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1. INTRODUCTION

Recently, many mathematicians have treated the optimization of numerical proces-
ses. They have used the methods of functional analysis to find numerical processes
optimal in the sense of minimization of the norm of error in some Banach or Hilbert
space. Let us mention at least the works of SoBoLev [4], [9], and ScHOENBERG [7].

The problem of optimal quadrature formula for integration of continuous periodic
functions is treated by BABUSKA [1], [2]. We use the same approach as he did in his
latest paper [3]. In addition, we shall examine the quadrature formulae involving
values of derivatives of the integrand. In some cases we shall confine ourselves parti-
cularly to the quadrature formulae involving values of the second derivative of the
integrand. We shall show certain optimal and universal properties of these formulae.

The concept of the n-periodic space of continuous 2n-periodic functions with con-
tinuous derivatives up to the order n is introduced as a natural generalization of the
concept of periodic space of [2] and its basic properties are derived in Sec. 2. Two
linear functionals, integral and quadrature formula (involving the values of derivatives
of the integrand up to the order n), are introduced in the n-periodic space in Sec. 3.
We confine ourselves to the quadrature formulae with equidistant abscissae in the
following considerations except Sec. 9. Sec. 4 deals with the optimal quadrature for-
mula. It is shown that the coefficients of the optimal quadrature formula are identical
in all equidistant abscissae.

The class of strongly n-periodic spaces is introduced as a restriction of the concept
of the n-periodic space in Sec. 5. One of principal properties of the strongly n-periodic
space is the monotony of the sequence He"‘" , which is supposed to be non-decreasing
with k — oo. This restriction enables us to show some further properties of the optimal
quadrature formula in this strongly n-periodic space, e.g. that the coefficients at values
of derivatives of the odd order equal zero. The following sections treat the O-periodic
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and the strongly'2-périodic' spaces. The limits of the coefficients of the optimal
quadrature formula for the number of abscissae increasing to infinity are found in
Sec. 6. Universally optimal properties of quadrature formulae using these limit
coefficients are proved in Sec. 7. Moreover, the uniqueness of the formulae with these
properties is proved in this section.

The question of the advantage of using the values of the second derivative of the
integrand in the quadrature formula is discussed in Sec. 8. This comparison shows the
classes of spaces where using values of the second derivative of the integrand is less
efficient than using only values of the integrand. A numerical example illustrating
these considerations is given in Sec. 10. We consider the general quadrature formula
with arbitrary abscissae again and compare its error with the error of the optimal
quadrature formula with equidistant abscissae in Sec. 9. This comparison shows that
the error of the optimal quadrature formula may be very large as compared with the
error of the formulae with arbitrary abscissae in a general periodic space. On the other
side, the error of the optimal formula is proved to be comparable with the infimum
of the error attainable in general in the strongly periodic space.

As compared with [3] we confine ourselves only to the computation of the integral
of the function given, i.e. the 0-th Fourier coefficient. Statements concerning only the
0-periodic spaces are analogous to corresponding statements of [3] except some
details. Their proofs are based on the corresponding proofs of [3].

2. n-PERIODIC SPACES

All our following considerations will start from the concept of a Hilbert space
of 2z-periodic continuous functions with continuous derivatives up to certain order.
Let us introduce these spaces as follows.

Definition 2.1. Let n be a non-negative integer. A Hilbert space H is said to be
n-periodic if the following conditions are satisfied:

(i) Elements f € H are 2n-periodic continuous functions with continuous derivatives
up to the order n.

(ii) | £“)c < B(H) |f| for s = 0,1, ..., n and all elements f e H where |. ¢ is the
usual norm in the space C of contmuous 2n-periodic functions, || H is the norm
in the space H. The number B(H) is independent of f.

= |7]-

The functions e™* for any integer k satisfy (i) of Definition 2.1 for arbitrary non-
negative integer n. Therefore they may be elements of n-periodic spaces. Let us intro-
duce the following convenient notation.
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Definition 2.2. Let H be an n-periodic space. An integer k is said to belong:to the
set U = U(H) if and only if e** ¢ .

The relation of n-periodic spaces for various n is important in the following
considerations.

Remark 2.1. Let p =2 n = 0 be integers, let H be a p-periodic space. Then the
space H is n-periodic.

This statement follows immediately from Definition 2.1.

The basic properties of the introduced n-periodic space are given in the following
theorem.

Theorem 2.1. Let H be an n-periodic space not containing only zero function.
Then U(H) + 0 and the system {¢**}, k e U(H) is an orthogonal basis for the
space H.

Furthermore

(2.1) S ke 2 < 4o
keU

Proof. For fe H and all integers k let us write

2

(22) 1) = J "o (1) dt

0

Then the functional J, is additive and homogeneous. With respect to (ii), J, may be
shown to be also bounded; therefore it is a linear functional on H. Thus there exist
functions ¢, € H such that

(2.3) Jk(f) = (f, (Pk)
holds for all fe H and integers k.

Further let us write

(2.4) OX(f) = 1)

for feH; s =0,1,..., n, and 'x real. Then the functional Q** may be shown to be
a linear functional on H, too. Thus there exist functions /** € H such that

(2:3) (/) = (£ 9™)

holds for all fe H; s = 0,1, ..., n, and x real.
Let ¢ be real, f € H. Let us write

fol®) = f(x+ ).
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= || f|. From [5] we use the equality
(£.9) =37 +al* = £ = a* + i|f + ig]* — i]f - ig]?).
Then with respect to (iii) we get
(fer 900) = (£, 9) -
Thus from (2.4), (2.5) we have
F&) = (£ 9°7) = (o ¥°°) = (£ 005
for f = f(t), fe H, i.e.

‘// ‘/’( —-x)
Using the relations (2.2) to (2.5) we get
(26) oulx) = (P ¥°%) = (00 ¥%) = (W%, 04) =

2n 2n
— j e—iktl/JO,O(t _ x) dt = eikxj e—ikzwo,O(z) dz = eikka(—l//To)
Y o

for any integer k. From (2.3) ¢, € H. Therefore if J,(¢*°) % 0 then e**e H, i..
ke U(H). Let U = 0. Then J,(°°) = 0 for any integer k, i.c. ¢, = 0, and using
(2.3) we have

2.7) : J(f) =0

for all f € H and any integer k. Using (i) the relation f e C follows from the assump-
tion f € H. Thus also f e I* so that (2.7) implies f = 0 for all fe H. Thus we get
a contradiction with the assumptions of the theorem. Therefore U #+ 0 and the first
statement of the theorem has been proved.

Let k, se U; k + 5. From (2.2), (2.3), (2.6) we have
2n X
(28) (¢k’ (ps) = Jk(ll]o’O)J‘ el(k_s)tdt = 0 .
)

We shall prove indirectly that J,(y*°) + 0, ke U. Let ke U, J,(y*°) = 0. Then
(2.6) implies that ¢, = 0 and with respect to (2.3) the equality (2.7) holds for all
feH.

In particular, e’** € H but from (2.2) J,(e™) = 2x. It is a contradiction with (2.7).
Then using (2.8) we get that the system {¢™*}, k € U is orthogonal in H and that

(2.9) |od]? = 270(b*°) >0, keU.
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Now let us prove that the system {e**}, k € U is complete in H. Let f € H is such
an element that

(2.10) (f,e*) =0, keU.
Using (2.6), (2.9) we get

ikx _ ?i(x) keU
e T’ eU.

Then using (2.10) we have

(fa(Pk)"_"Oa keU.
From (2.6), (2.9) also

(f, ‘l’k) =0

for any integer k ¢ U. Therefore using the same conclusion as above we get f e I2,
f = 0. Thus the system {¢**}, ke U is complete in H and orthogonal, i.e. it is an
orthogonal basis for H. The second statement of the theorem has been proved.

Now let us prove that the series (2.1) converges. Let us write

o = 4

then the system {/1,‘_ 1(pk}, ke U is an orthonormal basis for the space H. Since
Y™ e H according to (2.5), we have

(2.11) Yo = kZU_ckllk_l(pk

where from (2.4), (2.5)
¢ = (¥™°, A le) = 11,_140,(‘")(0) , keU.
Substituting (2.6), (2.9) we get
¢ = L a(—iky, keU.
2n
Then from (2.11) it follows
(212) Y e = iz Y Ak < 400
keU 47 kev

Since from (2.6), (2.9)
' le*=| = 2ma;*

the relation (2.1) follows immediately from (2.12). The proof of the theorem has
been completed.
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In regard of the statement of Theorem 2.1 we introduce a convenient notation.
In addition, we always shall suppose that U(H) = 0 in the following.

Definition 2.3. Let H be an n-periodic space, k € U(H). Let us write
e = ||e'

Let us prove a property of the elements of an n-periodic space, which we shall use
in the following.

Lemma 2.1. Let H be an n-periodic space, f € H. Then the functions f(x), f'(x), ...
. f®(x) have Fourier series expansion convergent absolutely and uniformly with
respect to X.

Proof. Let fe H. Then from Theorem 2.1
169 = 3 e

keU

where
a, = n; '(f, e*), keU.

Differentiating formally, we get

(2.13) fOx) = Y aikye*™; s=0,1,...n.
keU
The series
(2.14) 3. [ay [K]
. keU
does not depend on x and majorizes the series (2.13) for s = 0, 1, ..., n. Let us prove

that the series (2.14) converges. We have
(2.15) (X Ja k) = (X |ae] melk|" mic ')
keU keU

< Z Iak’l ’1’% Z an',h:Z — I|f”2 z k2n,1k—2
keU keU keU

k

since from Theorem 2.1 it follows
117 = ¥ |aif? ni
keU
and the series

Z k2nm;- 2

keU

converges according to Theorem 2.1. Therefore the series (2.14) converges and all
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series (2.13) converge absolutely and uniformly with respect to x for s = 0,1, ..., n.
The lemma has been proved.

Let us show another important property enabling us to examine various pheno-
mena in connection with the norm in an n-periodic space.

Theorem 2.2. A space H is n-periodic if and only if it is possible to construct it in
the following way: _

LetU = 0 be a set of certain integers. Letn, > 0,k € U be real numbers satisfying
the condition

(2.16) Y kPt < 400

keU

If the set U is finite we construct a linear space of all trigonometric polynomials
of the form

Z pkeikx

keU

where p,, ke U are arbitrary complex numbers. We denote this space by H and
introduce scalar product in the following way:

(2.17) (e*,e*)=0; k,seU; k*s,
(eikx’ eikx) — rlf , keU.

If the set U is infinite we construct a linear set S of all trigonometric polynomials

of a finite degree and the form

Z pkeikx

keU*
where U* < U is any finite subset of the set U and py, k € U* are arbitrary complex
numbers. We introduce scalar product of elements of the set S by (2.17). Now we
construct a complete linear hull of the set S and denote this space by H. We extend
continuously the scalar product (2.17) in the corresponding way.

Proof. 1. Let H be an n-periodic space. Then the statement of the theorem follows
immediately from Theorem 2.1.

2. Let us prove that the Hilbert space constructed in this way is n-periodic on the
above assumptions. Let us verify the conditions (i), (i), (iii).

The system {e**}, k € U may be readily shown to be an orthogonal basis for the
space H. In addition, if f e H then

(2.18) f(x) =Y ae™.
keU
With respect to (2.16) we may prove -
(2.19) fOx) =Y aikfe®™; s=0,1,..,n
keU
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in the same way as in the proof of Lemma 2.1. The series (2.19) converge absolutely
and uniformly with respect to x. Thus if f € H then the functions f' (S)(x); $s=0,1,....n
are continuous and 2z-periodic. Then (i) has been proved.

Analogously to (2.15) we may estimate
Nf(‘)HC = max ‘f(’)(x)l = max | Y. ayik)* e"""l
xe{0,2m) xe{0,2n) keU
< Ylad [k = £ (X K202 < [ F] (X K 2)H
keU keU keU
using (2.16), (2.19) since with respect to (2.17)
o) = 3 fafe

holds and the system {¢™*}, k e U is an orthogonal basis for the space H. Thus (ii)
has been proved since it is sufficient to put

B(H) = (3 k27)
keU
Let ¢ be real, g(x) = f(x + ¢). Then using (2.18) we have
g(x) = T aete+e = ¥ b
keU keU

where
b, = aie™, keU.

Then from (2.20) we get that g € H and
lal? = X [6uf ni = X Jauf? ni = | 1]
keU keU

Thus (iii) has been proved and the proof of the theorem has been completed.

3. QUADRATURE FORMULAE IN AN #-PERIODIC SPACE

We shall approximate an integral of a 2n-periodic function over its period by
quadrature formulae involving the values of the function and its derivatives up to the

ordg:r n. First let us introduce these functionals.

Definition 3.1. Let H be an n-periodic space, f € H. Let us write
1 2n
J(f) = ——j f(x)dx.
» 2n ),

Remark 3.1. The integral J(f) is the absolute term of the Fourier series expansion
of the function f(x). We shall be concerned solely with an approximation of the
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functional J in the following. The functional J does not depend on the choice of n.
It is a linear functional on an n-periodic space for any non-negative integer n.

Definition 3.2. Let H be an n-periodic space, f € H. Let j be a positive integer, let

0< X, <Xpy <...<X;s=2m; s=0,1,..,n

be real numbers. Let us denote the quadrature formula with the abscissae x,, by

¥ FA ) 0) = 5070705 4.

The numbers 4, are said to be coefficients of the formula.

Remark 3.2. The formula Y(n, j; {4,}; {x,;}) is a linear functional on an n-periodic
space H. It employs the values of the integrand and its derivatives up to the order n
in j abscissae x,,, which are generally different for the calculation of derivatives of
different orders. The factor j~¢*1 does not cause loss of generality. Its sense will be
shown in Sec. 4 where we shall determine the limits of the coefficients A4,; of some
quadrature formulae.

