂ „) о D' . 
By 3.7 

(Z n B,.„) (Z n Л,„) = (Л(,-о) n ß ,J (4,„) = £,„,„, 

X = £,„̂ „ о [D'(X n Л;„)] о D . 

According to 4.7 and 3.8 either D с D' or D' cz D. In the first case we have by 3.8 

D' = lD'(X n Л J ] о D , 

hence X = Ef^j^ о D' = £;„̂ „ о {D и D'). In the latter case, by 4.7 

Z)'(X n Л J <= £.(Л,„ n Z) = {0} . 

From this it follows 

X = £.„.o о {0} о D = E,^j„ о (D u D') . 
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Replacing Ai by Bj we get 

4.8.1. X = C,.„,„c(DuD') . 

4.9. The partially ordered groups Cj^i^ and E^^j^ are isomorphic. 
This follows from 4.8, 4.8.1 and 3.9. 

4.10. Theorem. Let two decompositions of a partially ordered group 

(a) G = П,,И.-, iß) G = Çlj^Bj 

be given, where all factors Ai, Bj are directed and distinct from {O}. Then the 
decomposition 

(y) G = ÇlE,j{{i,j)e{loJ)') 

is a refinement of a and the decomposition 

{Ô) G = nCj,{{j,i)e{Joiy) 

is a refinement of ß {Ец and Cij being defined by (4.7') and (4.3'), respectively). 
The decompositions у and ô are isomorphic. 

Proof. From the construction of ô it follows that 5 is a refinement of ß; analogously, 
7 is a refinement of a. By 4.9 (/ о J)* = (/ о J)\ hence by 4.6 x ' (л 0 "^ ( '̂ J) ^^ ^^ 
isomorphism of the partially ordered set ( J o / ) ' onto ( /о J) ' . Since, by 4.9, С л 
and Eij are isomorphic, the proof is complete. 

5. EQUIVALENT DECOMPOSITIONS 

In this section we shall consider pairs of decompositions a, ß which are reproduced 
by the construction of isomorphisms from the theorem 4.10, i.e., for which у = a, 
^ = ^ is fulfilled. 

Let a and ß have the same meaning as in Theorem 4.10 and let the suppositions of 
this theorem be satisfied. The decompositions a and ß are said to be equivalent (this 
fact we denote by a ^ ß) if there exists an isomorphism ij/ of the partially ordered 
set / onto J such that 

(5.1) 

(5.2) 

holds 

5.1. 
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Proof. Let (X ^ ß. From 

A, о A'{i) = A{i) = В{ф{{)) = Б^(,) о ВЩ{)) = Б^(,) о Л'(0 

and from 3.9 it follows that the partially ordered groups Ai and Вф(1) are isomorphic. 

5.1.1. R e m a r k . Two isomorphic decompositions a, ß need not be equivalent. 

E x a m p l e : Let К be the set of all real numbers. For any кеКЫ Gf^ be the additive 
group of all integers (with the natural ordering). Put G = [ßkeK^k]- Let / and J be 
the set of all even integers or odd integers, respectively, and for any iel,jej put 

yl̂  = (x G G : Xjt = 0 for кф [г, i + 2)} , 

Б,. = {x e G : X, = О for fc ^ Ijj + 2)} . 

Then the following decompsitions hold: 

(a) G = Q,,H^, {ß) G^Qj^jBj. 

Consider the transformation \l/(i) = i + 1, ф is sin isomorphism of/ onto J and the 
partially ordered groups Ai and jB (̂i) are isomorphic. Thus the decompositions a and ß 
are isomorphic, a and ß are not equivalent, since A(i) Ф B[j) for any i e I and any 
j G J. 

Let us now consider the decompositions y, ô from 4.10. For (i,j) G (/ о J)' and 
(л 0 e (J о ly let the symbols E(i, j), E'{i, j) or C(j, f), C'Q, i) have analogous 
meaning as A{i), A'(i) (for example, if (I'o, Jo) e (/ о J) ' , then E(io,Jo) = ^^ij{{Uj) ^ 
G ( / O J)^ (/,j) ^ (/o,io))-

5.2. Ler (f, j ) G (i о jy. Then C{j, i) = E{ij) = X, C{j, Ï) = E'{ij) = D и D' 
(where X, D, D' are the same as in Section A for i = ig, j = JQ). 

