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EXTENSION OF SEQUENTIALLY CONTINUOUS FUNCTIONALS
IN INDUCTIVE LIMITS OF BANACH SPACES

VeasTiMIL PTAK, Praha

(Received March 18, 1969)

The present note is a continuation of a series of papers [1] [2], [3] devoted to
the open mapping theorem in spaces of distributions. In a recent paper, we have
introduced the notion of orthogonality for subspaces of inductive limits of sequences
of Fréchet spaces which is very useful in formulating sufficient conditions for open-
ness of linear mappings [2]. In a forthcoming note [4] we intend to discuss another
important situation in which the notion occurs quite naturally.

In order to obtain conditions which are both necessary and sufficient we shall need
a slightly weaker notion which we propose to call semiorthogonality. In the present
note we discuss this notion in the case of an inductive limit of a sequence of Banach
spaces. This case forms an important step in the treatment of similar questions in
inductive limits of sequences of Fréchet spaces. It has the further advantage of being
technically considerably simpler although the underlying idea is essentially the same
for both Banach and Fréchet spaces. The transition from the LB-case to the LF-case
is then effected using an important idea due to W. SLowikowski [5]. However,
because of the technical and notational complications connected with this transition,
we postpone this matter to another note.

1. NOTATION, TERMINOLOGY AND PRELIMINARIES

If (E, u) is a locally convex space, we denote by (E, u)' its dual. If more than one
locally convex topologies on a vector space are considered, there will be, in general,
different dual spaces as well. The usual notation for polarity is not sufficient to
distinguish in which duality the polarity is understood. Let us recall a useful convention
which we have suggested in [6] and which deals with this ambiguity. If E is a vector
space, E* its algebraic dual and Q a subspace of E*, we denote, for 4 < E, by A2
the set '

{yeQ; K4, | £ 1}.
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If Yis a subspace of E, we denote by P(Y) the operator which assigns to every
x" € E' its restriction to Y. The term inductive limit of a sequence of Banach spaces is
taken in the following restricted sense: we are given a sequence (E,, u,) of Banach
spaces such that E, < E,,; and the restriction of u,,, to E, equals u,. The term
sequentially closed is discussed in [1] and [4].

We begin by proving a proposition which describes a situation similar to the notion
of semiorthogonality for two subspaces. The reader is referred to [3] for a discussion
of semiorthogonality and related material.

(1,1) Proposition. Let E be a normed space, R, Y and S three closed subspaces of E
such that R 'Y =« S < R. Then the following conditions are equivalent

1° given an r* e R/, lr*l < 1 which annihilates S and given ¢ > 0, there exists an
extension X" of r* with |x'[Y <eg;

2° the annihilator S° is contained in the norm closure of R® + Y°;

3° if A is the canonical mapping of E onto E[S and T the canonical mapping of E
onto E[R @ E|[Y then the pair [A, T] is of type (o0, 0);

4° denote by Z the space Y + S; given z*¥* € Z' and r* € R such that they coincide
onZ n R = S, there exists, for each ¢ > 0, an extension x' of r* such that

[P(Y)x' — P(Y)z*| < ¢ ;
5° RnY < §, the bar denoting closure in the topology o(E", E').

Proof. Let us show first that Rn (Y + S) = S. Indeed, S =« Rn (Y + S)
immediately. On the other hand, if r = y + 5, we have y=r —seYnRc S
whence y + s€ S so that re S.

1° - 2° It x’ € S° and ¢ > 0 is given, consider P(R) x" and an extension thereof,
z' say, with |z'|y < &. It follows that x" — z’ € R® and z' = y® + m with »° e Y°
and |m| < e. Hence x' = (x' — z') + y° + meR® + Y° + £U°.

2° «» 3°. Condition 2° says that (47'(0))° is contained in the norm closure of the

range of T'.