Letp = n = 0, j > 0 be integers, let H be a p-periodic space. Let the coefficients 4,
and the abscissae x,;; r = 1,2,...,j;s = 0,1, ..., n be given. Let us put

* * _ . —
ArszArs’ Xps = Xps 5 S——-O,l,...,n,
AX=0; s=n+1,..,p

and r = 1,2, ...,j. Let the abscissae x5; s = n + 1,..., p; r = 1,2, ..., j be chosen
arbitrarily. Then the formula

Y(p, js {An}; {x5%))
on the p-periodic space H is identical with the formula
Y(n, j; {Ar}s {xs})

on the same space H considered as n-periodic in the sense of Remark 2.1.
Since J and Y(n, j; {4,s}; {x,s}) are linear functionals on the n-periodic space

their realizing functions, which we shall very often use, may be found using the Riesz
theorem.
Lemma 3.1. Let H be an n-periodic space. Then

(3.1) I(f) = (F,u)
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for all fe H where u e H.
(3-2) u(x) =0 if 0¢U,
=% if 0eU
is a realizing function of the functional J. This function does not depend on n.
Proof. We get the statement of the lemma substituting (3.2) into (3.1) and using
Lemma 2.1 and Theorem 2.1. '
Lemma 3.2. Let H be an n-peri'odic space. Then

(33) Y(n, j; {Ans}; (%)) (F) = (£, 0)

for all fe H whereve H,
n J
(3-4) v(x) =Y n; 2™ Y (—ik) j~CtD Y exp (—ikx,,) A,
keU s=0 r=1

is a realizing function of the functional Y(n, j; {A,}; {X.s})-

Proof. We get the statement of the lemma substituting (3.4) into (3.3) and using

Lemma 2.1 and Theorem 2.1. »
Now we may easily determine another important quantity, the error of the quadra-
ture formula in the sense of the norm in the n-periodic space.

Lemma 3.3. Let H be an n-periodic space. Then the square of the error of the
formula Y(n, j; {A,}; {x,s}) is equal to

(3.5) |7 = Y(n. s {4} (=D = X (B
where
(6 By =i % A 1,

n J
B, =Y (ikyj~*"' Y exp (ikx,s) A,, for k +0.
s=0 r=1

Proof. With respect to Remarks 3.1, 3.2
J - Y(n’j; {Ars}; {xrs})
is a linear functional on H. Then there exists the function ¢ € H such that

(J = Y(n,j; {4} {x5}) (f) = (f. @)
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for all fe H where using Lemmas 3.1, 3.2 we may write

n J
(3.7) o(x) = no? = Yomg2e™ Y (—ik)j 771 Y exp (—ikx,;) A, -
keU s=0 r=1
The term 75 2 does not occur for 0 ¢ U. In addition,

|7 = ¥(n j; {4} ()] = (e 0) -

To complete the proof of the lemma we determine this scalar product from (3.7)
using Theorem 2.1.

In the following sections we shall treat above all quadrature formulae with j
equidistant abscissae identical for the evaluation of the value of the integrand and
also its derivatives. We shall derive some properties of these quadrature formulae and
we shall compare them (at least partly in conclusion in Sec. 9) with properties of
quadrature formulae Y(n, j; {4,,}; {x,s}) having general arbitrary abscissae x,,.

Let us introduce the following notation for the quadrature formulae with equi-
distant abscissae.

Definition 3.3. Let H be an n-periodic space. Let j be a positive integer. We put

(3.8) = 2 1,2 5= 0.1,
j

Then let us denote the quadrature formula with equidistant abscissae and coef-
ficients A4, by

I(n.j; {A,}) = Y(n.j: {A}: {x,]}).

Remark 3.3. It holds

A

B (4,) (1) = 257 ZA" (ZJ )

for all f from the n-periodic space H. The formula I(n, j; {4,}) is a linear functional
on the n-periodic space H. It employs the values of the integrand and its derivatives
up to the order n in j equidistant abscissae 27rr/j; r=1,2,...,j, which are identical
for the evaluation of denvatlves of all orders.

Let us further show a particular form of the realizing function of the functional

I(n, j; {A,}).
Lemma 3.4. Let H be an n-periodic space. Then
I(n,j; {4,}) (1) = (f.0)
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for all fe H where ve H,

. —2nrik\ -
u(x) =Y n 2™ Y (—iky Y exp(—————-’_t” )A,S
kev s50 =1 j

is a realizing function of the functional I(n, j; {4,})-

Proof. The statement of the lemma follows immediately from Lemma 3.2 by
using (3.8).

4. THE OPTIMAL QUADRATURE FORMULA IN AN »-PERIODIC SPACE

In this section we shall seek the optimal approximation of the functional J in the
class of quadrature formulae of the form I(n, j; {4,,}). We shall prove the existence
and the uniqueness of this optimal quadrature formula and some its general proper-
ties.

First let us introduce the concept of the optimal quadrature formula.

Definition 4.1. Let H be an n-periodic space. The quadrature formula I (n, j;

{K.,(n, j)}) is said to be optimal in the n-periodic space H if and only if
|7 = 1. js (K DN = I = 1. 55 {4,})]

is valid for n, j fixed and arbitrary coefficients A4,,.

For the sake of brevity we denote the coefficients K, (n, j) of the optimal quadrature
formula by K, if it is evident what values n, j take.

Further let us denote the norm of the error of the optimal quadrature formula in the
n-periodic space H by

| R(n,j, H) = |J = 1(n, j; {Kns(m J)})] -

The following theorem states the existence and the uniqueness of the optimal
approximation of the functional J in the n-periodic space.

Theorem 4.1. Let H be an n-periodic space. The quadrature formula I(n, j;
{K,s(n, j)}) is optimal in this space H if and only if

(4.1) é(ﬂ(ﬂ):O; r=12,...,j; s=0,1,..,n
J

where g € H and

(4.2) (J = X(n,j; {Ko(m. ) (F) = (£, )

holds for all fe H, i.e. §(x) is a realizing function of the functional J — I(n, j;

{Krs(n, )})-
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The optimal quadrature formula does exist and is determined uniquely.

Proof. Let n, j be fixed. Using the notation (2.4) we may write

n Jj X
I(nji{4)) =L X" 4,07

with respect to Remark 3.3. Therefore the functionals I(n, j; {4,,}) form a finite-
dimensional subspace of the space of all linear functionals on the n-periodic space H
for n, j fixed and arbitrary coefficients 4,,.

Let u € H, v € H be realizing functions of the functionals J, I(n, j; {4,,}) respecti-
vely. Then we may convert the problem of seeking the optimal approximation of the
functional J in the subspace of functionals I(n, j; {4,,}) into the equivalent problem
of seeking the optimal approximation # of the element u in finite-dimensional sub-
space ¥V < H of realizing functions v of all functionals I(n, j; {4,}).

In a Hilbert space this element # exists and is determined uniquely as a projection
of u to the subspace 7 i.e. by the equality

(u—50)=0
for all v e V. From (4.2) we may write

(4.3) 0(x) = u(x) — #(x) .
Then g € H, (4, v) = 0 for all v € V. This is equivalent to the relation

I(n,j: {4.}) (@) = 0
or
n J
(44) 3y 3 400 () <o
s=0 r=1 . ]

for arbitrary coefficients 4,; r=1,2,...,j; s =0,1,..., n. However, (44) is
equivalent to (4.1) with respect to the arbitrary choice of coefﬁcjents A,s. Substi-
tuting into (4.1) from Lemmas 3.1, 3.4, we get a nonsingular system of j(n + 1)

linear algebraic equations for j(n + 1) unknown coefficients K,(n, j). The theorem
has been proved.

An important property of the coefficients of the optimal quadrature formula follows
from this theorem:

Theorem 4.2. Let H be an n-periodic space. Let I(n, j; {K,J(n, j)}) be the optimal
quadrature formula in this space H. Then

(45) Krs(n’j) = Kps(”;j); p,r= 1, 29 y], § = 0, 1, R N
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Thus the coefficients K,; of the optimal quadrature formula are equal to each
other in all abscissae 21rr/jf0r s fixed.

Proof. Let ue H, # € H be realizing functions of the functionals J, f(n,j;
{K.(n, j)}) respectively. Let us introduce the function ¢ € H by the relation (4.3).
Then (4.2) holds and

(4.6) X(n,j, H) = ”g” .
Now let us conétruct functionals
Iy =1(n, ;s {Ki?}); q=0,1,....j — 1

where
Kl('g)szS; r=152;~--,j; S=0,l,...,n

and
r+q—1modj.

il

m-—1
Thus we have
Iy = 1(n, j; {K,})

and the formulae I, result from i(n, j; {K,s}) by successive cyclic replacement of
coefficients in abscissae.
Further let us write

(4.7) X, =7-1

]; q=0,1,..,j—1.

In particular, then
Xo=X(n,j,H).

Usiné Lemmas 3.1, 3.4 we may verify
(4.8) (T-1)(f)=(fd); g=0,1,...5—1

for all fe H where g, € H,
' ~ ~ 2
(49) gq(x) = u(x) - vq(x) =0 (x + ﬂ) s g4 = 0, 1, ,j —1.
: J

In particular, again
(4.10) 0o = 0.
From the relations (iii), (4.6) to (4.10) we get finally
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With respect to the uniqueness of the optimal quadrature formula and the con-
struction of the functionals I,, (4.5) holds. The theorem has been proved.

Since the optimal quadrature formula in the n-periodic space H is of the particular
form we may confine ourselves only to quadrature formulae of this form, i.e. formulae
with coefficients identical in all abscissae for s fixed, without loss of generality. Let us
introduce the following notation.

Definition 4.2. Let H be an n-periodic space. Let j be a positive integer, let A4 ;
s =0,1,..., n be given numbers. We put

As=A4,; r=1,2,..,j; s=0,1,...,n.

Then let us denote the quadrature formula with coefficients 4,, independent of r
and equidistant abscissae x, by

I(n,]; Ao, Al’ sy An) = j(ni.l; {Ars}) .

Remark 4.1. It holds
: © g et p) (277
I(n.J; Ao, Ay ooes 4) (1) = T AT Y S (T

for all f from the n-periodic space H. Putting

ArszAs
ey r=1,2,..,j; s=0,1,..,n
Xrs = =
J
we may also write

I(n, j; Ao, Ay, ...y Ay) = Y(n, j5 {An}s {x,s}) -

The formula I(n, j; Ag, Ay, ..., 4,) is a linear functional on the n-periodic space H.
It employs the values of the integrand and its derivatives up to the order n. The
values of the derivative of the s-th order are summed over all j abscissae 27r[j;
r=1,2,...,jand then this sum is multiplied by the coefficient 4, independent of r.

Let us further show a particular form of the realiiing function of the functional
I(n, j; Ao, Ay, ..., Ay). '

Lemma 4.1. Let H be an n-periodic space. Then

I(n,j; Ao, Ay, - oo A,,) (f) = (f’ v)
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for all fe H whereve H,
(4.11) u(x) = ZA ¥ (= it) ng2eitx
= tjeU

is a realizing function of the functional I(n,j; Ao, Ay, ..., A,). The function v(x)
is periodic with the period 2rj.

Proof. With respect to Lemma 4.3 we have

(4.12) o(x) = ZA > (i a2 ,kxze < 2nnk)

J
where

(4.13)

I P~

exp <_27.t”k) =0 for k =% tj,t integer,
1 J

r

=j for k =tj,t integer.

Substituting (4.13) into (4.12) we get immediately (4.11). The periodicity may be
readily verified by computation from (4.11). Thus the lemma has been proved.

Further we may determine the error of the quadrature formula I(n, j; Ao, 4y, ...
., A,) in the sense of the norm in the n-periodic space.

Lemma 4.2. Let H be an n-periodic space, 0 € U. Then the square of the error
of the quadrature formula I(n,j; Ag, Ay, ..., A,) equals

[J = I(n, j; Ao Ay, ..s A)|? = 1o (1 — 4y — Ap)

+ Z ZA Am( l)m s+mz t\+m

s=0m=0 tjeU

If 0 ¢ U the first term does not occur.

Proof. With respect to Remark 4.1 the lemma may be proved analogously to
Lemma 3.3.. Using Lemma 4.1 we get
(4.14) o(¥) = no” ZA Y (=it e

s=0 tjeU

instead of (3.7) where the term #4 > does not occur for 0 ¢ U. To complete the proof
of the lemma we again determine

IIJ - I(n,j; AO? Al) bS] A")I'Z = (Q, Q)

using Theorem 2.1.
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Since in the following considerations we shall confine ourselves to quadrature
formulae of the form I(n, j; Ay, Ay, ..., 4,) let us introduce the optimal approxima-
tion of the functional J in the class of these formulae analogously to Definition 4.1.

Definition 4.3. Let H be an n-periodic space. The quadrature formula I(n, j;
Ko(n, j), Ky(n, j), ..., K,(n, j)) is said to be optimal in the n-periodic space H if and
only if

| = I(n, j; Ko(n, j), Ks(n, j), .o Ke(m, )| S ||I = I(n, j; Ao, Ay, ..., 4,)]

is valid for n, j fixed and arbitrary coefficients 4,, 44, ..., 4,.
For the sake of brevity we denote the coefficients K (n, j) of the optimal quadrature
formula by K if it is evident what values n, j take.

Further let us denote the norm of the error of the optimal quadrature formula in
the n-periodic space H by

X(n’j’ H) = HJ - I(n’j; KO(n’j)’ Kl(n’j)’ st Kn(n’.]))n *

Remark 4.2. In the following considerations (except Sec. 9) we shall confine our-
selves only to quadrature formulae I(n, Ji Ao, Ags .-y A,,) introduced in Definition 4.2.
We shall always treat the optimal quadrature formula in the n-periodic space H as
the formula I(n, j; Ko(n, j), K4(n, j), ..., K,(n, j)) introduced in Definition 4.3. The
connection with the optimal quadrature formula I(n, j; {K,{(n, j)}) introduced in
Definition 4.1 is evident from Theorem 4.2. Moreover, the relation

X(n, j, H) = X(n, j, H)

follows from this theorem.

Let us state the existence and the uniqueness of the optimal approximation
analogously to Theorem 4.1 (this time in the sense of Definition 4.3).