Proof. Since X — A(i) n B{j) and since Л(г), B(j) are convex subsets of G, X is 
a convex subset of G as well. Moreover, by 4.8 X = Eij о (D u D'). According to 4.1 
there exist strictly positive elements in Eij. Thus by 2.17 E(i,j) = Z , E'(i,j) = 
= D и D'. By the same argument we can prove C{j, i) = X, C\j, i) = D и D'. 

5.2.1. / / {ij) G (/ о jy, then E'{ij) = {A'{i) и ВЩ n E{ijy 

Proof. According to 5.2 and 4.7.1 we have 

E'{ij) = D u D' = (Л'(0 n X) u (B^j) n X) = [A^i) u ВЩ n E{ij) . 

5.2.2. / / (ij) G (/ о J) ' , then A^i) c= F ( / , j) , £(i, j) с ^(i) . 

This follows from 2.17.2 and from the fact that Eu is a factor in Af. 
Let us denote y = / ( a , j^). Under this notation, clearly, ô = f{ß, a). 
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5.3. f{a,ß)^f{ß, ос). 
This follows from 5.2, since the mapping (j, i) -> (i,j) is an isomorphism of (J о /) ' 

onto (/ о jy. 
Now we can formulate a strengthened version of Theorem 4.10 (cf. 5.1 and 5.1.1): 

5.4. The decompositions a and ß have equivalent refinements. 

A new characterization of equivalent decompositions is given by 

5.5. Theorem, a ^ ß of {a, ß) = ос, f{ß, a) = ß. 

Proof. Assume that a ^ ß. Then according to 5.1 it can be supposed that J = / 
and A{i) = B(i), A'{i) = B'{i) for each i e I. By (4.7') we have 

(5.3) £,, = (Л(0 n B,) (Л,) = (Б(0 n Б,) (Л,) = Б,(Л,). 

From Ai о ^'(i) = Bi о JB̂ O = ^^ ° ̂ ' (0 ^̂ ^̂ ^ f̂ ^m 3.9 it follows Bi{A,) = Л .̂ Thus 
by (5.3) Ai — Ец. Since Л,- = QÊ y (j el), Ец n Е,̂  = {0} for any j el,j Ф i. Hence 
E,.y = Eij n Ai = Eij n Ец = {0} for each j Ф i. This shows that /(a, jS) = a. 
Analogously,/(jS, a) = ß. Conversely, if/(a, ß) = a,f{ß, a) = ß, then by 5.3 a '^ JÎ. 

From 5.3 and 5.5 it follows: 

5.6. /( /(a, iS), /( i9,a))=/(a,^). 

Let â  and ß^ be decompositions of G such that all factors occuring in these 
decompositions are directed and non-trivial. 

5.7. / / a i ^oc,ß,^ ß, thenf{oi„ ß,) ^ f{a, ß). 

Proof. Let Œi '^ a. Then â  can be written in the form 

(aO G = Q,,H' 

where A^(f) = Л(1'), A^'{i) = A'(i) for each i eL Let us denote by Ejj the factors of 
the decomposition/(a 1, ß). Then by 5.2 

E^(f,;) = Л 1(0 n ß(7) = Л(0 n Б(7) = E(i,;) . 

From this and from Л'(/) = A^'(i) with regard to 5.2.1 we get E^\i,j) ~ E'{i,j), 
This proves that/(a, ß) ^ /(a^, ß). Analogously,/(ai, ß) ^ /(a^, ß^). The relation ^ 
being transitive, /(a, j?) ^ /(a^, j5i). 