2° > 1°. Consider an r* € R’ which annihilates S and such that [r*| < 1. Let 2’
be an extension of r* to the whole of E such that [z’[ = |r*| Then z'e S°; given & > 0,
we may write z’ in the form z’ = r® + y° + m with r®e R, y° € Y° and |m| < e.
It follows that x” = z' — r® = y° + misan extension of r* with [x'|y = |y° + m|y £
< e

5°«2° If X is a convex space and P, Q two subspaces thereof, the equality
(P + Q)° = P° n Q° holds. Applying this, we obtain

RAY=R¥ nYFE = (R¥ + YF)&.
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It follows that (R n Y)* = (R¥ + Y¥)** = norm closure of (R® + Y°). Con-
dition 5° implies S*" = 5* = (R n Y)¥ = norm closure of (R® + Y°) so that 2° is
satisfied. On the other hand, if S° < norm closure of (R® + Y°), we have 5¥ <
< (R n Y)¥, whence, taking polars in E”, condition 5° follows.

1° — 4° To see that 1° implies 4° consider extensions z’ and r’ of z* and r*.
Since P(S)(z' — ') = 0, there exists, by 1°, an element x’ such that x’ extends
P(R)(z' — r)and |x'|y < e. It follows thatz’ — ' — x’ = e R%and x’ = y° + m
where y° € Y° and |m| < &. Consider now the difference z’ — x’. Since z’ — x’
= r' + 1% the functional z’ — x’ extends r*. Further, P(Y)(z’' — x') — P(Y)z' =
= —P(y)x' = —P(Y) m. The proof is complete since 1° is a special case of 4°.

Il

2. EXTENSION OF SEQUENTIALLY CONTINUOUS LINEAR FUNCTIONALS

This section is devoted to necessary and sufficient conditions for a sequentially
continuous functional to possess an extension to the whole space.

(2,1) Theorem. Let (E, u) be an inductive limit of a sequence of Banach spaces E,.
Let R be a sequentially closed subspace of E. Denote by v the topology of R considered
as the inductive limit of the sequence R n E,. Then the following conditions are
equivalent.

1° each element of (R, v)’ has an extension in (E, u)'’;

2° there exists a defining sequence H, for E which has the following property:
given a natural number n, a positive e and an r’ € (R n H,,,)' which annihilates
R N H,,,, there exists an extension x' € H,,, such that P(R A H,,,)x" = '
and |P(H,) x'| < e.

Proof. Define, on (E, u)', the sequence of pseudonorms
pa(x') = sup {|<x, x"D|; x€E,, |x| <1}
and, similarly, on (R, v)’, the sequence of pseudonorms
q,(r') = sup {|[<r, 7D reRAE,, |r] < 1}

so that p, < p,+, and g, < q,+, for each n € N. If we denote by p and g the topolo-
gies on (E, u) and (R, v)’ defined respectively by the sequences p, and g,. It is easy to
see that ((E, u)', p) and ((R, v)’, q) are both Fréchet spaces. Suppose now that condi-
tion 1° is satisfied. It follows that the mapping P(R) is a continuous linear transforma-
tion of ((E, u)', p) onto ((R, v)’, g). It follows from the open mapping theorem that,
for each natural number n, there exists an m(n) > n and an ¢, > 0 with the following
property: given z’ € (R, v)’ such that q,,,(z') < &, there exists an extension x' e
€ (E, u) of z’ with p,(x) < 1. From this we deduce immediately the following fact:
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if z' € (R, v)’ annihilates R N E,,,y and if ¢ > 0 is given, there exists an extension
x" € (E, u)’ with p,(x’) < e. Indeed, g,,,(22[¢) < &,, so that there exists an extension
y' of 2z'[e with p,(y') < 1. Hence X’ = }ey’ is an extension of z’ and p,(x') < &. De-
fine now a sequence of natural numbers h(n) as follows: we set h(1) = 1and h(n + 1) =
= m(h(n)). Now it suffices to define H, as Ej and condition 2° is satisfied.

To prove the converse, we assume that we have a defining sequence E, which satisfies
condition 2°. We introduce the following abbreviation: the intersection R n E, will
be denoted by R,. We have thus, for each n € N, the following assertion:

(A,) given r’ € R, , which annihilates R, ., there exists, for each ¢ > 0, an exten-
sion x’ € E,, , such that

P(R,,,)x' =1 and |P(E)x'|<e.

Consider now a sequentially continuous functional » on R and let us show that it
has an extension to the whole of E. First of all, we introduce the abbreviation r,
for P(R,) r'.