Theorem 4.3. Let H be an n-periodic space. The quadrature formula I(n, j;
Ko(n, j), Ky(n, j), ..., Ky(n, j)) is optimal in this space H if and only if

(4.15) d0)=0; s=0,1,...,n
where g € H,
(4.16) (J = I(n, j; Ko(n, j), K4(n, j), ..., K,(n, §))) (f) = (f @)

holds for all fe H, i.e. 3(x) is a realizing function of the functional J — I(n, j;
Ko(n, j), Ky(n, j)s - ... Ky(n, j))-
The optimal quadrature formula does exist and is determined uniquely.
If 0¢ U then K(n,j) =0;5s=0,1,...,n.
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Proof. Functionals I(n, j; Ay, Ay, ..., A,) for fixed n, j and arbitrary coefficients 4,
form a subspace of the finite-dimensional space of all functionals I(n, j; {4,,}) with
arbitrary coefficients A4,,. With respect to Theorem 4.2 the optimal approximation of
the functional J in the space of functionals I(n, j; {4,,}) is certain functional I(n, j;
Ko(n, j), Ky(n, j), ..., K,(n, j)) from the subspace of functionals I(n, j; Ao, Ay, ..., A,).

With respect to Theorem 4.1 this optimal quadrature formula exists and is deter-
mined uniquely by the condition (4.1) where ¢ € H is given in (4.16). Since realizing
functions ¢ € H of all functionals I(n, j; Ay, 44, ..., 4,) are periodic with the period
2n/j (as Lemma 4.1 states) the condition (4.15) is equivalent to (4.1).

Let us write the nonsingular system (4.15) of n + 1 linear algebraic equations for
n + 1 unknowns Ky, Ky, ..., K, explicitly. Using (4.14) and Lemma 2.1 we get

n
2O(x) = 00 = ¥ K 3 (=1 P 75 5 = 0,1,oom
| pe

tjeU

where we put 0° = 1. The term 0%, > does not occur for 0 ¢ U. The system (4.15) has
the form

4.17 K (—1y*im+s Y gm¥sp=2 = 0%g%; s=0,1,..,n.
J
m=0 tjeU
In particular, for 0 ¢ U
(4.18) YK (=1)mimts Y t"‘“n,‘jz =0; s=0,1,...,n.
m=0 tjeU

The system (4.18) has only a trivial solution. The theorem has been proved.
Now we may find the error of the optimal quadrature formula in the n-periodic
space.

Theorem 4.4. Let H be an n-periodic space, 0 € U. Then the square of the error
of the optimal quadrature formula equals

X*(n, j, H) = 15 (1 — Ko(n, j)) -
If 0¢ U then
Xz(n,j, H) =0.

Proof. The proof follows immediately from Lemma 4.2 by using the relations
(4.17), (4.18) of the proof of Theorem 4.3.

Remark 4.3. The case of an n-periodic space H, 0 ¢ U is trivial in virtue of Theorems
4.3, 4.4. The coefficients of the optimal quadrature formula equal 0 and this formula
integrates all functions fe H exactly. Therefore in the following we shall confine
ourselves only to those n-periodic spaces where 0 € U and we shall not repeat the
assumption 0 € U explicitly.
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The coefficient of the optimal quadrature formula may be easily determined in the
simplest case of the 0-periodic space H.

Theorem 4.5. Let H be a 0-periodic space. Then the coefficient of the optimal qua-
drature formula equals

1
Mo 3. Ney”
tjeU
Proof. The coefficient K, may be readily determined from (4.17) if we consider
the proof of Theorem 4.3. Obviously K|, is real.

The calculation of coefficients of the optimal quadrature formula is more compli-
cated in a general n-periodic space, n > 0. '

5. OPTIMAL QUADRATURE FORMULA IN A STRONGLY
n-PERIODIC SPACE

In the following we shall confine ourselves to n-periodic spaces satisfying some
further assumptions to be able to examine the asymptotical behaviour of coefficients
of the optimal quadrature formula and the error of quadrature formulae.

Definition 5.1. Let H be an n-periodic space. This space H is said to be strongly
n-periodic if and only if the following conditions are satisfied:
(iv) e**e H for all integers k, n, =1n_,.

(v) Let k, j be integers, Ikl > []l Then #, = ;.

(vi) nz; (¢ + k)*™ng3e; < D(H) for k =1,2,...,[n/2] + 1 and all positive inte-
t=0
gers j.') The number D(H) does not depend on j.

For the sake of brevity we use the terms “periodic” or “strongly periodic™ space
if it is evident what value n takes.

Remark 5.1. Let H be a strongly n-periodic space. Then U(H) is the set {...,— 1, 0,
1, } of all integers as follows from Definition 5.1.

We are interested in the relation of strongly n-periodic spaces for various n as in
the case of n-periodic space.

1y [x] denotes the largest integer, for which [x] = x holds.
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Remark 5.2. Let p = n = 0 be integers, let H be a strongly p-periodic space. Then
the space H is strongly n-periodic.

The statement follows immediately from Definition 5.1 and Remark 2.1.

The condition (vi) of Definition 5.1 is independent of the conditions (iv), (v) of

Definition 5.1 and the conditions (i) to (iii) of Definition 2.1 as we may show at
least in the simplest case n = 0.

Theorem 5.1. There exists a 0-periodic space H satisfying the conditions (iv), (v)
of Definition 5.1 such that this space H is not strongly 0-periodic.

Proof. We use Theorem 2.2 to construct the 0-periodic space H with these proper-
ties. Let U be a set of all integers. We put

(51) pi=nt, =225 =22 +1,..,22"" — 1 for any integer s =0,

t
L= nh=ni =1,

n

Let us construct the corresponding Hilbert space of 2z-periodic continuous functions.
The condition (2.16) of Theorem 2.2 is satisfied since we may estimate

o 22°%1

Yo t=3+2yn 2 =3+2Yy Y p’=

t=—o0 t=2 s=0 t=22s

=342 (0¥ —2)x 27 <3422 =T< +0.
s=0 s=0

Thus this space is O-periodic. The validity of (iv), (v) follows immediately from
(5.1).

Now let us put
(5.2) j, =22 for any integer r = 0
and let us show

(5.3) n; Yn;l>2"" -1 foranyinteger r=0.
=1

We get a contradiction with (vi) in this way. Thus the space H constructed in this way
is not strongly 0-periodic. We may estimate

Jr+1/ir—1

M XNl = NGtz Y mgl =27 =1
t=1 t=1 t=1
for r fixed since from (5.1), (5.2) we have
jr+ 1/jr = 22'
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and
2, -2

gl =1 for 1=1,2,..,2" - 1.

Thus (5.3) has been proved and the theorem holds.
We may transform the series

(5.4) - Y it m=0,1,...,2n

t=—o

into a simpler form in a strongly n-periodic space H.

Lemma 5.1. Let H be a strongly n-periodic space. Then the series (5.4) converge
absolutely and uniformly with respect to j for all positive integers j. It holds

(59) L onit =+ 250
t=—o t=

Y t";?=0 for m=1,3,...,2n — 1,

t=—o0
o 0

Y ot =2 t";" for m=24,..,2n

t=—o00 t=1

and all positive integers j where the series on the right-hand side converge absolutely
and uniformly with respect to j.

Proof. From (v) we have
(56) ltlm '11‘_12 é t2n’1t—j2 é t2nrlt-2
for any integer ¢ and any positive integer j. The series
(5.7) Z " 2
t=—o00

converges with respect to Theorem 2.1, does not depend on j, and majorizes all the
series (5.4). Hence the series (5.4) converge absolutely and uniformly with respect
to j for all positive integers j. The rest of the statement follows immediately from (iv)
by permuting the series.

With respect to properties of the strongly periodic space we may generally find the
form of some coefficients of the optimal quadrature formula.

Theorem 5.2. Let H be a strongly n-periodic space, let I(n, j; Ko(n, j), Ky(n, j), ...
..., K,(n, j)) be an optimal quadrature formula in this space H. Then

(5.8) K,(n,j)=0 forall m<n odd.
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Proof. Let us consider the system (4.17) of linear algebraic equations for the coef-
ficients K,,; m = 0, 1, ..., n of the optimal quadrature formula. Using Lemma 5.1
we may rewrite the equation (4.17) fors = O as

(5.9 Ko(no* + 23, M) + 2 L Kl th”'n?ﬁ =n57.
= m> t=
even

For s > 0 even we get
(5.10) YK, i"Yy "t =0.
>0

Finally for s odd, we have

(5.11) YK imY ot =0.
m>0 t=1
odd

The system (4.17) is decomposed into two systems, the system (5.10) with the equa-
tion (5.9) that together determine the coefficients K,, for m even and the system (5.11)
that determines the coefficients K,, for m odd. The system (5.11) is homogeneous and
nonsingular with respect to Theorem 4.3. Hence it has only a trivial solution. There-
fore the theorem has been proved.

Remark 5.3. Let n > 0 be an even integer, let H be a strongly (n + 1)-periodic
space, let I(n, j; Ko(n, j), Ky(n, j), ..., K,(n, j)) be the optimal quadrature formula
in this space H regarded as strongly n-periodic in the sense of Remark 5.2. Then the
formula

I(n + 1, j; Ko(n, j), Ky(n, j), ..., Ky(n, j), 0)
is optimal in the strongly (n + 1)-periodic space H. Therefore it holds

Kun+1,j)=K,(n,j); m=0,1,...n,
K,ii(n+1,j)=0.

The statement follows immediately from Theorem 5.2.

‘We may determine the coefficients of the quadrature formula optimal in the strongly
n-periodic space explicitly in two simplest cases, i.e. n = 0 and n = 2. We shall
confine ourselves to these two cases of a strongly O-periodic and a strongly 2-periodic
space in Sec. 6, 7, 8. The case n = 1 may be converted into the case of a strongly
0-periodic space, the case n = 3 into the case n = 2.
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Theorem 5.3. Let H be a strongly 0-periodic space. Then

(5.12) Kof0,)) = ——

[e]

L+ 213y n;;°
t=1

is a coefficient of the quadrature formula optimal in this space H.

Proof. The statement follows immediately from Theorem 4.5.

Theorem 5.4. Let H be a strongly 2-periodic space. Let us put

(5.13) Wt =ng((ne” + 2r§1n;2)‘§1t4m}2 - 2(21t2r7,‘,~2)2).
Then

(5.14) Ko(2,)) = Wtiﬂquz,

(5.15) Ki(2,j) =0,

(5.16) K,(2,)) = Wtiﬂn;?

are the coefficients of the quadrature formula optimal in this space H.

Proof. Writing the system (4.17) (or the system (5.9), (5.10)) for n = 2 and solving
it we get the statement of the theorem immediately from Theorem 4.3. The equality
(5.15) follows from Theorem 5.2.

6. LIMITS OF COEFFICIENTS OF OPTIMAL QUADRATURE FORMULAE

It is apparent from Theorem 4.3 that coefficients of the optimal quadrature formula
depend on particular n-periodic space H where we construct the formula. In general,
if we consider a quadrature formula optimal in a certain n-periodic space then its
error may be very large in another n-periodic space as compared with the error of the
quadrature formula optimal in this latter space. From the practical point of view it is
useful to seek such quadrature formulae the error of which is asymptotically com-
parable in some sense with the error of optimal quadrature formula universally,
i.e. comparable with the error of optimal formulae in all particular n-periodic or
strongly n-periodic spaces of some class of spaces.

First let us try to determine limits for j — oo of coefficients of the quadrature
formula optimal in O-periodic and strongly 2-periodic spaces. We find out that these
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limits may be determined independently of the choice of space H. We shall use this
fact in Sec. 7 to construct quadrature formulae with properties universal with respect
to the choice of space H.

Now let us make an auxiliary statement.

Lemma 6.1. Let H be an n-periodic space. Then

(6.1) lim Y 2%;>=0; s=01,..,n.
e U

In addition, if the space H is strongly n-periodic we have
(6.2) lim Z ;2 =0; s=0,1,...,n.
jooo t=
Proof. Let the set U(H) be finite. Then there exists a number T € U such that
Itl < |T| forall teU.
Letj > [T[ then tj ¢ U for any integer ¢ + 0 and thus

2 . —_
YenP=0; s=01,..,n
tjeU
t¥0

holds for all j > |T|. (6.1) follows immediately from this relation.
Now let U(H) be infinite. All series

Y k*ne?; s=0,1,...,n

keU
converge absolutely since the series (2.1) majorizes them and converges with respect
to Theorem 2.1. The absolute convergence is equivalent to the following statement:
For arbitrary ¢ > 0 there exists a positive integer K so that

(6.3) e>| Y k*n? — z kKEng?| = Y k*ni?; s=0,1,..,n.
ket [k|sx |k|e>UK
Let j be a positive integer. We extract such ks from the set U for which k = tj
with a certain integer t. Then

(6.4) Z kKt z Y %5tz Y 207 s=0,1,...n.
T e tjcU
|k|>K |til>K 1ti|>K !
Now let j > K. Then from (6.3), (6.4) we get
(6.5) ‘ e> Y tzsnt_jz =) tzsn,_, ; s=0,1,..,n.
tjeU tjeU
|ti|>K t+£0
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Therefore for arbitrary ¢ > 0, there exists a positive integer K such that (6.5) is valid
for all j > K. Hence (6.1) has been proved. (6.2) follows from the statement proved
by using Lemma 5.1.

We may find the limit of the coefficient K(0, j) supposing that the space H is
only O-periodic.

Theorem 6.1. Let H be a 0-periodic space. Then

(6.6) lim Ko(0,j) = 1.

j=o
Proof. With respect to Theorem 4.5 we may write

1
Ko(0.)) = ——=—=
1+ ’13 '7tj2
tjeU
t*0
as follows from the absolute convergence of the series in (4.19). We get the limit (6.6)
immediately, using Lemma 6.1.
Before we prove an analogous statement for strongly 2-periodic space let us show
this auxiliary statement.

Lemma 6.2. Let H be a strongly n-periodic space. Let

2

(67) lim —'ZZL =0.
jooo MN2j
Then
2
(6.8) lim - = 0
J=oo My

for any integer t = 2.

Proof. With respect to (v) we may write

2
j

I~ N

n

B

v
S5

J

for any integer ¢ > 2. Passing to the limit for j — co and using (6.7), we get (6.8).
Theorem 6.2. Let H be a strongly 2-periodic space. Then

(6.9) Ko(2,)) =1, Ky(2,j)=1
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for any positive integer j. Further

(6.10) lim Ko(2, ) = 1,
Jjo oo
(6.11) limsup K,(2,/) < 1.
Jj—r o

The relation
(6.12) lim sup Ky(2,j) =1
joo
holds if and only if
2
.. oM
(6.13) liminf =1 = 0.

joo Hyj

If the limit exists in one of the relations (6.12), (6.13) then it exists in the other as
well.