5.8. The following conditions are equivalent: 

(a) /(a, ß) = a, 
(b) io each iel there exists an element ij/(i)ej such that B'{il/(i)) с A'(i), 

A{i) ^ В{ф{{)). 
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Proof. Let (a) be fulfilled. Since Ai = Clj^jE^, there exists j j G J such that A-, = 
= Eij^ and E^j = (0) for each j e JJ Ф j \ . Put j i = \l/{i). With the aid of 5.2.2, 

BXji)^C{j,j), C{j,,i)czB{j,), 

Moreover, by 5.2 we have E\i,j\) = C{j^, i), E{i,j^) = C{j\, i). From A^ = E^j^ it 
follows £'(i, j i ) = A'{i\ E{i,j\) = A(i); hence (b) holds. 

Conversely, let us suppose that (b) is true. Let i e / be fixed and denote ф^г) = j . 
Obviously Eij = [A(j) n Bj) (А^) <=. Л,.. Let a e A^. According to (b) a G B(j), hence 
a = X + y, X e Bj, y e B\j). Since x = aj and a e A(i), it follows from 2.4 that 
.X G A[i), whence x e A(i) n Bj. Moreover, by (b) y G A'(i), thus y(A^) = 0. Therefore 

a = a{Ai) = x{A,) + y{A,) = х(Л,) G ( Л ( 0 n Bj) (Л,) = £,,.. 

This implies E^j = Л .̂ Then we have Eij^ ~ {0} for any j i G J, J \ Ф J ; thus/(a , ß) = a. 

5.9. Le? a be a refinement of ß. Then f{oc, ß) = a. 

Proof. Let i G / . There exists J ̂  G J such that Л^ is a factor of JB^ .̂ Hence according 
to 2.17.2 B'{j^) a A'{i), A{i) с B{j^), Therefore by 5.8,/(a, ß) = a. 

Remark . From / (a , jS) = a it does not follow that a is a refinement of ß. 

E x a m p l e : Let G be the set of all pairs (x, y) of real numbers with the group opera­
tion + that is performed component-by-component and with the lexicographic 
order. Put A = ((x, y) G G : j = O}, Б = {(x, y) G G : x = O), С = {(x, y)eG:x == 
= y]. Then we have the decompositions {a) G = A о B, {ß) G = С о В. The decom­
positions а and ß are equivalent, hence / ( a , ß) = a, but neither a is a refinement of ß 
nor j5 is a refinement of a. It is easy to see that a and ß have no common refinement. 

6. THE PARTIALLY ORDERED SET ^ 

Let G Ф {0} be a partially ordered group. Let ^ be the set of all mixed product 
decompositions a of G such that each factor occuring in a is directed and non-trivial. 
By § we shall denote the system of all classes of the partition of the set ^ that is 
defined by the equivalence relation --'. For oc G ̂  we put ä = (a^ G G : a^ '^ a} and 
for ä, j5 G ^ we put ä ^ Д if and only if there exist elements a^eä, ßysß such that â  
is a refinement of ^ j . 

6.1. Let ä, ß G §. Then ä S ß if and only iff{a, ß) = a. 

Proof. Let ä g Д. Then there exist elements a^, ß^e^ such that a^eä, ß^eß 
and ai is a refinement oîß^. According to 5.9/(a^, ß^ = a^, hence a^ and ß^ satisfy 
the condition (b) of Lemma 5.8. Since a ^ a^, ß '^ ^5 ,̂ the condition (b) holds for the 
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decompositions a and ß as well. Therefore by 5.8/(a, ß) = a. Conversely, let/(a, ß) = 
= a be fulfilled. According to 5.3 / ( a , ß) -^ /(jS, a) and /(Д, a) is a refinement of ß, 
thus ä ^ ^. 

^•2. (^, S) is a partially ordered set. 

Proof. The relation ^ is reflexive. Let ä й ß, P S y where y has the form 

(y) G = Qfee^F^t. 

Then by 6.1 and 5.8 the condition (b) of 5.8 holds and to each j e J there exists 
x(j) G К such that 

From this it follows 

hence by 6.1 and 5.8 ä ^ y. If ä ^ ^, Д ^ ä, then by 6.1 / ( a , ß) = a, /(/?, a) = ß, 
and thus, according to 5.3, ä = ß. 