First of all, let x5 be an element of E” such that P(R,) x; = rj. Consider the differ-
ence ry — P(R;) x5; clearly P(R,) (r3 — P(R3) x3) = r; — P(R;) x5 = 0.

According to (A,), there exists an x3 € E’ such that

P(R;) xy = ry — P(R;) x5, |P(E,)) x4 <1%.

The next step in the construction consists in applying (A,) to the difference rj —
— P(R,) (x5 + x3). Since

P(R5) (ry — P(Ry) (x + x3)) = 13 — P(R3) x3 — P(Ry) x5 =0,
there exists an x; € E’ such that

’ r r’ !’ ’ 1
P(Rs) xi = 14 — P(R,) (x3 + x3), |P(E;) x4| < YR

Suppose we have already constructed X%, ..., X, € E' in such a manner that

o : 1
1 IP(Ei—-Z) xil < —27_.5 for 3 i é n,

2° xjis an extension of 1 — P(R)) (x5 + ... + x_;) for 3 < i < n.
In particular, it follows that P(R") X, =r — P(R,,) (x'2 + o+ x'—x) whence
3 —PR) (x5 + ... + X)) =0

Consider now the difference p = Py — P(R,,H) (x; + o x,’,). According to 3°,

we have P(R,)p =0 so that, by (4,-,), there exists an x,,, € E' such that
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P(R,+1) X4y = p and |P(E,_y) x| < 1/2"~". This complefes the inductive con-
struction. Let us show further that
4° P(R,) Xp4q = 0.

This, however, is a simple consequence of 3° since
P(Rn) x,/’+1 = P(Rn) P(Ru+l) x:n+1 = P(Rn) p

which is zero according to 3°.

Consider now the sum x5 + x5 + ... and let us show that it represents a con-
tinuous linear functional on E. Take a fixed E, and consider the series P(E,) x; +
+ P(E,) x5 + ... According to 1° we have |P(E,)x).,| < 1/2°, further
|P(E,) x}45] < |P(Eps1) X4 3] < 1/22% " and, similarly, [P(E,) x},] < 1/2°**72 for
each k = 2. It follows that the series is convergent uniformly on each E, so that it
represents a continuous linear functional x’ € E’

X' =x5 4+ x5+ ...

Let us prove now that x’ extends r'. If n is given, we have, according to 4°, the equa-
tion P(R,)x,.; =0 and similarly, P(R,)x,.; = P(R,) P(R,s1-1) Xp4r = 0 for
each k = 1. It follows that

P(R,) x" = P(R,) (x5 + ... + x;)

and this equals r, by 3°. The proof is complete.

3. A SEQUENTIALLY CONTINUOUS LINEAR FUNCTIONAL
WITH NO EXTENSION

This section is devoted to the construction of an example. We intend to construct
a pair of convex spaces E and R with the following properties.

1° E is an inductive limit of a sequence of Banach spaces;

2° R is a closed subspace of E;

3° there is a sequentially continuous linear functional f on R which has no extension
to an element of E'.

Let C be the Banach space of all bounded real valued functions defined and con-
tinuous on the interval <0, oo) with the norm

|x| = sup {|x(t)}; 0 £t < 0}

Let C, be the subspace of C consisting of those x € C for which x(0) = 0 and x(t) =.0
for t = n. Let E be the inductive limit of the sequence C,.
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First of all, let us introduce an abbreviation. If » is a natural number, x,, X, ..., X,
is a sequence of real numbers such that 0 = xo < x; < ... <x, = land y;,..., y,
are arbitrary real numbers, we denote by

Xos X1 ves X
<YO, Yireees Yn>
the function f defined on (0, 1) by the following two postulates:
(1) f(x)=yifori=0,1,...,n
(2) fis linear in each of the intervals (x;_,, x;» fori =1,2,..., n.
We define first a sequence of continuous functions on <0, 1) as follows. Set g, =
=g, = 0and, for n = 2, let g, =nil(1/2"). For each natural number n, we define

k=1

0 Op Op+1t 1

qn = 1
0O 0 — 0

on

and set g, = 0. It follows that g(o;) = 1/2/~* for j > i 2 1 and g0;) = O for
0 < j < i. If we denote by d, the difference d; = q; — q;—,, i € N, we have

(1) do,) = ——5,,,‘2% for n=22, k=1.