Proof. Using Holder inequality we have

(6.4 (5 Pni?P < Tt 3 i
t= t= t=

We may rewrite (5.13) as

@

(615) wt= th‘*n?jz + 2n5( Zlm‘fz th‘m}z - (thzm},z P) = Y t*nt.
t= t= t= t=1

We use Theorem 5.4 now. From (5.14), (6.15) we get the first part of (6.9). Analo-
gously from (5.16), (6.15) it follows

Ka2) S 3P (L) S 1
t= t=

which completes the proof of (6.9).
With respect to (5.14), (6.15) we write

2 -2
1 zw -2 zwz—Zt;t”tj
% (2 j) =1+ 2’1021’1:;' - 2'10th Mj™ -
s t= t= -
0 z t417!j2
t=1
The inequality
e 2
Y g
0=l <1
z t4n‘—jZ
t=1
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may be easily verified. Then using Lemma 6.1 we have

lim —1— =1

Jj— K0(2 ])

which proves (6.10). (6.11) follows immediately from (6.9).
Further with respect to (5.16), (6.15) we write

1 Lt 0 MEN e
(6.16) 50 j) == + 23 2111 = — 2 tgltzn,-j .
e Tt ; Z 1

The limit of the last term is equal to 0 with respect to Lemma 6.1. Using (vi) we
rewrite the central term as

0 ﬂ) z t4’1t]
2”Io Z N:j

t=1

M

< 25
t

ng’ 1 th“nf,-z < 25 D(H)Z1 -
t= t=

0

;> gt
t=1

1

In virtue of Lemma 6.1 the limit of this central term equals 0, too. Thus from (6.16)
we get

St
tj
(6.17) lim ian o) = liminf =L — |

J= o 2 7] Jjo o ‘z 1217,;2

which is equivalent to

(6.18) lim sup K,(2, j) = lim sup =—— .

jo o j~e

Mg “Ms

A. Let (6.13) hold. Then there exists a sequence {j,} of positive integers such that

2
lim M= — 0.
roo ;5

Using this and Lemmas 5.1, 6.2 we get

2

2 < 2 M
z n'.}r tglt rlz'
(6.19) lim fju—— = lim % = .
r— o r— o n;
t4 Jr.
Zrmi Py "
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Therefore 1 is a limit point of the sequence

i tzm—jz

Z t*n,°
With respect to (6.11), (6.18) it is the largest limit point and hence (6.12) follows from
(6.13).

B. Let (6.13) be invalid. We write

2
(6.20) liminf - = E > 0.

jow N2j

Now we use the relation (6.17). Let us write

8

t4n2
2 My 12
(6.21) =1 4 ~ +Z
r’ .
x; "t] 4 + ;’%
J

8

where

)Z Ny’

4+ ('721/'71)

z tz'h;z
t=1

121 t4n:j2 B (1

7 =

The inequality
(6.22) Z=20

may be easily proved by verifying that the numerator is non-negative. Simplifying the

numerator we get
d 12
Y nt <t“ - (1 + ——-*-—> t2> .
=Y 4+ (n3ln3),

It may be shown that all the terms of this series are non-negative. Thus with respect
to (6.17), (6.20) to (6.22) we have

lim inf 1+ 12 > 1,

j=w K2(2,j) 4 + l/E

v

i.e.
limsup K,(2,j) < 1,

s

which completes the equivalence.
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Now let

(6.23) lim =0

hold. Then using Lemmas 5.1, 6.1, 6.2, and (6.16) we get

(6.24) lim K,(2, /) = 1

Jjo o
in the analogous way as (6.19).
On the other hand, let (6.24) exist. Using (6.21), (6.22) we have

4 -2

ey 12
_— 214+ —
tzn,"jz 4 +r’—22—j
1 nj

s |18

-
I

Then with respect to (6.18), (6.24)

lim

Jjo o

2
=0
M3
4+
]
exists and the existence of (6.23) follows from this. The proof has been completed.

Thus we have shown that the limit of the coefficient KO(O, j) equals 1 in any 0-
periodic space and the limit of the coefficient Ko(2, j) equals 1 in any strongly 2-
periodic space, too. We have found an upper bound for the superior limit of the
coefficient K,(2, j) independently of the choice of strongly 2-periodic space. This
bound is equal to 1. We have shown that there exists such a space where this bound is
attainable. In the sense of Theorem 2.2 the condition (6.13) is satisfied e.g. by the
strongly 2-periodic space with the norm 77 = el*!,

From Sec. 7 it will be apparent why we do not examine 2-periodic spaces generally.

Let us introduce a notation for quadrature formulae using limit coefficients.

Definition 6.1. Let H be a O-periodic space. The quadrature formula I(0, j; 1) is
said to be a limit formula. We denote its error by

®(0,j, H) = |J = 1(0,j; 1)| .

Definition 6.2. Let H be a 2-periodic space. The quadrature formula I(2, j; 1, 0, 1)
is said to be a limit formula. We denote its error by

®(2,j,H) = |J - 1(2,j; 1,0, 1)| .
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Remark 6.1. As compared with the coefficients of the optimal quadrature formulae,
the coefficients of the limit formulae do not depend on the choice of the space H.
The limit formula 1(0, j; 1) is a usual trapezoid rule. The limit formula I(2, j; 1, 0, 1)
is a certain generalization of the trapezoid rule. The sum of the values of the second
derivative of the integrand in equidistant abscissae multiplied by j~2 appears in this
formula.

We shall be concerned with examining the properties of the limit quadrature for-
mulae in Sec. 7. Let us consider their errors here now.

Theorem 6.3. Let H be a 0-periodic space. Then the square of the error of the limit
quadrature formula equals

@*(0,j, H) = Y n;" -
i

Proof. The statement follows from Lemma 4.2 by using Definition 6.1.

Theorem 6.4. Let H be a 2-periodic space. Then the square of the error of the limit
quadrature formula equals

9*(2,j,H) =Y (* — 1)* n,;;*.

tjeU
t+0

Proof. The statement follows from Lemma 4.2 by using Definition 6.2.

7. UNIVERSAL PROPERTIES OF LIMIT QUADRATURE FORMULAE

Let us now examine the asymptotical behaviour of the errors di(O, Js H), (15(2, J» H)
of the limit quadrature formulae for j — oo in comparison with the behaviour of the
error of the corresponding optimal quadrature formula. Let us introduce the following
concepts.

Definition 7.1. Let H be an n-periodic space, let X(n, j, H) be an error of the optimal
quadrature formula in this space.

The quadrature formula
(7.1) I(n,j; Ay, Ay, ..., A,)
is said to be asymptotically optimal in this space H if and only if
|7 = I(n, j; Ao, Ay, ..., A,)|| = X(n, j, H) (1 + o(1))

holds for j — oo.
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The formula (7.1) is said to be optimal in order in this space H if and only if
[J = I(n, j; Ao, Ay ..., A,)|| = X(n, j, H) O(1)

holds for j — oo.

Further the formula (7.1) is said to be universally asymptotically optimal or univer-
sally optimal in order in a class of n-periodic spaces if and only if it is asymptotically
optimal or optimal in order respectively in any n-periodic space H of this class.

Remark 7.1. Let H be an n-periodic space. If the quadrature formula I(n, j;
Ao, Ay, ..., 4,) is asymptotically optimal in this space H then it is also optimal in
order in this space.

Analogously if the formula I(n, j; Ao, 4, ..., A,) is asymptotically optimal in some
class of n-periodic spaces then it is also optimal in order in this class of spaces.

Now let us show the universal optimality of the limit quadrature formulae.

Theorem 7.1. The limit quadrature formula I(0, j; 1) is universally asymptotically
optimal in the class of all 0-periodic spaces.

Proof. With respect to Definition 7.1 it is sufficient to prove

(7.2) tim QL H) _
Jj= o X(07.]y H)

With respect to Theorems 4.4, 4.5, and 6.3 we have

2%(0, j, H) 25, -2
i 2,
X%0,), H) nou;]m,

t+0

Further using Lemma 6.1 we get

2 .
im 20 H) _
Jj=r o XZ(O’]" H)

The relation (7.2) follows from this equality.

Theorem 7.2. The limit quadrature formula I(2,j; 1,0, 1) is universally optimal
in order in the class of all strongly 2-periodic spaces.

This formula is universally asymptotically optimal only in the class of strongly
2-periodic spaces such that

H
(7.3) lim =L =0.
jmo M3j
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Proof. To prove the first statement of the theorem, it is sufficient to show

(7.4) | lim sup (2., H)
Jj—o oo X(Z, j, H)

With respect to Theorems 4.4, 5.4, 6.4, and (iv) we write

< 40

2 .
(7_5) ?_Q’]’_H)
X?(2,j, H)
L0 =10y 3 thniy?
= wt—l 4 2110 Z (tz —_ 1)2 'hl .
=1
A ’1”2 Z t4'7t1 - (Z tzrltjz)z
Using Lemma 6.1 we get
(7.6) lim 212 z (2 —1)2n;?=0.

Jj= oo t=

Let us find the limit of the first term on the right-hand side of (7.5) that we denote
by Q(j). By a straightforward computation we may find out that the denominator
of Q(j) equals

"Ms

Zﬂt
=1

. -2
’7:1 (Zt Nej )2
t=
e
=1 Z(Z”u - 22’2 0 + Z;t4'7t_iz)
=
o0 o0 s
+ 22t4’7u (Zztzﬂtj )?
t=

t=2

0

=N Z(tiﬂ&2 2% Onii? +t§t"lfﬁ) =1y Zé(tz 1) ng?
as it follows from the inequality analogous to (6.14). Hence we may estimate
(17) () £ nf-; t*n;;* < D(H)
using (vi). Therefore with respect to (7.5) to (7.7) we get

. H)
lim su (#<DH < 4o00.
limsup 226y ) = &)

Then (7.4) follows from this inequality immediately.
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A. Let (7.3) hold. Then with respect to (7.7) and Lemmas 5.1, 6.2 we have

lim Q(j) < lim n Z tt=1.

j-w Jj= o

However, using Definition 7.1 and (7.5), (7.6) we get

(7.8) 1 < lim Q(j),
Jj—2 o
i.e.
@*(2,j. H) _

1
o X2(2, ], H)

From this relation it follows
(79) lim ?(2’__"’_.11) =
i~ X(2,j, H)

B. It remains to complete the proof of the equivalence. Thus let

lim sup =E>0.
j=o ’12j

Using proper manipulation we get

© © © © ©
zltltn;'jz Z nt;2 -2 Z t4r,t'}2 Zl tzr"—l_z + (z t4’7t12)2
t= t= t=1

; =Z ’1”‘2 — (t§1t2'1‘—jz)2
(3, Pn?) = (3, i’y (3t = 3 Pni?)
=1+ .'

0 [+ 0] [ee]
) m,’ Z 0" — (Z 2;2) L Z - (tZ1 ;%)
t=1 =1 =1 =

+

i tz tz -1 —.2 2
>1 +(:; ( ) >1+ 144 ()’ > 14 4 "’
= ~ D¥H)\m3;

0 0 0
n;:iz _Z 4’1;2 "?t—zlrlt_jz ~’7§tzl t411t—j2

Ms|»

t=1

where we use (vi). Further we may write

2
11m sup o)z1+ 14:2E) >1,
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which with (7.5), (7.6) gives

2 .
lim supdj—(?"—J—’—H—) >1
jow X2(2’j’ H)

This relation implies the invalidity of (7.9), which completes the proof of the theorem.
Let us note that the relation

lim sup M =
o © X(2,], H)

is equivalent to (7.9) with respect to Definition 7.1. Hence examining the asymptotical
optimality we may confine ourselves to (7.9).

Whereas it is possible to examine the universal properties of the limit quadrature
formula in a general O-periodic space, in the treatment of the limit quadrature formula
1(2,j5 1,0, 1) we have to confine ourselves only to strongly 2-periodic spaces if we
want to prove the universality. This fact is shown by the following theorem.

Theorem 7.3. There exists a 2-periodic space H such that

limsupw= +o00.

Jjoo X(Z,], H)

Proof. We use Theorem 2.2 to construct the 2-periodic space H with this property.
Let U be a set of all integers. We put

(7.10) ni =Wkt k| =7,
ni = ekt |k %7
for all non-negative integers r. Let us construct the corresponding Hilbert space H

of 2n-periodic continuous functions with the first and second derivative continuous.
The condition (2.16) of Theorem 2.2 is fulfilled since we may estimate

2e~ 1t
-1

Y K< Y eMptett =1 + < 4.

k=—o k=—oo 1—e

Thus this space is 2-periodic. The validity of (iv) follows immediately from (7.10).
It may be readily shown that the statement of Lemma 5.1 holds in this space H. It is
sufficient to use

[f|" 5% < t*n? < eVt e m=0,1,2,3,4
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instead of (5.6) in the proof of that lemma since the series

Y e M

k=-o

converges. Now we may show that Theorem 5.2 holds in this space H for n = 2 and
the statement of Theorem 5.4 holds finally, too.

We put
(7.11) js=T
for any non-negative integer s. To prove the theorem it is sufficient to show
(7.12) lim sup M =
s= o0 X (2, Jss H)

Analogously to the proof of Theorem 7.2, we get
. 9%(2,j,, H) _
121305“13 —2(3":-1_7) sl_x’r: 0(js)
where
«© o«
Xt mf(Zm, - 22 2y’ + X )
Q(_]) t=1 -~ t=1 .
Zl r]t—th_Zl t4’7‘—jZ _ ('Z tZ”UZ)Z

We estimate the denominator R(j) of the fraction Q(j) by

9 2 &, -
(7.13) R()) = 5 oL 0 Zt“ﬂz, + (X ')
MMz My =3 =3

where we use the inequality
Further we estimate the numerator P( j) of the fraction Q(j) by
(7.14) PO) = 3 i z(tz P 111;‘4.

2j
Using (7.13), (7.14) we have
(7.15)

1 1 112 g 2 2 v
< — < — (oM oM 24173 )t + -2)2
0()) 144( n; n; ; g n21'=z3 " (”ZJZ ") )
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With respect to (7.10), (7.11) we may estimate

(7.16) Yt < it Y exp (—tj,) = jot —PAT ) ("3"). .
=3 =3 1 — exp(—js)
Finally using (7.10), (7.11), (7.15), (7.16) we get
1
lim ——<=0
s Q)
This implies (7.12) and the theorem has been proved.