For öt,ße§ pu t / ( ä , ^) = / ( a , j?) (by 5.7, / (a , j5) does not depend on the choice of 
aeä, ß G ß), 

63. Let â, ß,ye§,äuP' Then f{y, a) й f{b ß)-

Proof. We can suppose that a is a refinement of ß. The factors on the decomposi­
tion f{y, a) are 

( F ( ^ ) n Л , ) ( F , ) = Г,, 

and, analogously, the factors of/(y, ß) are 

(F(/c)nS,.)(F,) = S , , . 

For each i el there exists ij/(i) e J such that A^ is a factor of Bj, hence Л^ cz B^f^^y 
Therefore we have T^i cz S^^^iy Thus by 2.17.2 

SXK Ф{1)) ^ ЧК i) , T{K i) cz S{k, ф{1)). 

According to 5.8 and 6.1 this implies/(7, a) g /(y, ß). 

6.3.1. Under the same assumptions as in 6.3 / ( a , y) g /(Д, y) ftoWs. 

Proof. The assertion follows from 6.3 and from f(ä,y) = / ( y , ä), f{ß,y) 
= / ( y , ig) (cf. 5.3). 
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6.4. Theorem./(a, ß) = ос л ß for any a, ß e^. 

Proof. Since f{a,ß) is a refinement of a, we have f{ä,ß) ^ ä. Analogously, 
f{ß> öc) S ß and thus according to 5.3 /(ä, ß) ^ ß. Let y g ä, y ^ Д. Then by 6.3 
and 6.3.1 /(a, p) ^ f{y, ß) ^ f{y, y) = f(^ = y. 

Let ОС, ß e^ and let us denote у = f(oc, ß). Now we intend to construct a new 
decomposition s of the form 

(6.1) G = Q,,rF, 

such that s = ä V ^ be valid. 

We define a binary relation ^ on the set (/ о J)' as follows: (ij) ^ {i\j') if there 
exists a finite sequence of elements of the set (/ о J)' 

(hj) = 0*1, Ji), (hJi)^ •••. (inJn) = 0"./) 

such that either i^ = is + i orj\ — j\+i holds for s = 1, ..., n -- 1. Obviously ^ is an 
equivalence relation on the set (/ о J)'; the class of the corresponding partition that 
contains the element (i,j) will be denoted by t{i,j) and let The the system of all such 
classes. For t{ii,j\), t{ij) e T we put ^(I'l, ji) < t(ij), if 12 < '̂з and J2 < J3 holds 
for each element (1*2, J2) ^ Kh^ Ji) and each (1*3, J3) e r(i, j). The relation < determines 
a partial order on the set T. 

6.5. Let {iiJi\{i2rJ2)^{l ojy, i^ < 1*2, Л < Л, Kii,7i) + tihJi)- Then 
ihJi) < ibJi)-

Proof. Let ( Ï I , J 3 ) G ( / O jy. Consider the elements (/i,^), Ог.Л)- If Ja = J2, 
then (1*1, Л) ^ (ï2,;2), hence t{ii,ji) = t{i2,J2), a contradiction. Thus J3 =j= J2 holds. 
Since il < 1*2, it follows by 4.5 that J3 < J2. Analogously we can prove: if (1*3, Ji) e 
G (/ о J)', then Ï3 < Ï2. From this we get by induction that I4 < i2, j \ < jz is true for 
each element {14., j4) e (̂1*1, Ji). In a similar manner it can be proved that Z4 < I5, 
J4 < J5 f o r a n y (15, J5 ) G r ( f2 , j2 ) -

For a fixed ÎQ = î{îo,Jo) ^ T'we denote 

(6.2) F,^==QE,j{{ij)et{io,Jo)); 

further we put 

Let to = r(io, jo) ET, g eG, We shall denote by ö'fo the element of F̂ ^ satisfying 
öf(Fiy) = gto{Eij) for each (f, j) G ^Q. Clearly there exists exactly one element of F,^ 
fulfilling this condition. For each t G T consider the mapping ср^: G -> F^ defined 
by (ptig) = Qt for any gEG.lfgE F„ f ЕТ,Г + t, then (pt{g) = g, (ptid) = 0-
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For completing the proof that (6.1) is valid it remains to show that the mapping 