1

1
(2 dy(oy) =0, dy(o) = q4(0) = pran for k=2.

Further, define

by = 0, 0,5, 0, + 10,5, 03, 1
' \o, o, 1, 1,0
P, = 0, 65 + 403,_3, 0, + 305,35, 0, + 405,_1, 05 + 0,3, 1
"\, 0, -1, -1, 0, 0
for n > 2 so that, forj = 2and k > 1
(3) Pj(o'z + doy) = ~0jke1 = —O0j 1 k-

For i e N let T; be the interval {o;, 0;,,» and let us denote by K; the union T; U
U (i, i+ 1). Let E; be the subspace of C(K;) consisting of those x € C(K;) which
are zero at the four points ¢, 0,4, i, i + 1. We denote by P; the restriction operator
of E onto C(K;) and by V; the injection operator E; - E which assigns to each
y € E; the function x defined by the following two postulates

Px =y, x(t)=0 foralltoutside K;.
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Denote by E, the subspace of E consisting of all x€ E such that x(¢;) = x(i) = 0
for all ie N. Let as note, that, for each meN, the superposition Vo P,, is the
operator on E, which keeps the part of the function in K,, and erases the rest.
For each i € N, let ¢; be the linear function which takes ¢; into 0 and ¢, into 1, so
that ¢(t) = 2{(t — o;). Further, let y; be the linear function which takes i into 0
and i + 1 into 1 so that y(f) =t — i.

For each fixed i € N we define two sequences of functions in E; = C(K;) as follows
for each pair of natural numbers i and n, we denote by p'” the function defined on K;
as follows

p(t) = peft)) for teT;,
=0 for teK; outside T;.

Similarly, d'” is defined by
d(t) = d,(yt) for i<t<i+1,
=0 for teT;.

Clearly both p{” and d'? belong to E; for each pair of natural numbers i and n.
If ie N, we denote by M; the closed linear span in E; of the sequence fpf," +
+ d; ne N}. Let us show now that, for each x € M; and each k = 0, 1, 2, .

(4) x((p, (0'2 + UZk)) =2 x(l + Ohsy) -
To see that, we prove first that, fori = 1,j =2 land k = 0
(5) P;i)(‘l’i_l(gz + %O'Zk)) = 2kd§'i)(i + O+ 1)-

To verify (5), we shall distinguish several cases. If j = 1 and k = 1, we have

’

P(li)((Pi_I(O'z + 'A-‘O-Zk)) = Pl(az + %azk) =1,

. i
d(ll)(’ + Uk+1) = dx(UkH) = ?

by (2) and this proves (5). If j = 1 and k = 0, we have

pi(0: '(02)) = pi(02) = 0,
d?(i + o,) = dy(a,) = 0.
If j 2 2and k Z 1, we have, using (3) and (1)
PP (07 (02 + do0)) = ploy + do2) = 0,44
dP(i + 04r1) = dj(0ks1) = =841 EIE
Finally, for j = 2 and k = 0, we have
P (02) = pf02) =0, dP(i + 0,) = dj(o,) = 0.
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In this manner, the relation (5) is established. Since the py are zero on i, i + 1)
and the d{ are zero on {0}, 0, ;, equation (5) implies

P01 (02 + d03) + d o7 (o, + d020)) =
= 20%(i + apyy) + d¥P(i + )

for each k = 0. This proves (4).
Further, each function x € M, is constant on each interval of the form

<(Pi_l(<72 + '4L0-2k)’ 90.'—1(0'2 + %02k+1)> .
Let us prove now the following implication
(6) if reM; and r(t)=0 for i<t<i+1, then r=0.

Indeed, if (t) = O for all t € (i, i + 1), it follows from (4) that r(¢; '(o, + 405)) =
= 0 for k = 0; the function x being constant on <{¢; (¢, + 4a4), @7 ‘(62 +
+ 30241), we have r(¢; (05 + %0.4,)) = 0 as well. It follows from the piecewise
linearity of r that r = 0.

Now set R; = V;M, and let R be the linear hull of the sequence R;. Let us show
first that R is closed in E.

Denote by E, the subspace of E consisting of all x € E, which satisfy the following
conditions.