The limit quadrature formulae I(0, j; 1), 1(2, j; 1, 0, 1) are the unique universally
asymptotically optimal or universally optimal in order formulae respectively in the
sense of the two following theorems.

Theorem 7.4. The quadrature formula
(7.17) 10, j; Ao(j))

is universally asymptotically optimal in the class of all 0-periodic spaces if and
only if there exists a positive integer Lsuch that Ay(j) = 1 for all integers j = L.

Proof. A. If there exists a positive integer L such that 4y(j) = 1 for all integers
Jj = Lthen the formula (7.17) is universally asymptotically optimal in the class of all
0-periodic spaces with respect to Theorem 7.1.

B. Let us have an infinite sequence {j,} such that
AO(js) :f: 1
for any positive integer s, i.e.
|t — 44()]> >0

for any positive integer s. We construct a 0-periodic space H such that

s i sug 19 = 10,5 AU |2 _
(7.18) o P X2(0, ), H) *

[e0]

holds in this space. In this way we get a contradiction in the sense of Definition 7.1.

Let us confine ourselves to spaces H such that U(H) is a set of all integers. From
Lemma 4.2 we write

|7 =10, j; Ao()]* = 15t = A

+ 1460 X nii” 2 o7t = (i) -

t+0
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Further using Definition 7.1 and Theorem 6.3 we have

X%0.j, H) < 9%0.j, H) = Y n;*.
t=-o0

t+0
Hence we may estimate
(7_19) . “J _XIZ(O(;], ";;(]))”2 > ‘1 —on(j)lz .
( 5 Js ) ”Ig z n;l
t=—o0
t+0

For non-negative integers k we put

Pk)=1, 0<k<j,,

H@:[PMWH—AWM{U,Lq<k§L,

Then
' P(k)y<1, P(k+1)= P(k)

for any integer k = 0.
Now we put

ke
7.20 =yt =exp | —
( ) Nk k P P(k)
for any integer k = 0. Let us construct the corresponding Hilbert space H of 2n-
periodic continuous functions. The condition (2.16) of Theorem 2.2 is fulfilled since
we may write

2e 1
-1

Y mis Y eM=1+

k=—o k=—w 1—e
using the estimate
e = n%, = exp (ke¥) = €
for any integer k = 0.
With respect to (7.20) we may rewrite (7.19) as
[7 = 10, A)[? 5 [t = (D) - jel(t — ™) [1 — Ao
X*0,j, H - & . 202P(j
( J ) 2 Zl"tjz o (J)
=

since we may verify

0 B . © e 1 e"
2 <exp— L5 )T e t-0 = exp — 2.
L = e ( P0)) & 1= 2\ PG
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Further we may show

|1 = Aq(j))]?
P(j,)

for any positive integer s. Therefore we get

|7 = 10,j; AoGi))|* o 1 — "
XZ(O, e H) - 2"3

v

1

’

jsexp (j) = +oo for s— 0.

Thus we have proved (7.18) and the proof of the theorem has been completed.

Remark 7.2. If the quadrature formula (7.17) is universally optimal in order in the
class of all 0-periodic spaces then it is also universally asymptotically optimal in this
class of spaces.

In fact, let (7.17) be universally optimal in order in this class. Then we show that
there exists a positive integer Lsuch that Ay(j) = 1 for any j = Lin the same way as
in part B of the proof of Theorem 7.4. Further, using Theorem 7.4 we get that the
quadrature formula (7.17) is universally asymptotically optimal.

With respect to Remark 7.1 the statement analogous to that of Theorem 7.4 holds
for the formula universally optimal in order in the class of all 0-periodic spaces.

We use the following auxiliary statement to prove an analogous property of the
limit quadrature formula I(2, j; 1, 0, 1).

Lemma 7.1. Let P(k) be a positive non-increasing function defined for all integers
k = 0, let P(0) = 1. Let H be a Hilbert space of 2n-periodic continuous functions
with the first and second derivative continuous. Let

k

(7.21) nE = n%, = k*exp (:—ej) for any integer k >0,

Then the space H with the norm (7.21) is strongly 2-periodic and

© -—4 :52]
(1.22) Yt < ]—_lexp<— e )
t=2

1—e P(2))

holds for any positive integer j.

Proof. The proof is analogous to the corresponding part of the proof of Theorem
7.4. We shall show that the condition (2.16) of Theorem 2.2 is satisfied in the Hilbert
space constructed in this way. With respect to (7.21) we may estimate

nek™* = n2k™* = exp LCAPR
P(k))
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for any integer k > 0. Therefore

o0

4,-2 R 2!
Yokt Y eM=1+4 < tw.
k=—o k=—o 1 - e"l

From Theorem 2.2 it follows that the space H constructed in this way is 2-periodic.
Let us verify the conditions (iv) to (vi) now. (iv) follows from (7.21) immediately

since U is a set of all integers. (v) follows from (7.21) and the properties of the function
P(k). To prove (vi) we estimate

t4 r’_.-z_ é exp (lfi_ —_ _t‘l.iti> é e_(t“i)
iy P(j)  P(1))

for any integer t > 0. Hence

2% 4 -2 % 1
Myttt S Y e T = s
t=1 t=1 1—e
Analogously we get the estimate
2 a2 2 —=2) 16
(7.23) ny; 2ttt £16Y e =—
t=2 t=2 1—e!

Therefore (vi) is satisfied if we put

16

1—et’

D(H) =

Thus the space H constructed in this way is strongly 2-periodic. Substituting 13 j
from (7.21) into (7.23) we get (7.22). The lemma has been proved.

Theorem 7.5. The quadrature formula

(7.24) 1(2, j; Ao(j), 41()), 42(7))

is universally optimal in order in the class of all strongly 2-periodic spaces if and
only if there exists a positive integer L such that

(7.25) A() =1, 4,())=0, A(j)=1
for all integers j = L.
Proof. A. If there exists a positive integer Lsuch that (7.25) holds for all integers

J Z Lthen the formula (7.24) is universally optimal in order in the class of all strongly
2-periodic spaces with respect to Theorem 7.2.
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B. Let us have an infinite sequence {j,} such that at least one of the following
inequalities holds for any positive integer s:

(7.27) A,(jy) 0,
(7.28) A(j) # 1.

Thus an infinite sequence that we shall denote again by {j;} may be extracted from
the original sequence {j,} so that invariably the same inequality of the inequalities
(7.26) to (7.28) holds for any positive integer s. With respect to this fact we distinguish

three cases and construct a strongly 2-periodic space H in each of these cases analo-
gously to the proof of Theorem 7.4 so that

(7.29) ' lim HJ —1(2, j; Ao(js), A1(Ji)s A>(j ))“2
s~ o X*(2,j, H)

+ 00

holds in this space H. In this way we get a contradiction in the sense of Definition 7.1.
Using Lemmas 4.2, 5.1 we may write

[ = 12, j5 4o(j), 41(5), AL(N* = o[t = Ao())|?
+ 22:1|A1(j)|2 2,7 + 2211/10(1‘) = A,(j) 2 nii”

= 1o 2|1 — Ao()[* + 205 %| 4.0 + 205 2| Ao(i) — A()

in the strongly 2-periodic space H.
Further using Definition 7.1 and Theorem 6.4 we get

0 0
X*(2,j,H) £ ®*(2,j, H) =2Y (* — 1)*n;;> £ 2% t*n,;%.
t=2 t=2

Therefore we may estimate

(7:30) 1 = 123 46 A0 4D , |1 = A
X*(2,j, H) 202 Z o2
AGE [40) = 40P
n?t;t‘tn‘-fz 7’1 Z 14’10

Now let us distinguish three possibilities with respect to the relations (7.26) to
(7.28).
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1. There exists an infinite sequence {j,} such that (7.26) holds for all positive
integers s. For all non-negative integers k we write

(7.31) P(ky=1, 0<k<j,,

P(k) = [T min (|t = A(G)* 1) Jo-r <k <.

From (7.26) it follows
[t — 4] >0

for any integer s > 0. Therefore the function P(k) satisfies the assumptions of Lemma
7.1 and the strongly 2-periodic space H with the norm (7.21) may be constructed.
With respect to (7.22), (7.31) we may rewrite (7.30) as

(7.32) |7 = 12, j; Ao(iy)- 4G 4G
' X2(2,j,, H)
z (1~ e™") )3 exp (2/) %}%%Y >(1 = 1) 3 exp (%))

for any positive integer s since from (7.31) we may estimate
. 3 2
(7_ 33) ll—A?(Js)L >1
P(2j;)

for any positive integer s. However, the last term on the right-hand side of (7.32) tends
to +o0 as s — co0. Supposing (7.26) we have constructed the strongly 2-periodic
space H satisfying (7.29). Therefore the quadrature formula (7.24) is not universally
optimal in order in the class of all strongly 2-periodic spaces with regard to (7.26).

2. There exists an infinite sequence {j,} such that (7.27) holds for all positive inte-
gers s. Analogously for all integers k > 0 we write

P(k):l, 0=sk<ijy,
S
P(k) = Ulmin (A:GI% D) demr < k Z s
From (7.27) it follows
|4:(jy)]* > 0

for any positive integer s. Analogously to the first case, we use Lemma 7.1 to construct
a strongly 2-periodic space H again satisfying (7.29). We get the estimates analogous
to (7.32), (7.33). Hence even in this case the quadrature formula (7.24) is not universal-
ly optimal in order in the class of all strongly 2-periodic spaces.
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3. There exists an infinite sequence {j,} such that (7.28) holds for all positive
integers s. We distinguish two further possibilities. Either

(7.34)  Ao(j,) =+ 1is valid for the infinite number of indices s
or

(7.35)  Ao(j,) * 1is valid for the finite number of indices s (including the case that
Ao(js) = 1 holds for all positive integers s).

If (7.34) holds then this third case is converted into the first case. If (7.35) holds
then an infinite sequence that we shall denote again by {j,} may be extracted from the
original sequence {j,} so that

AO(js) = 1 B Az(]s) :': 1
for any positive integer s. From this assumption we get

|A0(js - AZ(js)|2 = |1 - AZ(js)lz >0

for any positive integer s. Analogously to the first case, for all integers k = 0 we
write

8
P(k) = I_Ilmin (1 = ARG 1), Jemr < k<.

Now we again use Lemma 7.1 to construct the strongly 2-periodic space H satisfying
(7.29). We get estimates analogous to (7.32), (7.33). Hence the quadrature formula
(7.24) is not universally optimal in order in the class of all strongly 2-periodic spaces
even in this last case.

This conclusion completes the proof of the theorem.

8. ON THE EFFICIENCY OF USING THE VALUES OF THE SECOND DERIVATIVE
OF THE INTEGRAND IN QUADRATURE FORMULA

In this section we again confine ourselves to quadrature formulae involving values
of the integrand and its first and second derivative, i.e. formulae of the general form
I(2, Js Aoy Ay, AZ). With respect to Theorems 5.2, 5.4 the coefficient at values of the
first derivative of the integrand in the optimal quadrature formula is equal to 0 in any
strongly 2-periodic space. Similarly this coefficient in the limit quadrature formula is
equal to 0 as well. Therefore we shall not employ the values of the first derivative of
the integrand in the quadrature formulae in this section.
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Thus there is a question here what is the efficiency of using the values of the second
derivative of the integrand in the quadrature formula, i.e. whether it is more or less
efficient and advantageous to use the values of the integrand and its second derivative
in j abscissae than to use only the values of the integrand but in more than j abscissae.

The number of arithmetic operations necessary for the computation is usually
chosen as a criterion for the work required for obtaining the numerical result. Let us
simplify this criterion in such a way that we use a time necessary for the computation
of the value of the integrand in an abscissa as a unit of the work required.

Thus let us assume the time necessary for the computation of the value of the inte-
grand in an abscissa to be equal to 1. Further let us assume the time necessary for the
computation of the value of the second derivative of the integrand in an abscissa to
be equal to « — 1 where o« = 1 is a certain real number.

In particular, if 1 < o < 2 then the computation of the value of the integrand in
an abscissa is more time-consuming than the computation of the value of its second
derivative; if o = 2 then both computations are comparably time-consuming; and
if « > 2 then the former computation is less time-consuming than the latter.

Using the quadrature formula I(2, j; Ay, 0, A,) the total time required for obtaining
the numerical result is equal to

j+l@—1)j=0q.

Hence if we do not use the values of the second derivative of the integrand then we
may use the values of the integrand in [aj] abscissae, i.e. use the formula I(0, [«j]; 43),
because then the time required for obtaining the numerical result (the numerical
value of the integral) is equal to aj, too.

Comparing the errors of the quadrature formulae 1(2, j; Ao, 0, 4,), I1(0, [«]; A3)
in dependence on the parameter o, we may get the answer to the question of the effi-
ciency of the employment of the values of the second derivative of the integrand in the
quadrature formula. We shall try to make such comparisons in some particular cases,
especially in the case of the optimal and limit quadrature formula.

First let us introduce the following notation.

Definition 8.1. Let H be a strongly n-periodic space. Let us write

L*(x, s, k) = lim sup n;; Zo(t + k) G om -
=

Jj—r o
[e o)
L (s, k) = liminf n Zb(t + k) 063 ommn
Jj— oo t=

fora = 1real; s =0,1,....,n,and k = 1,2,...,[n2] + 1.
If L*(, s, k) = L™(a, s, k) then we denote this common value by L(a, s, k).
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Remark 8.1. The existence of the numbers L*(a, s, k), L™(«, s, k) follows from (vi)
of Definition 5.1. These numbers depend on the particular choice of the space H.
The inequality 0 < L (a, s, k) < L*(«, 5, k) < D(H) is valid for o 2 1 real; s =
=0,1,...,mandk=1,2,..,[nf2] + L

However, the number L(o, s, k) need not exist as the following theorem states.

Theorem 8.1. There exists a strongly 0-periodic space H such that
(8.1) L7(1,0,1) + L*(1,0, 1)
holds in this space H. Hence L(1, 0, 1) does not exist in this space H.