(p{g) = (..., ö̂ f, . . . ) ( ^ е Т ) 

is an isomorphism of the partially ordered group G onto H (cf. 1.2). 
Let g e G and consider the decomposition y = / ( a , ß). Since (I о J)' (g) satisfies 

the descending chain condition, according to 6.5 the set [t e T: g^ =^ 0} fulfils this 
condition, too. From this it follows (p(g) e H for each g e G. Clearly <p is a homo-
morphism with respect to the group operation. Let h = (..., h\ ...) е Я . For any 
( io , Jo)e ( /o J) ' put Го = t{ioJo) and denote Л'°(£,-,^ = }г''^\ Let M = ( ( Ï , J ) G 
e {I о jy : h'' Ф 0}, (f„, j„) 6 M (n = 1, 2, 3, . . . ) , (h , Ji) ^ (/2, Ji) è • • • According 
to 6.5 and 4.5 we have then r̂  ^ Г2 ^ .. . where t{i„J„) = t„e T(h). Since this set 
satisfies the descending chain condition, there exists a positive integer m such that 
r„ = t^ for n ^ m. Hence /г'" = /г'"", /г'"-'" = h^'^{Ei^jJ for n '^ т. Since /z*"̂  e 
E Ff^ cz G, the set Ml = (/ о J) ' (/г'"') satisfies the descending chain condition and 
{K-> Jn) ̂  ^1 for n ^ m. Thus there exists a positive integer m^ '^ m such that (г„, J„) = 
= (f̂ ,̂ j ^ J for 71 ̂  m^. This proves that M fulfils the descending chain condition and 
there exists an element g eG satisfying gij = h'^ for each (i, j) e (/ о J) ' ; then 9(^) = 
= h holds. If g G G, (p(ér) = О, then é̂ , = О for each t e T, hence for (f, j ) G f we have 
g{Eij) = ^,(£^^.) = 0; this implies g = 0, 

LQÎ g EG, g > О, (р{д) = (..., Ö „̂ ...) = /г. Let (ÎQ, jo) ^ m n (/ о J ) ' (̂ f̂ , 0). Then 
0̂ = KioJo) e T{h, 0) and (io,;o) e min (/ о J) ' (̂ f, 0). This implies g^^j^ > 0, hence 
,̂Q > 0, /î > 0. Conversely, let h>0 and let (?o,Jo) ^ lïiiii (^ ° «^)4ö^'^)- ^hen 
0̂ = iioJo) e min T{h, 0), (io, Jo) e m in (/ о J)' {gt^, 0), thus g^^ > 0 and g^^j^ > 0. 

Therefore ^̂  > 0 holds. 
We have proved that (6.1) is valid. Let us denote this decomposition by e = / i (a , ß). 

Since Eij are directed nontrivial factors, each F^ is directed and nontrivial, hence s 
belongs to ^ . 

6.6. The decomposition a is a refinement offi{cc, ß). 

Proof. For any i^ e / and any j i , J2 ^ I such that (1*0,Л). {ч^т) ^ (l о J)' we have 
(^*о.Л) ^ {hJi^ hence 

At, = ^jej^ioj ^ ÛE,X(f, j) G Го) = F , , 

where r(ïo,Ji) = ?o-

6.7. ^ ^ ê. 

