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MUTANTS IN SEMIGROUPS 

JIN BAI KIM, Morgantown 
(Received August 7, 1967) 

1. Introduction. In [5] MULLIN has posed research problems and defined a mutant 
in a grupoid (A, *) as the following: A subset M of Л is called a mutant of (A, *) 
if M * M g Л \ M, wehere M ^ M = (a ^^ b: a e M and b e M) and Л \ M is the set 
of all elements of A not in M. DOYLE and WARNE have defined an antigroupoid of 
a groupoid as a mutant of a groupoid in [2]. ISEKI (4) has made a definition of 
a mutant in a semigroup as the following: A subset Л of a semigroup S is an (m, n) 
mutant of S if and only if A*" c: S\ Л". Iseki has established a theorem which states 
that if A and В are (m, n) mutants in semigroups S and T, respectively, then A x В 
is an (m, n) mutant of S x T, KOCH and WALLACE have proved the existence of 
a maximal ideal in a compact semigroup in [6]. In this paper, we shall follow a defini­
tion of a mutant by Mullin [5] and refering to [6], we shall prove, among others, 
that in a topological semigroup S, for any non-idempotent a in S, there exists a maxi­
mal open mutant containing a. 

2. TOPOLOGICAL SEMIGROUPS 

A topological semigroup [3, 1.2] is an ordered triple consisting of a non-empty 
set S, a function (x, y) -> xy from S x S into S, and a Hausdorff* topology on S 
such that 

(a) x(yz) = (xy) z for all X, y, z in <S, 
(b) (x, j ) -> xj; is continuous. In addition, if S is a compact space, then S will be 

called a compact semigroup. 

Definition. Let M be a subset of a semigroup S. M is a mutant of S if and only if 
MM s S\M. 

It is clear that a mutant M of a semigroup S does not contain any idempotent of S, 
I f T g S, define £(T) = {ееТ: e^ = e), A\B = {аеА:афВу 



Lemma. Let S be a topological semigroup. If E(S) Ф S and if a G S\E(S), then 
there exists an open mutant M(a) of S containing a. 

Proof. Let ae S\ E[S) and let aa = b ^ a. Let Fi(b) be an open set containing b. 
Then there exists an open neighborhood Ui(a) of a such that Ui(a) U^^a) с Fi(b). 
Since S is a HausdorfF space, for a Ф b, there exist two neighbourhoods U2{a) and 
V2{b) of a and b, respectively, such that U2{ci) n V2{b) = 0, the empty set. Let 
vjjy) n V2{b) = 7з(Ь) and let U^{a) n U2{a) = U^{a). For V^{b), there exists a neigh­
borhood £/4(0) of a such that l /^a) Ц^Да) с 7з(Ь). Letting ^УДа) п ^зС^) = ^5(^)1 
we have that U^{a) Us{a) a U^{a) U^{a) с V^{b), We claim that Us{a) n V^{b) = 0. 
If z e (1/5(0) n Кз(Ь)) Ф 0, then z e F2(b) and z e 1/3(0) с (72(Ö). Hence we have 
that z G {и2(0) n F2(b)), which is a contradiction. Consequently, we have shown 
that I/5(a) is an open mutant containing a. 

Theorem 1. Le^ S be a topological semigroup with S Ф £(5). For each a e S\ E(S), 
there exists a maximal open mutant M[a) of S containing a. 

Proof. Let F be the family of all open mutants of 5̂  containing a. By the above 
lemma, F is non-empty. F is partially ordered by inclusion. Applying Hausdorff 
maximal principle, there exists a maximal chain FQ. Then M = \j(M(a): M(a) e FQ) 
is a maximal open mutant containing a. To show this, consider MM. Assume, by way 
of contradiction, that MM n M ф 0. Let x and у be two elements of M such that 
xy e M. Then there exist M^, M2, and M3 in FQ such that x e M^, y e M2, and xy e 
e M3. Since FQ is a chain, either M^ ^ M2 or M2 E ^ i - Without loss of generality, 
we can assume that M^ я M2. From M2M2 n M2 = 0, and x, j e M2, it follows 
that xy Ф M2 by the definition of a mutant M2. Again, since FQ is a chain, either 
M3 3 M2 or M3 g M2. It follows from xy e M3 and xy ф M2 that M2 E M3. 
Then M3 can not be a mutant of S. This contradiction imphes that xy ф M and M 
is an open mutant of S. Finally, let N be an open mutant of S containing a such that 
N ::D M. Then N e FQ and hence N = M. This proves the theorem. 

Corollary. Let S be a topological semigroup. If E[S) Ф 0, then E{S) is closed. 
The p r o o f of Corollary follows from Theorem 1 and also see [2]. 

3. ALGEBRAIC SEMIGROUPS 

In this section, we shall discuss mutants in a semigroup. If M is a mutant of 
a semigroup 5, then any subset AT of M is a mutant of S, In general, a union of two 
mutants of a semigroup is not a mutant. 

Theorem 2. Let S be a semigroup. 
(i) S has no a decomposition S = M^ u M2 into two disjoint mutants M^ 

and M2 of iS. 
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(ii) S has no a decomposition S = M^ u M2 u M3 into three disjoint mutants M^ 
(i = 1,2, 3)of^. 