Proof. We use Theorem 2.2 to construct the strongly O-periodic space H with the
property (8.1). Let U be a set of all integers. We set

82 ui

ng =1.

ey =2%; k=12%,2241,..,2%%2 1 for any integer s= 0,

I

Let us construct the corresponding Hilbert space H of 2n-periodic continuous func-
tions. With respect to (8.2) the conditions (iv), (v) are satisfied in this space. First let
us prove (vi) from which the condition (2.16) follows.

We write
Jo=2%
for all non-negative integers r. Let us choose a fixed integer r = 0. Then we may
easily compute
@

(8:3) Yt =nY Y = x3x2¥Tim =4
- t s=r

=1 s=r tjreljs,js+1)

where we use (8.2) and the fact that the interval < Jslie s+ 1lir) contains exactly
3 x 22572r integers f.
Let j be a positive integer. Then there exists a non-negative integer r such that
j, £ <Jj,sy. Ifj = j, then (8.3) holds. Hence let j, < j < jr+1, L€
(84). j=Jeer =k
where 0 < k < j,4, — j,. i-e. 0 < k < 3 x 2%, is valid for this integer k. We get
o 0 _ 0 s—2, —2
(8.5) Y =nY Y ng Sany3x2mit =4
=1 s=r tjeJjs,Js+1) s=r
where we use (8.2), (8.3) and the fact that the interval (sf(rs1 = K)sse1](rst — k))

contains at most 3 x 22572 integers .
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Putting j = 1in (8.5) we get the validity of (2.16). Therefore the space H constructed
in this way is 0-periodic with respect to Theorem 2.2. Furthermore the condition (vi)
follows from (8.5). Hence the space H is strongly 0-periodic.

Now we write
(86) kr =jr+1 -1= 22r+2 -1

for any non-negative integer r. Thus k, is a particular case of (8.4) with k = 1 and
a fixed r. Analogously to the proof of (8.3), using (8.2) and (8.6) we get

-] @ «©
Mo Ytal =m. X X omwl=ml X omal+ X Nu,)
t=

s=r thre(js,js+1) threjr,dr+1) s=r+1 thpelisiis+1)

@
sop( ¥ el X 3x 2Tt =i N el 4 1=2

threljrsir+1) threljr,Jr+1)

for a fixed r > 0 since it may be readily shown that the interval {j,/k,, j,+1/k,)
contains only one positive integer, namely the integer 1.

Finally using Definition 8.1 we have

L7(1,0,1) < liminfrf Yna? <2< 4
t=1

r-=o

= lim ], Zln;jf < L7(1,0,1).
=

r—+o

Thus the validity of (8.1) in the constructed strongly O-periodic space H has been
proved.

Let us further prove an auxiliary statement generalizing the statement of Lemma
6.1.

Lemma 8.1. Let H be a strongly n-periodic space. Then the series

(8.7) Zo(t + k) 16t o
t=

converges uniformly with respect to j for all o = 1 real; s =0,1,...,n, and k =
=1,2,...,[n[2] + 1. Further, for these a, s, k
(8.8) lim Y (¢t + k)* ngiue; =0-

Jj— oo t=0

Proof. From (v) we have
(t + ) ngtien < (¢ + k) n63opn S (6 + K> 05
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for integers t 2 0, j > 0, real @ 2 1; s =0,1,...,n, and k = 1,2,...,[n[2] + 1.
The series '

Ms

o
(t + k)zn ’7t_+2k = Z tznm—z
0 1=k

t

converges with respect to Theorem 2.1, does not depend on j, and majorizes all the
series (8.7). Therefore the series (8.7) converge uniformly with respect to j for o > 1
real;s = 0,1,...,n,and k = 1,2, ..., [n[2] + 1. The first statement of the lemma has
been proved.

With respect to the uniform convergence of the series (8.7), we get immediately
(8.8) considering the condition

limy, %> =0,

k-
which is necessary for the convergence of the series (8.7). Hence the lemma has been
proved. '

In the following considerations except Theorem 8.5 we shall confine ourselves only
to certain classes of strongly 2-periodic spaces where the numbers L(, s, k) exist.
We shall make the comparison of the efficiency of employing the values of the second
derivative of the integrand in the quadrature formula for these classes.

One of these classes is the following.

Definition 8.2. Let us denote by IT a class of strongly 2-periodic spaces H such that

. 2 2
(8.9) lim —4- = lim -2 = 0

Jzoo Migjy i~ N2paj)

holds for any real « > 1 in each of these spaces.

An example of the strongly 2-periodic space belonging to the class IT is presented
in the following theorem.

Theorem 8.2. Let H be a Hilbert space of 2n-periodic continuous functions with
the first and second derivative continuous. Let

(8.10) n =Y yk*
t=0

for any integer k where vy, are real non-negative coefficients such that

(8.11) limy!* =0,

t— o

yo * 0, and y, > 0 holds for the infinite number of indices t.
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Then the space H with the norm (8.10) is strongly 2-periodic and belongs to the
classII.

Proof. First let us show the validity of (8.9) for #; defined in (8.10), (8.11). We
write

(8.12) () = Eoy,x“ .

Then with respect to (8.11), f(x) is an entire function. Particularly, using (8.10) we
may write

f(k) = ng
for any integer k.
We rewrite the first part of (8.9) as

im —IQ)— = o
(8.13) jlw f([w]) 0, a>1.

With respect to the assumption, f(x) is increasing for x > 0. Thus

(8.14) 0O SO oy
~f([w]) Sl - 1)

and any positive integer j. To prove (8.13) it is sufficient to show

o fG)
(8.15) }:n; o -1 0, a>1

using (8.14). We choose a positive integer N and write

N ©
(8']6) f(]) = zytht + z 'Ytht >
t=0 t=N+1
N 1\2! o 1\2*
(8'17) f(O(J - 1) = Z)’t (0( - ’.") P+ Z Ve (“ - T) i
t=0 J t=N+1 J
using (8.12).

There exists a positive integer L such that

(8.18) o — 1 > 1 for any integer j = L.
j :

Hence we may estimate

0 1 2t 1 2N+2 o
(8.19) 2 (a - T) iz (a - 7) Y oy, iz L.
J t= AN .

t=N+1 j
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Substituting (8.16), (8.17) into (8.19) we may write
1 —2N-2 N
R e I CRR R e
t=

From this we get

(8-20) _f) < (a B 1)—2N—2+ éoy'jh

- = - ——, JzL
fly - 1) j fly — 1)
With respect to (8.12) the second term on the right-hand side of (8.20) tends to 0
as j — oo so that passing to the limit in (8.20) we have
0 < lim S0 < q2N72

Jjo oo f(oc] - 1)

for o > 1 and any positive integer N. From this the condition (8.15) follows im-
mediately and so does (8.13).

Analogously, using (8.12) we may rewrite the second part of (8.9) as

(8.21) im J&)__o, as1
i~ f(2[af])

Again we may estimate

_ s i@
¢.2) O o) = Fwi - "7

and any positive integer j. To prove (8.21) it is sufficient to show

(8.23) im I3 _o, 451
Jj—© f(2¢xj - 2)

using (8.22).

We proceed in the same manner as in the previous case. We again use (8.18) and
get the estimate

© 2 Zt-Zt 1 2N+2 o 2ee2e .
> Ve 20“']7 itz ‘]T Y v2M, jz L

t=N+1 t=N+1

analogous to (8.19). We shall prove (8.23) and thus (8.21) analogously-in the further
procedure. Hence we have proved (8.9) with regard to (8.10).
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The validity of (iv), (v) follows immediately from (8.10), (8.11). From (8.9), which
has been proved, it follows

M
(8.24) lim ™ — o
Jm o My

for any integer ¢t > k and k = 1,2. Using Lemma 8.1 we get both (vi) and the
condition (2.16) of Theorem 2.2 in virtue of (8.24). Then the rest of the statement
follows from Theorem 2.2 and the space H belongs to the class IT with respect to
(8.13), (8.21).

Further let us prove two auxiliary statements concerning spaces of the class IT.

Lemma 8.2. Let H be a strongly 2-periodic space, H €Il. Then

2
M2

lim = = +o0 Jor 15a<2,
J= @ Niaj)

=1 for a=2,

=0 for a>2.

Proof. A.Let1 = a < 2. Then it is sufficient to show
ey
(8.25) lim -1 = 0.
Jjoo Mz
Let us write k = [0j], B = 2[a. Then [Bk] < 2j and
(8.26) B>1.

From this fact, using (v) we get

2 2
621 tha < A
N2; Mgkl

where the right-hand side of (8.27) tends to 0 as j — oo with respect to Definition 8.2
and (8.26). From this fact the relation (8.25) follows.

B. If @ = 2 then the statement is obvious.
C. Let « > 2, let us write # = «/2. Then [oj] = 2[Bj] and
(8-28) B>1.

From this fact, using (v) we get

2 2
(829) L ik
Mjz  M2185
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where the right-hand side of (8.29) tends to 0 as j — oo with respect to Definition 8.2
and (8.28). The lemma has been proved.

Lemma 8.3. Let H be a strongly 2-periodic space, H €Il. Then

(8.30) L s k) = kP,
(8.31) " L s,k)=0 for a>1

andk=1,2;s_=0_,1,2.v

Proof. With respect to Definition 8.1 and Lemma 8.1 we may write

0 2
(8.32) L(w, s, k) = Y 2 lim Thi
! Cot=k j— o n,[aj]
foro. =2 1;k=1,2;s=0,1,2.
Let o = 1. Then from the condition (8.9) of Definition 8.2 we get the validity of the
assumption (6.7) of Lemma 6.2. From the statement (6.8) of this lemma the equality
(8.30) follows for k = 1.

Analogously we have

2 2 2
(8.33) 0< M2 Mg T
My M35 N2p3j21

for any integer ¢ >"2 using (v). The right-hand side of (8.33) tends to 0 as j — o
with respect to (8.9) of Definition 8.2. From this fact the equality (8.30) follows for
k=2

From (v) we get

(8.34) 05 M < M

2 - 2
Miaj1  Miies

for any integer t > k; k = 1,2, and « > 1. For these k, ¢ the right-hand side of (8.34)
tends to 0 as j — oo with respect to (8.9) of Definition 8.2. From this fact the equality
(8.31) follows.

The proof has been completed.
Let us introduce the following concepts convenient for further considerations.

Definition 8.3. Let m > 2 be an integer. Let us denote by IT,, the class of strongly
2-periodic spaces H such that

(8-35) Ny = pu(k?) for any integer k
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holds in each of these spaces where
(8.36) Pu(x) =Y ax’
t=0

is a polynomial of the degree m with real non-negative coefficients aq, ay, ..., a,,;
ag + 0.
We shall find the values of L(a, s, k) for the spaces of the class IT,,, too.

Lemma 8.4. Let m > 2 be an integer, let H be a strongly 2-periodic space, H €11,,.
Then :

(8.37) Lo, s, 1) = a”2"(2(m — s)),
L(a, s,2) = 22"~ 2"({(2(m — s)) — 1)

fora = 1ands =0,1,2 where

() =217
=1
is the Riemann zeta-function.
Proof. We again use the relation (8.32). From (8.35), (8.36) we may calculate
s
(8.38) lim i — f2mg=2mg = 2m
J= o Mifajy

for t 2 k; k = 1,2; « 2 1. Substituting (8.38) into (8.32) we get (8.37). The lemma
has been proved.
Now we may proceed and show the spaces belonging to the class I,

Theorem 8.3. Let H be a Hilbert space of 2n-periodic functions continuous with
the first and second derivative continuous. Let
12 = pu(k®) for any integer k
where

(%) =Y ax*
t=0

is a polynomial of the degree m > 2 with real non-negative coefficients ao, a,, ...
veey Qs Ao 0. Then the space H with this norm is strongly 2-periodic and belongs
to the classIT,,.

Proof. The conditions (8.35), (8.36) of Definition 8.3 are evidently satisfied.
Hence it is sufficient to show this Hilbert space to be strongly 2-periodic. The condi-
tions (iv), (v) follow from (8.35), (8.36), too. In the same manner as in the proof of
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Lemma 8.4 we now prove (8.37). Then from (8.37) the condition (vi) follows and
from (iv), (vi) we get the condition (2.16) of Theorem 2.2. With respect to Theorem
2.2 and the conditions (iv) to (vi) this Hilbert space is strongly 2-periodic. Further-
more it belongs to the class IT,,,.

Now we proceed to the comparison of the errors of the quadrature formulae on the
one hand using and on the other hand not using the values of the second derivative
of the integrand. First we shall make the asymptotical comparison of the errors of
the corresponding optimal quadrature formulae.

Theorem 8.4. Let H be a strongly 2-periodic space. If H €II,, for a certain integer
m > 2 then

(8.39) fim XCLH) oy g 4o,
jom X(0, [&7], H)
If H eIl then
(8.40) im X&4LH) _ for 1<a<2,

i~= X(0, [o]], H)

]

3 for a=2,

+o00 for a>2.

Proof. From Theorem 4.4 we have
(8:41) X*(2,j, H) = n5 (1 — Ko(2.1))»
(8.42) X%(0, [of], H) = n5%(1 — Ko(0, [])) -

Substituting n = 2 into (5.9) we get

15 + 2K,(2,j) thzn,_jz
£

(8.43) Ko(2, ) = _
1o + 2 Zlm‘,-z
t=

Substituting (8.43) into (8.41) and (5.12) into (8.42) we have

© o . -2 s @© 2
Xz(z’js H) — tgl(l ! K2(2’ J)) Mty o™ + 2tz=:1’1t[al]

(8.44) x*(0, [w]. H) in,}fj]

©
no” +2 Zlm}z
t=

where in virtue of Lemma 8.1 the last fraction on the right-hand side of (8.44) tends
to1lasj— oo and @ = 1. Hence it is sufficient to find the limit of the first fraction
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on the right-hand side of (8.44), its numerator and denominator being first multiplied
by 'l% je

The numerator N(j) of this fraction is equal to
o
NG) =50~ PR ) 1
t=

Let us determine its limit for j — co. We may write
o]

N(j) = n3,(1 = Ko(2, ) nj % + n3; 22(1 - PK,(2,0) 1" -
t

Substituting (5.13), (5.16) into K,(2, j) and using Lemma 8.1, we get

o0 0
2 4. -2 2 2, -2
N2 Zzt N~ — M2 Zzt Nyj
t= t=

lim N(j) = lim

o0

e TV m ey
t=1
Lo} e}
w ;Y engt 03 Y, g
+ "%j Z m—-jz — t=1 — t=2
t=2 ,ﬁtzl tn2

With respect to Definition 8.1 and Lemmas 8.3, 8.4 this relation may be rewritten as

(8.45)
lim N(j) = L(1,2,2) + L(1,0,2) [(1,2,1) — (1, 1,2) — L(1, 1, 1) (1, 1, 2)
o L1, 2,1) :

Let us denote by D(j) the denominator of the first fraction on the right-hand side of
(8.44) where its numerator and denominator were first multiplied by nz ;- Then using
Definition 8.1 and Lemmas 8.3, 8.4 we have

2
. ; . Mo
(8.46) lim D(j) = lim —2L + L(,0,2).
Joe I Maj)
Now we distinguish two cases.
A. Let H eIl,,. Then from (8.45) we get

Y\ e _
(8.47) lim N(j) = 22m SEm)L2m — 4) = C(2m - 2)
Jj—oo C(zm _ 4)
using Lemma 8.4. Further with respect to (8.35), (8.36) we have
2
(8'48) lim N2 = D2my=2m
. 2
i@ Miaj)
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Therefore from (8.46), using (8.48) and Lemma 8.4 we get
(8.49) lim D(j) = 22"a~2"¢(2m) .