Proof. According to 6.1 and 5.8 it suffices to verify that for each JQ G J there 
exists Го = ilj{jo) e T such that F'(^A(jo)) <= B'Oo). 4h) ^ Щ{к)\ Since Bj^ Ф {0}, 
by (4.3) there exists IQ EI such that Cj^^^ Ф {0}. By 4.9 we have £̂ ^̂ .̂  Ф {0}, hence 
(ioJo) ^ (^° »̂ )'- Let one such ig be fixed and denote \l/{jo) = ?o = K^oJo)-
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Let X 6 F{^{jo)) and let (i.Jo) e (/ о J) ' . Then (i,Jo) ^ ^o, hence by (6.2) E^^j^ с 
с Fj^ and therefore according to 2.17.2, jp'(^o) ^ E'Q^JQ). By 5.2 £'(ii,Jo) = 
= C'{jo, h)' Thus we have 

(6.3) x{CjJ == 0 

for each iel, (If (i, Jo) ^ (/о J) ' , then £,,., = {O}, C,-,, = {0} and x{CjJ = 0.) 
Clearly C{jo, i) с C(jo, 0 and by 2.17.2 C(jo, 0 ^ B{jo), hence xeB{jo), Thus 
x̂ . = 0 for any j J Jo- Let us now consider the component Xj^. By the construction 
of the decomposition (4.3'') for any z e G we compute z(Cj^i) as follows: we find at 
first the element z{Bj^) = Zj^ and then we construct the component of Zj^ in Cj^f 
with respect to the decomposition (4.3); hence z(C^Qi) = zjJ^Cj^i). By (63) x{Cj^^) = 0 
for each i e I, thus XjJ^Cj^i) = 0 for each i e I. From this we get Xj^ = 0 according to 
(4.3), hence Xj = 0 for any j e J,j > JQ, This proves that x e B'{JQ). 

Let X e B{JQ) and let j e J,ie / , x{Cji) ф 0. Since х(С^^) = х/С^^), we have Xj Ф 0, 
hence j ^ JQ. Put t — t{ij). If t ф Го, then j > JQ and by 4.5 i > ÎQ, thus t > ÎQ. 
Further we have x(Cji) e Cji cz C{j\ i) = E{i, j), and since (i, j) E t, Ец с F^, by 
2.17.2 E{U]) с F(r) с F(ro). Therefore х(С^^) e ¥{1^) for each г G / and each j e J. 
Then by 2.13, X G F(^o) holds. 

6.8. Suppose that the decomposition 

(x) G = Q,,sHs 

belongs to ^ and that к "^ ä, x ^ ß. Then x ^ è. 

Proof. Let Го G T, (ij) e tçy. By 6.1 and 5.8 there exist elements Sj, S2 G S such that 

H'{s,) cz Л'(0 , 4 0 с: H{s,) , 

H'{s,)czBy), B{j)c:H{s2), 

At the same time we have 

Ä'{i)^EXij), E{ij)c:A{i), 

B'{j)czE'{ij), E{ij)czB{j), 

Any X G Eij, X Ф 0 belongs to E(i, j) \ E'{i, j), hence 

X G [H{S,) \ H'{S,)] n [H{S2) \ H'(S,)] . 

According to 2.18 s^ = S2. If F^j, Ф {0} or E^j Ф {O}, then, as we have already 
proved, 

H'{s,)^E'{i,j,), E{i,j,)c=H{s,), 
H'{s,)^E'{h,j), E{i,j)czH{s,). 
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By induction we get 

(6.4) HXs,)^E%,j,), E{i„j,)czH(s,) 

for any (1*2572) ^ (^i)- Let x e F^^, For each {ii.ji) ^ h we have by (6.4) x e H(si). 
According to (6.2), for (/3,73)^^0 Ч /̂зУз) = 0 holds. By 2.13 x{Eц) e H{Si), thus 
F(o cz H{si). Since H(si) is a convex subgroup of G, it follows from 2.17 

(6.5) F{to) cz H(s,) . 

Let xeH'(si), t e T, x̂  Ф 0. Then there exists (/3,73) G Г such that х̂ з̂ з Ф 0. 
We have Xi^j^eH'{sj) and by (6.4) х̂ з̂ ^ e £'(i2,72)- Therefore (13,73) > (hJi) for 
each (1*2» 7*2) ^ 0̂- This implies t > t^. Hence x e F^ÎQ) and thus 

(6.6) His,) cz F{to) . 

By 6.1 and 5.8 from (6.5) and (6.6) it follows ë ^ x. 