1° for each k = 0 and each i = 1 the function x is constant on the intervals

-1

{o; (0'2 + %UZk)’ (Pi_‘(o'z + %‘721\-+1)> and (o, ‘Pi_l(o'z)>;

2° foreach k = 0 and each i > 1 the function x is linear on the interval ((pi'l(az +

+ 302+ 1), 4’,'_1(0'2 + %62k+2)>;

3° equation (4) is satisfied for each i = 1 and each k = 0.
Clearly E, is closed in E and R < E,. We observe further that every x € E, may

o0
be written in the form x = ), V,,P,x, only a finite number of the terms V,,P,x
1

me
being different from zero. Indeed x has a compact support and condition 3° implies
that x can be different from zero on a finite number of intervals {¢;, 6;4+) only.
Suppose now that y € E lies outside R. If y is outside E, as well, y does not belong
to the closure of R since R = E, and E, is closed in E. We may thus suppose that

s

y € E, so that y = Y V,,P,y for a suitable s. If V,,P,,y e R, foreach m = 1,2, ..., s
1

m=

we have s
y=YV/PveR + ..+ R =R
m=1

which is a contradiction. If follows that there exists an m, 1 £ m < s such that
V,,P,y non € R,, whence P,y none M,,. Now M,, is closed in E,, and E,, is closed
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in C(K,); it follows that there exists a linear functional x,, € C(K,,)" such that
{P,y, %,,»> = 1 and {M,, x,,> = 0. Clearly the linear form on E defined by
X = <me’ xr’n
is an element of E’; let us denote it by x’. We have thus
<x’ x’> = <P"lx’ x"n>
so that

ps X'y =Py, Xpy =1
and

(R, x") = P,R, xpy = (PR, x> = My, x> = 0.
This proves that R is closed in E.
For x € R set
() = 2 '[ (i) dt
T:

Observe that the sum is finite since every x € R, being a finite linear combination
X =ry + 7, +... + r,iszero on all T; with the exception of a finite number. Let
us show first that f is continuous on R. Indeed, if x, € R and x, — 0, all x, are con-
tained in a fixed space R, + ... + R,; on this space, f is expressed as a finite linear
combination of continuous functionals. Hence f is continuous on R. Suppose now
that x’ € E’ is an extension of f.

Take now a fixed i and let us prove that
lim V(pP + ... + pP). x> =%

To see that, we rewrite p{ + ... + p{? in the form

n n
LA = (L )~ g = X0+ ) — g = - g
i = k=1

k=1

where r € M;. It follows that

VL) x> = Viry x'y = (Vigl, x> =
k=1
= f(Vir) = Vig?, x') =

= 2‘J r(t)dt — (ViglP, x'y = 2'f (PP + ... + pP(E)) dt — (Vg xy =
T; Ti

= 2ij' | Y P2t — o;))dt — Vg, x> =
K=1

Gi

1 n
- j pu(w) dw — (Vig®, x> .

o k=1
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Clearly llm V:q\” = 0 for each i so that the limit hm <V(Z pi’), x'> equals the

limit hm _[0 Z p(w) dw if the latter exists. We have ﬁrst IB p,(w) dw = J%. Further, it

is easy to verxfy that

Py 4P, = (0, Gy, O3 + 40,5, 03 + 30,,_4, 0, + 105, -1)

0, 0, -1, -1, 0, 0

whence
! 1 1 1 11 )
w)+ ...+ pw)dw=—-(—+ (-0, —— |+ -———])=
J.o(pl( ) p( )) <16 <4 2 1 8) 8227:—1‘
1 1 1 1 3
= = =0y T T T T T
16 4 g 22n-t 16

This completes the proof of our assertion.
Accordingly, there exists, for each i, a natural number n(i) such that

n(i) .
<V leﬁ")’ Xy > 5.
k=

n n(i)

The sequence s, Z V(Zpﬁ‘)) is clearly bounded in E; however, (s, x'> > &n.

i=1
It follows that f cannot have a continuous extension.

Denote by u the topology of E and let v be the topology of R taken as the inductive
limit of the sequence R, + ... + R,. Clearly vis finer than ug and convergent sequences
are the same for v and u;. However, the preceding example shows that v and uy are
not even equivalent.
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