Jjo o

From (8.47), (8.49), using (8.44) we have

(8.50)  tim X@LH) o U2m){(2m ~ 4) — PCm ~2)
i~ X*(0, [o], H) ((2m) {(2m — 4)

By computation we may verify

{2m)i2m — 4) — *(2m — 2) = i i(u4 — %) ¢y e

o0
Y (P =r)rsTimTIm > 9 x 27> 0.
s=1 r=s+1

M8

Now for any integer m > 2 we may estimate (see e.g. [6])

(8.51) (2m)t2m — 4) < 2(2) = ’3”—;.

Hence from (8.50) we gef finally

2 . 2m
m X?(2,j, H) >Z_3_2ﬁ<oc) '

joo X¥0, [0f], H) = n* \2

For a = 2 the relation (8.39) follows from this inequality.
B. Let H eIl. Then from (8.45) we get
(8.52) lim N(j) = 9
jo
using Lemma 8.3.
Now let 1 < & < 2. Then using Lemmas 8.2, 8.3 we may rewrite (8.46) as
(8.53) lim D(j) = +o0.

jo o
Finally from (8.52), (8.53) using (8.44) we get the first part of (8.40). Further let

a = 2. Then using Lemmas 8.2, 8.3 we may rewrite (8.46) as

(8.54) ) lim D(j) = 1.

Jj= o

Analogously, from (8.52), (8.54) using (8.44) we get the second part of (8.40). Finally
let « > 2. Then analogously, using Lemmas 8.2, 8.3 we have

(8.55) lim D(j) = 0.

Jjo o
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From (8.52), (8.55) using (8.44) we get the last part of (8.40), too. The proof of the
theorem has been completed.
Let us show a similar comparison of the errors of the limit quadrature formulae.

Theorem 8.5. Let H be a strongly 2-periodic space. Then

(8.56) 0@rH)
: (0, [«], H)
fora = 2 and all positive integers j.
If H elI then
(8.57) im 2CLH) o p <<,

i~ (0, [of], H)
=3 for a=2,
=40 for a>2.

Proof. With respect to Theorems 6.3, 6.4 we may write

' o 2 2 2 _ -2
(2 H) _ AT A
@%(0, [oj], H)

(8.58)

[e o)
-2
2. Mitajn
t=1
where we may estimate

@*(2, j, H) L’
@%(0, [o], H) i S

Nifaji
t=1

(8.59)

From (v) we have
2 2
Mitaj1 = N2ej

for any positive integer ¢ and o > 2. Hence we may rewrite (8.59) as

& -2
(8.60) w5
(0, [w], H) ~ & _
O[] H) = 3,
. t=1
wherée
(8.61) Y25 = L’ -
t=1 t=2

even
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Using Lemma 5.1 we get

2 S 2 & 2
Mg = Z N~ + Z Nejo -
t=2 t=3

even odd

pM8

(8.62)

t

2

Substituting (8.61), (8.62) into (8.60) we get immediately (8.56).

Now let H eIT. We multiply the numerator and the denominator of the fraction
on the right-hand side of (8.58) by #3;. Then the limit of the numerator N(j) of this
fraction for j — oo is equal to (8.52) as we may verify using Definition 8.1 and Lemma
8.3. Analogously the limit of the denominator D(j) of this fraction for j — oo is
equal to (8.46) as we again may verify using Definition 8.1 and Lemma 8.3.

From the relations (8.52) to (8.55) we get the statement (8.57) using (8.58). The
theorem has been proved.

Finally let us make a comparison of the error X(2, j, H) of the optimal quadrature
formula and the error ®(0, [oj], H) of the limit formula.

Theorem 8.6. Let H be a strongly 2-periodic space. If Hell,, for a certain integer
m > 2 then

(8-63) lim M >1 for a=2.
i 9(0, [4f], H)
If H €Il then
limw=0 for 15a<2,
i~ @0, [4], H)
=3 for a=2,
, =400 for a>2.
Proof. Let us write
X(2,j, H) _ X(2,j,H) X(0,[«]. H)
(0, [], H)  X(0, [o4]. H) 9(0, [f], H)

With respect to Theorem 7.1 and Definition 7.1 we get

X(2,j,H) _ fim X(2,j, H)

(8'6.4) jfg @(0, [oj], H) e x(0, [o], H)

Then the statement of the theorem follows from Theorem 8.4.

Remark 8.2. The estimate (8.39) of Theorem 8.4 may be readily improved if we use
a better bound

(8.65) {(2m) ¢(2m — 4) < ((6) {(2) = 5—:—;6
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instead of (8.51). Then we get
m X(Z, Js H)
i~ X(0, [af], H)

(8.66) > 2:319

for Hell,, m > 2, and « 2 2. Further, treating (8.58) in the analogous way as in
the proof of Theorem 8.4 and using the same notation we have

lim N(j) = L(1,0,2) — 2 (1, 1,2) + L(1,2,2)
Jrw

and (8.46). With respect to Lemma 8.4 and the relation

6

T
8.67 2m) < {(6) = —
(5.67) (om) £ 4(6) = =
we get

i~= 90, [%], H)

for Hell,, m > 2,and o 2 2 instead of the estimate (8.56) of Theorem 8.5. Finally,
from (8.64), (8.66) we have

lim ~————X(2’ j: H)
i»o ®(0, [o], H)

for Hell,,, m > 2, and « > 2 instead of the estimate (8.63) of Theorem 8.6.

The principal qualitative behaviour of these three quotients is given in Theorems
8.4, 8.5, and 8.6. The above improvement is only quantitative.

On the other hand, using the same conclusions and estimates as above we may
easily compute that

> 2:319

Jim X@ 0. H)

jom X(0, [f], H)

im —————X(z’ Jj. H) >3

ino 90, [of], H)
holds for HeIl,,, m > 2, and o« = 2-180. Further

’

m ——-————-——(p(z’ J. H) >3
imo @0, [4], H)
holds for H €Il,,, m > 2, and a = 2-006.

The assumption m > 2 is very essential here. If we confine ourselves only to
m = M for some integer M > 2 all the estimates may be improved since we have

((2m) (2m — 4) < (2M) L2M — 4) < ((6) {(2),
{2m) < {(2M) = {(6)
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instead of (8.65), (8.67) respectively. Thus we may consider the space H ell as
a “limit case” of spaces H €II,, for increasing m.

The conclusion that the quadrature formula I(0, [af]; 1) is more advantageous
than the formula I(2, j; 1, 0, 1) in the case « = 2, i.e. in the case when the computa-
tion of the value of the second derivative of the integrand in an abscissa is not less
time-consuming as compared with the computation of the value of the integrand,
follows for any j from Theorem 8.5. Thus this conclusion concerning the limit
quadrature formulae holds for arbitrary j.

A similar conclusion concerning the optimal quadrature formulae is valid only
asymptotically for j — oo. With respect to Theorem 8.4 it has been shown at least for
certain classes of strongly 2-periodic spaces that the quadrature formula I(0, [aj]; K,)
is more advantageous than the formula I(2, j; Ky, 0, K,) in the asymptotical sense in
the case « = 2, i.e. in the case when the computation of the value of the second deriva-
tive of the integrand in an abscissa is not less time-consuming as compared with the
computation of the value of the integrand.

Theorem 8.6 states the same fact concerning the quadrature formulae I(0, [oj]; 1)
and 1(2, j; K,, 0, K,).

A numerical example in Sec. 10 illustrates these conclusions using the computed
values of integrals.

9. QUADRATURE FORMULAE WITH GENERAL ABSCISSAE

In Sec. 3 to 8 we confined ourselves to the quadrature formulae with equidistant
abscissae. With regard to this fact we have found the optimal quadrature formula in
an n-periodic space and have derived some its properties.

Let us return to the quadrature formulae with general arbitrary abscissae and let us
try to compare the error of the formula optimal in the n-periodic space H (with
equidistant abscissae) and the formula with general abscissae at least in some cases.
We shall see that the error of the quadrature formula with general abscissae may be
less than that of the optimal formula.

Let us introduce the following notation.

Definition 9.1. Let H be an n-periodic space. Let us denote the infimum of the errors
of the quadrature formulae Y(n, j; {4,}; {x,}) for fixed j and arbitrary coefficients 4,
and abscissae x,; r = 1,2,...,j;s =0,1,...,n by

rs?

Qn, j, H) = inf |J = Y(n, j; {4.s}; {x.i})] -

ArsyXrs

Now let us compare Q(n, j, H) and X(n, j, H) in the 0-periodic and 2-periodic space.
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Theorem 9.1. There exists a 0-periodic space H such that

lim sup X4, H) = 4o
imw (0, ], H)

holds for arbitrary a > 0.

Proof. We use Theorem 2.2 to construct the O-periodic space H with this property.
Let U be a set of all integers. We set

(9.1) n = et |k =5,
e K+

for any non-negative integer r. Let us construct the corresponding Hilbert space of
2n-periodic continuous functions. The condition (2.16) of Theorem 2.2 is satisfied
since we may estimate

2e 1

Ynts Y oeM=1+ -

k=—o k=—o —e

< 4.

Thus the space constructed in this way with the norm (9.1) is O-periodic. Using
Theorems 4.4, 4.5, and (9.1) we get

@

2% "
(9-2) x*0,j,H) = —=1——.
1+ 2n§t;1n,_jz
Now let us put
93) jo=5"

for any non-negative integer 4. Then 2tj, + 5" for all integers t > 0; g, r = 0 so that
using (9.1) we have

04 Zln;tiq = O(exp (—2j,)), a— .
t=

Thus from (9.2), (9.4)

(95) XZ(O, 2jq’ H) = 0(exp (.-2]4)) , q— .

We now construct an upper bound of the quantity Q(0, j, H). Let us consider the
quadrature formula Y(0, 2j; {4,,}; {x,;}) where we set

(9.6) Ao=1; r=12,...,2,
vo= (L3, 30— 1,
il2 4
=T r=24,..2
J
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Thus supposing (9.6) we may write

Y(0. 27: {A}; () () = %Z( ( U ’))” (2?))

for all f € H. Let us now use Lemma 3.3. Substituting (9.6) into (3.6) and using (4.13),
we get

O - YO AN D = 3 [+ P gy

t+0

— %(ll _ lIZ ";2 + Il + l|2 ”:12 + Z Il + e3iln/2|2 11;]2)
ES)
with regard to (3.5), (9.6). Supposing again (9.1), (9.3) we may estimate

08) 5|1+ enpy g SR

< = O(exp(—3j,)), g .
TES 1 — exp(—j,)

Finally, from (9.1), (9.3), (9.7), (9.8) we get
(9‘9) ”‘} - Y(O’ 2jq; {Ars}; {xrs})”z = O(exP (_4jq))
+ O(exp (—3j,) = O(exp (=3j,)), g — .
Thus from (9.5), (9.9) we have

j 4q
limsunglimsup X(O’ZXS’H) =400, a>0.
ivo o J0,j, H)  ave  2°570Q(0,2 x 5% H)

The theorem has been proved.

Theorem 9.2. There exists a 2-periodic space H such that

(9.100 lim sup X5 H) _ + 0
R R0, H)

holds for arbitrary a > 0.

Proof. The proof is analogous to that of Theorem 9.1. We use Theorem 2.2 to
construct the 2-periodic space with the property (9.10). Let U be a set of all integers.
We put

(0-11) ne = e*™k*; |k| = 7" for any integer r 20,

ni = e*Wk*; |k| =3 x 7" for any integer r =0,

n? = e™k* for all the other integers k .
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Let us construct the corresponding Hilbert space of 2zn-periodic continuous functions
with the first and second derivative continuous. The condition (2.16) of Theorem 2.2

is satisfied since we may estimate

2e !
- < to.

=]

Y okinits Y e M =14
k=—o0 k=—o 1 — e

Thus the space H constructed in this manner with the norm (9.11) is 2-periodic.
From (9.11) the validity of (iv) follows. Then we may prove (5.5) for n = 2 in this
space in the same way as in the proof of Lemma 5.1 considering the convergent series

o0
Y e

t=—o

instead of (5.7).
With respect to (5.5) we may prove (5.8) in the same way as in the proof of Theorem
5.2 and (5.13) to (5.16) in the same way as in the proof of Theorem 5.4.

We set
(9.12) o=
for any non-negative integer q and let us prove

]im(p_(z’_zj‘lli):l,

(9-13)
e~ X(2, 2j,, H)

For this prupose it is sufficient to follow the proof of Theorem 7.2 and use

(.14 00i,) < 13, % (i,
instead of (7.7). Since

(9.15) 2, £ 7T, 2Uj,+3x T
for any integers t > 0; r, ¢ = 0, from (9.11), (9.14) we get

lim Q(2j,) < 1.

g o

The relation (9.13) follows from this inequality and (7.8).
To prove (9.10) it is sufficient to show

(9.16) lim sup < Fe ) __ o
g— o 2“]:9(2, 2.]11’ H)
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for any « > 0. Hence with respect to (9.13) the relation
(9.17) lim sup _ 2.2 H) _
o 29702, 2j, H)

for any « > 0 is sufficient for the validity of (9.16).
Using Theorem 6.4, (9.11), (9.12), and (9.15) we get

. - —4j . ,

(9'18) 4)2(2’ 2141’ H) =2 4 Jq ¢ Lp(“]q—).‘ = O(Jq * €Xp (_4]q)) » 4=
1 — exp(—2j,)

where we use the inequality
-1 tr*z4

for any integer ¢t = 2.