From 6.6, 6.7 and 6.8 we get: 

6.9. Ifoc^ße ^, Й^п /i(a, ß) = ä v ß, 

6.9.1. Corollary. / / a, jß, a ,̂ j?i G ^, a - ai, Д - )ßi, Гйеп /i(ai, jß̂ ) - /i(a, ß). 

From 6.4 and 6.9 it follows: 

6.10. Theorem. The partially ordered set ^ is a lattice. 

7. SOME GENERALIZATIONS AND PROBLEMS 

7.1. Let a be an ordinal with the property that the sum and product of any two 
ordinals less than a are again less than a. Let 

G2 = [i^,,HO 

be the mixed product of directed groups Ai. If/ e G2, R cz I and if JR is a chain, then 
(since J(/) satisfies the descending chain condition) the set /(/) n jR is well-ordered. 
Let G3 be the system of a l l / G G2 such that the order type of/(/) n R is less than a 
for any chain R cz I. Then G3 is the mixed cr-product of partially ordered groups Aii 
we shall denote it by 

(cf. [6] and [4] for the case of a linearly ordered set /). Analogously as in 1.2 we can 
define now a mixed cj-decomposition of a partially ordered group 

G = {(T)Qi^iAi; 
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the only difference consists in taking [(a) ^ j g H j instead of [Q,.gj^j] in the condition 
(b) of Definition 1.2. 

Let there be given two a-decompositions 

(a) G = {a)Q,,,A,, (ß) G = (a) Q,, ,ß; . 

It can be easily verified that the constructions described in Sections 2 — 6 applied on 
these (T-decompositions lead to (T-decompositions/(a, ß),f{ß, a) , / i(a, ß) and/i(j5, a). 
In this manner, each proposition from Sections 2 — 6 can be replaced by the cor­
responding "cr-proposition" concerning ö^-decompositions. Then the a-theorem 4,10 
generalizes Theorem 2 of Malcev [6] and Theorem 9 of Fuchs [4, Chap, II] . 

7.2. Let ( G ; + , ^ ) be a gruppoid with respect to the operation + (neither the 
associativity nor the commutativity of + are assumed) that is partially ordered and 
satisfies 

xsy o(x + z) s[y + z ) , xsy о (z + x) s[z + y) 

for any X, y, z e G and any 5 G [ < , > , | }. If there exists 0 G G such that x + 0 = 
= 0 + л; = л: for any G, then G is called a Wj-gruppoid [5]. For a w^-gruppoid G 
we can define a mixed product decomposition G = Qt^iÄ; analogously as in 1.2. 
Consider the following condition for G: 

(C) if Ai, Bj are factors of G, then A'^ c: B^ => Ai a By, AJ с BJ => Ai a Bj. 
(For any subset X cz G WQ put X'^ = [x e X : x ^ 0}, X~ = [x e X : x S 0}.) It 
can be proved that if a w^-gruppoid G satisfies (C), then the propositions from Section 
2 are true for mixed decompositions of G (some, but not all, proofs remain verbatim 
valid). 

P r o b l e m 1. In what extent the results of Sections 3 — 6 remain true for w^-gruppoids 
satisfying the condition (C)? (Cf. [5] for the case of decompositions G = O-iejAi 
where / is linearly ordered.) 

7.3. Let G be a partially ordered group. Let #" be the system of all factors Ai in G 
for which there exists a decomposition a G ^ such that Л^ is a factor of a. For Л,-, Bj e #" 
put AI ^ В J, if A{i) = B[j), A'(i) = B'[j). Then ^ is an equivalence relation on #"; 
the class of the corresponding partition containing the element Л^ G J^ will be denoted 
by t{Ai) and the system of all such classes by J^. We define a partial order on the 
set ^ by 

t{A,) й t{B^) о B'{j) cz AXÏ), A(i) cz B{j) . 

P r o b l e m 2. Under which conditions is #" a lattice? 

7.4. P r o b l e m s . Characterize the class of lattices Lfor which there exists a partially 
ordered group G such that Lis isomorphic to the corresponding §. 
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