Proof, (i) Let Ml be a mutant of S and M2 = S\Mi be a mutant. Let a G M^. 
Then â  e M2, and hence a"^ e M^, a^ e M2. We claim that a^ e M2- Assume that 
a^ e M!• Then a"" e M2, contrary to that a"^ e M^. Thus a^ e M2, and hence a^ e M^. 
This contradiction proves the part (i) of Theorem 2. 

(ii) Let xeS. We shall use the following symbol: 

baba{l, 3, 5, ) 
(2, 8, ) 
(4,6, )(10). 

This symbol denotes that in case of baba (dictionally ordered), a mutant M^ contains 
elements x, x^, and x^, a mutant M2 contains x^, and a mutant M3 contains x*̂  
and x^. Hence M2 contains x^. Then there is no any mutant M^ (i = 1, 2, 3) con­
taining x^^. If S is finite, then E(S) Ф 0. Hence we assume that S is infinite and E{S = 
= 0. We have the following tree of cases (see p. 89). 
Each case in the above tree has the following symbol. 

^(1, 4, ) aa{l, 4, ) aaa{l, 4, 6, ) aaaa{l, 4, 6, ) 
(2, ) (2,3, ) (2,3, ) (2,3, 10, ) 
( ) ( 5, ) (5, ) (5, 7, )(12). 

aab{l, 4, ) aaba{\, 4, 10, aabb{\, 4, ) 
(2,3, ) (2,3,8, ) (2,3, ) 
(5,6, ) (5,6, )(11). (5,6,8, ) 

aabfoa(l, 4,10, 13, ) aabbb{l,4, 12, ) 
(2,3, 11, 12, ) (2,3,10, 11, ) 
(5,6, 8, )(14). (5,6, 8, )(13). 

ab{l,4, ) afea(l,4, ) abaa{l,4,6, ) 
(2, ) (2,5, ) (2,5, ) 
(3, ) (3, ) (3, 7, )(10). 

abab{l,4, 11, ) аЬЬ(1,4, ) аЬЬа(1,4,6, ) 
(2,5,6, ) (2, ) (2, 8, ) 
(3, 8, 12,10, )(7). (3,5, ) (3,5, ) (10). 

abbb{l,4, ) b{l, ) Ц 1 , 3 , ) baa(l,3,8, ) 
(2,6, ) (2, ) (2, ) (2,6, ) 
(3,5, )(8). (4, ) (4, ) (4, ) 

baaa(l, 3,8, ) baab{l,3,8, ) bab{l,3, ) 
(2.6,5, ) (2,6, 9, ) (2, ) 
(4, 7, )(11). (4,5, 7, )(11). (4,6, ) 



I—aa~ -aaa- -aaaa 

I—aab r—aaba 

'—aabb- aabba 

'—aabbb 

-ab-

r—ba-

-bb-

-bc~ 

-aba-

^-abb-

-abaa 

-abab 

-abba 

-baa-

~bab~ 

-bba 

-bbb-

-bca-

L-bcb 

L -abbb 

-baaa 

^baab 

baba 

~babb 

-babe-

-bbba-

-bbbb-

-bcaa 

^bcab 

-babca 

^babcb 

-bbbaa 

-bbbab 

-bbbba 

^-bbbbb 
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ЬаЬа{1,Ъ,5, ) babb{l, 3,10, ) babc{l,3, 
(2, 8, ) (2,5, И, ) (2, 
(4,6, )(10). (4,6, 7, 9, )(13). (4,5,6, 

babca{\,3, 9, ) babab{l,3, 11, ) bb{l, 
(2, 10, ) (2, 9, 10, ) (2,3, 
(4,5,6, )(12). (4,5,6, )(8). (4, 

bba{l,5, 8,12, ) bbb{l, ) bbba{l,6, ) 
(2,3, 10, ) (2,3, ) (2,3, ) 
(4, 6, 7, )(13). (4,5, ) (4,5, ) 

bbbaa{l,6, 10, ) bbbab{l,6, 10, ) bbbb{i, ) 
(2,3,7, ) (2,3, 12, ) (2,3, ) 
(4,5, )(9). (4,5,7, )(9). (4,5,6, ) 

bbbba{i,S, 11, ) bbbbb{l, 10, ) bc(l, ) 
(2,3, 9, 10, ) (2,3,8, ) (2, ) , 
(4,5,6, 7, )(12). (4,5,6, )(11). (4,3, ) 

bca{l, 6, ) bcaa{l, 6, ) bcab{l, 6, 9, ) 
(2, ) (2,5, ) (2, 7, 8, ) 
(3,4, ) (3,4, )(7). (3,4,5, )(10). 

bcb{i, 8, 5, ) 
(2,6, 7, ) 
(3,4, 9, ) (13). 

This proves the theorem. 

Remark. In the above theorem, we can replace a semigroup S by a power associative 
groupoid. 

Conjecture. Any semigroup S has no decomposition S = U ^ i '"to a finite number 
of disjoint mutants M; (i = 1, 2,. . . , n) of S. 
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