Now we construct an upper bound of the quantity (2, j, H). Let us consider the
quadrature formula Y(2, 2j; {4,}; {x,s}) where we set

(9.19) A=A, =1; r=12,...,2j
A, =0; r=1,2..,2,

2n (r + 1 1
Xps = e B
j 2 8

=—; r=2,4..,2j, and s=0,1,2.

It

1,3,..,2i — 1,

Thus supposing (9;19) we may write

YR 25 (A ) () = - 3 ( (5 (- 8)>+f (m))
E G e-3)(7)

for all fe H. Let us now use Lemma 3.3. Substituting (9.19) into (3.6) and using
(4.13) we get

ol

?—i

(9.20) 7 = (2.2 {A}; {x.}]?
=%’ Z (%tz _ 1)2 m—jzll + ez.‘m;ssz
i

= %Il 42712 4 2—1/2i|2nj»2 + %ﬂl — -1z 4 p-1/2j)2 '73_,-2
+ %t;(%tz 1)2 ll + ez::n/slz Ylu
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with regard to (3.5), (9.19), (iv). Supposing again (9.12) we may estimate

@
(9:21) Y G - 1)1+ SRR
t=5

q

—4 exp(-Sj) _ —4 .
=Jq 4(1_—6_‘1) = 0(j; *exp (=5j,), g~

with respect to (9.11). Finally, from (9.11), (9.12), (9.20), (9.21) we get
022) |7 = Y2 % {45 (x)|* = 007 exp (=57)), g 0.

Hence from (9.18), (9.22) we have (9.17) supposing (9.19). From the relation (9.17)
the statement (9.10) follows. Therefore the proof has been completed.

Remark 9.1. Theorems 9.1, 9.2 hold for any real « but the statement in the case
o < 0is trivial.

From Theorems 9.1, 9.2 it follows that the error of the optimal quadrature formula
as compared with the infimum of the error attainable in general is asymptotically large
in the 0-periodic or 2-periodic space.

The comparison of Q(0, j, H) and &(0, j, H) is somewhat more favourable if we
confine ourselves only to strongly 0-periodic spaces.

Theorem 9.3. Let H be a strongly 0-periodic space. Then

(9.23) lim sup ILZ(O—L‘@L < 4.
iro j?Q(0, j, H)
Proof. Let us write

(9:24) T(0,j; {A.}; {x.}) = |7 = Y(0,Js {4,}; {x..})

Then using Lemma 3.3 and (v) we may write

> n .

© Jj i
(925) Tz(oaf’ {Ars}; {xrs}) = ’75" Z ‘Bk‘z r’k_z g kz . 1Bklz
e =;
where B,’s are given in (3.6). Let us find a lower bound of the infimum of the quantity

5 |5,

k=—j

in dependence on A4,,, X, We introdnce the finite-dimensional Hilbert space H;
of functions f of the form

(9.26) )=y fue™

k=—j
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with the scalar product

1 27 I j _
(9:27) (f,9); = — | f(x)g(x)dx = ¥ fidi

2 ) k=—j
for f,ge H;,

J .
g(x) = Y g™
k="

From (9.27) we get the norm

923) sl = = [ "o ax = 3 J5f

for all fe H;.

Let us consider the functionals J, Y(0, j; {4} {x.s}) on the.space H;. They are
linear, and using (9.26), (9.27) and by straightforward computation we may verify

(9:29) J() = (fu);

for all fe H; where u; € H,,

(9.30) ux) =1,

and

0:31) ~ Y(0, j: {An}; {x}) () = (s 0));

fo; all fe H; where v; € H;,

(9.32) vi(x) =j! Zj:_je""‘élexp (—ikx,o) Aso -
Finally, from the relations (9.28) to (9-32) we compute

(9.33) 19 = Y0, 5; {4 =DIF = lesl ﬂile"lz

where B,’s are given in (3.6) and ¢; € Hj,

(9:34) 0,(%) = ufx) — v4x)

i.e. with respect to (9.26) we may write

J .
(9.35) 0i(x) = Y. pe™ .
k=2
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Thus let us find the minimum of (9.33) for all coefficients 4,, and abscissae x,o.
We write
(9-36) Q7 = inf |7 = Y(0,j; {4.}; {%.s})

J
Aro,Xro

|2
i

Then with respect to the fact that H; is finite-dimensional there exist the coeffi-
cients A, and the abscissae x5, such that

037 Q5 = |7 - (0, j; {4r}; (=2 -
Further, o} € H; of the form (9.34), (9.35) exists so that
(9:38) (7 = Y055 {4} {(xa})) () = (£ €3);

holds for all f € H; where with respect to (9.33), (9.36) to (9.38)
. J .
o) £ 1B = 05— 131

==J

is valid for all coefficients 4,, and all abscissae x,.

Considering |g;]|7 as a function of 2j variables A,q, X,0; 7 = 1,2, ...,j and using

(9.36) to (9.38) we have necessary conditions for the extremum “ o} “ % of this function

in the form
(9.40) () = ¥ (x%) =05 r=1,2,..,j.

Therefore the abscissae x5 are double zeros of the function Q;(x). Then with respect
to (9.35) we get

(0.41) () = o)
where C is a constant and |h|2 eH;,
j
h(x) = Hl(exp (ix) — exp (ix%)) -
Hence using the relations (9.38) to (9.41) and the equality
le3 17 = lc [a7
we have

O0) o =[ofl; = 0~ YO0 (45 (D) ) =

~
=|=
-

N

~—"
 N—

5]

LEH.
Since |h|2 € H; we may write

(9.43) » |h(x)|? =kijhke"‘x
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with respect to'(9.26). Further we may show
(9.44) || S hos k= —j, —j+1,..i

since from (9.27) we have
2n
hy = ij |h(x)|* e~ ™= dx
27t 0

and |h|* > 0.
Finally, from (9.28), (9.42) to (9.44) we get

(9.45) Q=2+ 1)

for arbitrary coefficients 4,, and arbitrary abscissae x,o. Then from (9.25), (9.39),
(9.45) we have

(9.46) (0, j; {4n}; {xes}) 2 (2 + 1)
and from (9.24), (9.46) we get
(9.47) T = YO, {4 Ge)) Z 0yt )T

for arbitrary coefficients A4,, and arbitrary abscissae x,,. With respect to Theorem 6.3
and the conditions (iv), (vi) we may write

(048) o @0 H) =23 n5" < 2077 D(H).

Then (9.23) follows from (9.47), (9.48). The theorem has been proved.

Remark 9.2. The relation

lim sup X(O’ I H)

—_— < 4+
i~ jM2Q(0, j, H)

follows immediately from Theorem 9.3. Thus the error of the optimal quadrature
formula is comparable, apart from the factor j'/2, with the infimum of the error
attainable in general in the strongly 0-periodic space. The same holds for the error of
the limit quadrature formula.

We shall prove a less general statement in the strongly 2-periodic space. Let us
introduce the following notation.

Definition 9.2. Let H be an n-periodic space. Let Y(n, j; {4,}; {x.}) be a quadra-
ture formula in this space. We set

(9-49) Xs=X,; r=1,2...,j; s=0,1,...,n
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and denote by
| Q¥(n,J, H) = inf |J = ¥(n.j; {4,}: x|

i
Ars,Xr

the infimum of the errors of the quadrature formulae Y(n, j; {A,}; {x,}) for fixed j,
arbitrary coefficients A,,, and abscissae given by (9.49), i.e. abscissae common for
evaluating the values of both the integrand and its derivatives.

Remark 9.3. Let H be a O-periodic space. Then
(0, j, H) = @%(0, j, H) .

Now we compare Q*(2, j, H) and ¢(2, j, H) in the strongly 2-periodic space.

Theorem 9.4. Let H be a strongly 2-periodic space. Then

. ®(2, j, H)
9.50 limsup——""7 < 4+00.
(9:50) ,-»::p JY2Q*(2, j, H)
Proof. Let
(9.51) Y(2, j5 {4} {%s})

be a quadrature formula in the strongly 2-periodic space H. Let x,; r = 1,2,...,j
be real numbers satisfying the condition

O0<x;<x<...<Xx;£2m.

We set
9.52) Xs=X; r=12...j; s=0,1,2.

We suppose the validity of (9.52) for the quadrature formula (9.51) in the whole
proof. The proof is analogous to that of Theorem 9.3.

Let us write
(9.53) T2, js {4 (5) = [T = Y205 {4} {x)[* 035 -
Then using Lemma 3.3 and (v) we may rewrite this as
o 2j
(9.54) T2.0; (A (o) =3 T [B m* 2 3 |BJ*
it <=2

where B,’s are given in (3.6). Let us find a lower bound of the infimum of the quantity

2j
X |BJ’

k=-2j
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in dependence on the coefficients 4, and the abscissae x,. In an analogous manner to
(9.26), (9.27), we introduce the finite-dimensional Hilbert space H; of functions f of
the form

(9.55) fx) = 22,: fe™

k==2j

with the scalar product
, 1 (2" - 2j
(9:56) (o) =5 [ 1099 a5 = 3 fa,
2 J o k=—2j
forf,ge H;,
2j )
g(x) = X gie™.
k=—2j

Let us consider the functionals J, Y(2, j; {4,s}; {X.s}) on the space H;. They are
linear, and by straightforward computation from (9.55), (9.56) we may find their
realizing functions u;, v; € H; respectively, which are given analogously to (9.30),
(9.32).

Moreover, by computation we get

2j
(9.57) |7 = Y@ J: {4 (a7 = lesli = X |B*
==z
which is analogous to (9.33), where B,s are given in (3.6) and ¢; € H;,

(9.58) e/(x) = ux) — v(x),

i.e. with respect to (9.55) we have

2j .
(9-59) oi(x) = Zz .pke""‘.

k=—

Thus let us find the minimum of (9.57) for all coefficients A4,, and all abscissae x,.
We write

(960) Qf = lnf ”'I - Y(z’]’ {Ars}’ {er})“f °

Ars,Xxr

Then with respect to the fact that H; is finite-dimensional there exist the coefficients 47
and the abscissae x; = x,; such that analogously to (9.39),

2j
o) DI
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holds for all coefficients A4,; and all abscissae x, where Q;‘ € H; is a function of the
form (9.58), (9.59) given by

(0-62) (= Y js {45 () (f) = (s 0));

for all fe H;.

Considering ”QJHf as a function of 4j variables 4,;, x,; r = 1,2,...,j; s =0,1,2
and using (9.60) to (9.62) we have necessary conditions for the extremum ”Qf” ?of
this function in the form

(9.63) ) =0; s=0,1,23; r=12..j

analogous to (9.40). Therefore the abscissae x; are quadruple zeros of the function
0}(x). Then with respect to (9.59)

(9-64) 0j(x) = Clh(x)[*
where C is a constant and lhl“ eH,,
j
h(x) = 1 (exp(ix) — exp(ix7)) ,
r=1
which corresponds to (9.41). Hence using (9.61) to (9.64) we get

(069 = 1e71; = i 2 @+ 0

for arbitrary coefficients A4,, and arbitrary abscissae x, proceeding in the analogous
way as in (9.42) to (9.45). Then from (9.53), (9.54), (9.61), (9.65) we have

(9.66) 17 = Y@ {Au}s fed)]| 2 m2)' (@ + 1)7172

for arbitrary coefficients 4, and arbitrary abscissae x,.
With respect to Theorem 6.4 and the conditions (iv), (vi) we may write

(9.67) ®*(2,j,H) =2 Z (* — 1)*n;;* < 2037 D(H) .
Then (9.50) follows from (9.66), (9.67). The theorem has been proved.

Remark 9.4. The relation

follows immediately from Theorem 9.4. Thus the error of the optimal quadrature
formula is comparable, apart from the factor j'/2, with the infimum of the error
attainable in general in the strongly 2-periodic space if we suppose that the abscissae
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are common for evaluating the values of both the integrand and its derivatives (first
and second). The same holds for the error of the limit quadrature formula.

While the error of the optimal quadrature formula is incomparable with the infimum
of the error attainable in the 0-periodic and the 2-periodic space the situation is more
favourable in the strongly O-periodic or the strongly 2-periodic space as was shown
in Theorems 9.3, 9.4.

Tab. 1

f(x) = e3sinx
j N(O, ) x 1017 N, j) x 1017
8 162 740 472 455 793 21 491 193
16 7163 765 0
24 0 0

f(x) = 10sinx
j N(,j) x 104 N(2,j) x 10'%
8 23 219 296 635 336 995 18 030 560 320 883
16 6 010 050 031 314 112
24 51 278 311 0
32 37 0

| - 40 0 0
|
. !A I D o ]

fx) = ¢50sinx
j N(,j) x 10%! N(2,j) x 10**
8 35 483 337 836 564 182 15 147 478 502 324 658
16 4 520 016 724 736 825 7 875 422 083 042
24 194 454 867 617 997 60 599 912
32 2 625 086 827 743 12
40 12 014 357 949 0
48 20 199 971 0
56 13 480 0
64 4 0
72 0 0
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10. A NUMERICAL EXAMPLE

Let us illustrate the results of Sec. 8, in particular the statement of Theorem 8.5,
with a numerical example.

The values of the limit quadrature formulae I(0, j; 1) (f) and I(2, j; 1,0, 1) (f)
were numerically computed for

f(x) = exp(3sinx), exp(10sinx), exp (50 sin x)
and j = 8§, 16, ..., 72. The rounded-off values of

N(, j) = [J(f) = 1(0,j; 1) (f)] ,
N(2,j) = [J(f) = 1(2, j; 1, 0, 1) (f)]

are given in Tab. 1. The computation was carried out on the ICT 1905 computer
using double arithmetic. It is apparent that

N(2, j) =~ 3N(0, 2j)

holds for all j and f. It is in agreement with Theorem 8.5 and Remark 8.2.
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