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1. Introduction. By a suitable weakening of the absolute continuity it is possible to
extend the domain of the indefinite Lebesgue integral of a given function. An analo-
gous method was studied abstractly by HoLec and MARIK in the paper [1]. In this
way, KARTAK and MARIK defined the so called -integral in E,, for m = 2 in [2].
The definition of B-integral retains its meaning even for m = 1. The purpose of this
paper is to clear up the relation of this f-integral in E; to more usual integrations.

I want to express my gratitude to Professor J. MARIK for his valuable suggestions
which led largely to the simplification of the argumentation.

2. Notations and definitions. The terms: outer measure, measure, measurable and
so on are related to the Lebesgue measure in E;. The outer measure of the set M < E,
is denoted by [M | and the system of all measurable subsets of E, is denoted by 3.
Given B < 3, Te 3, let TB denote the system of all sets T n V for Ve B.

Further let 2, denote the system of all subsets of E, expressible as a finite union of
compact nondegenerate intervals. Now, 2 stands for the system of all bounded sets
A < E; such that there exists a Be ¥, with (4 — B)U (B — 4)| = 0. Given
A € U, there exists exactly one B e 9, possessing the above property; we put 4 = B
and | 4| = 2p, where p is the number of components of 4.

Now, let us define the convergence — on 3 as follows: Z, - Z means that Z, < Z,
Z—-2Z,e sup|Z -2, <o, |Z-2Z]-0. A system < 3 will be called

n

closed, if each limit of a sequence of sets of & lies in §. Given B = 3, u(B) denotes
the minimal closed system containing 8. The set functions under considerations are
supposed to be finite and their continuity means the continuity with respect to —.

For a set M < E, let us denote M the closure of M. Given an open set G < E|,
let us denote K(G) the system of all A e A such that 4 ='G.

Let & be the system of all real- valued functions (+ oo not excluded) whose domain
of definition is a subset of E,. With each f e # we associate the system M(f) of all
measurable sets, on which the finite Lebesgue integral of f exists. A point x € E, is
said to be an L-regular point for f € & if there exists a neighbourhood U of x such
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that U e M(f). The set of all L-regular points of f will be denoted by L ; this set is
evidently open. The Perron (or Lebesgue) integral of f over the set M will be denoted

by [pf.

The function f € & is said to be B-integrable on the set 4 € A, if A € u(A N M(f))
and if there exists a continuous additive function ¢ defined on A2 such that ¢(B) =
= [pf for each B e M(f) N A. The number ¢(4) will be denoted by B(f, A).

3. Lemma. Suppose that A, e A, A, — A, sup |4, = 2t, | 4| = 2s. Then 4, > 4

and the set A — U A, has at most t + s pomts
n=1

Proof. It is easy to see that A = B implies 4 = B; whence it follows immediately
that 4, - 4.

Let us denote y,, ..., y, the left endpoints of the components of the set 4 and let H
be the set of all these points. Let x; < x, < ... < x, be arbitrary points of the set

[}
1 — U 4, — H and let x, = min H. Since |4 — 4,| - o0, we can choose such n

n=1
that |4 — 4,| < |4 n<x;-y, x;p| for I =1,..., k. Hence there exist components
I, ..., I, of the set 4, lying in the intervals {xg, X; ), ..., {Xx_1, X;> respectively. It
o]
follows that k < t, and the number of all points of the set A-U /T,, does not exceed

n=1

t+ s.

4. Lemma. Given Q < E,, let A, denote the system of all sets Ae U such that
A — Q is countable. Then the system A, is closed.

Proof. Suppose that 4, € Ay, 4, — A. By the preceding lemma 4, — 4 and the

set A — U 4, is finite. Then, by the inclusion 4 — @ = (4 — U 4,) v U (4, — Q)
n=1 n=1 n=1
A — Qs countable, i.e. A€y

5. Theorem. Let G be an open subset of E,. Then A € u(K(G)) if and only if Ae A
and A — G is countable.

Proof. a) Using the notation of the preceding lemma we have obviously K(G) =
< Ug and by that lemma u(R(G)) = A;. This means that A€ A and 4 — G is
countable for A4 € u(K(G)). :

b) Suppose now that 4 e A and that 4 — G is countable. Let us denote G the
system of all open sets H < E, with the following property: If Be , B = H, then
A N B e u(K(G)). We have:

() Ge®, E, — Ae®. (This is evident.) :

(i) ul'é He® for &, = 6. (This relation is a consequence of the following

€0,
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assertion: If Be A, B = U H, then there exists a finite number of sets B;e A,
He®;
k

i=1,...,k, suchthat U B; = B, B; = H, for suitable H; € ®.)
i=1
(i) If« < B < 3, (2, B) € ®, (B,7) € ®, then (=, y) € G. (This is obvious.)
Let us put Hy = U H. According to (ii), H, € ® and according to (i), E; — H, <
He®

< A — G. Hence the set E; — H, is a countable closed set without isolated points
(see (iii)). It follows that H, = E, whence A € #(K(G)).

6. Lemma. If fe %, then u(A n M(f)) = u(K(Ly)).

Proof. The obvious inclusion K(L;) = A N M(f) implies #(K(L,)) = u(A N
A M(f)). Let Ae W n M(f). Denoting <a;, b;», i =1,2,..., p, the components
of A, we have (a;, b;) € L;, whence <a;, b;> € u(K(L,)). Since u(K(L,)) is a set ring
containing all bounded sets M with |[M| = 0, it follows that A4 € u(R(L,)). Hence
u(2A  M(f)) = u(K](L,)) also holds.

7. Theorem. Let I = {a, b) be a compact interval in E,.

a) Let ¢ be an additive continuous function on IU. If we put f(x) = ¢(<a, x))
for x €1, then the function f is continuous on I.

p
b) Conversely, let f be a continuous function on I. If we put ¢(A) =Y (f(b;) —
=1

— f(a;)) for AeIN denoting {a;, b;>, j = 1,2, ..., p, the components of A, then
the function ¢ is additive and continuous on 1.

Proof. a) The continuity from the left of f is obvious and the continuity from the
right follows from the formula f(x) = ¢(<a, b)) — ¢(<x, b).
b) The additivity of ¢ is evident. Suppose that 4, > 4, 4 = Iandsup |4 — 4,] =

= 2s. Let £ be any positive number. There exists § > 0 such that |f(y) — f(x)| < &fs
for xel, yel, |y — x| < 8. Further, there exists n, such that |4 — 4,| < § for
n = no. Hence |p(4) — ¢(4,)] = |¢(4 — 4,)| < s(¢[s) = & for n = n,. This proves
the continuity of ¢.

8. Theorem. Let G be an open subset of E{ and lét I be a compact interval in E,.
Suppose that the setI — G is countable. Let F and f be two functions on I such that F
is continuous on I and is a Perron indefinite integral of f on each component of G.
Then F is a Perron indefinite integral of f on 1.

Proof. Let ¢ be any positive number. Let (a,, b,), n € N, be the components of G
and let I = {a, b). By the well known theorem on Perron integration there exists
the Perron integral [i» f = F(b,) — F(a,) for each n € N. Let M, be a majorant of f
on {a,, b,> such that M,(b,) — M,(a,) < F(b,) — F(a,) + £/2". Put g,(x) = 0 for
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x < a”’ g"(x) = M”(x) - F(x) - Mﬂ(a") + F(an) for an é X é bm gn(x) = gn(bn)
for x > b, and g = Y. g, Finally put h(x) = & Y(1/2*) sgn (x — s;), where
k

neN
{sy,s2,...} =1 — G. Then the function M = F + g + h is a majorant of f on
<a, b) such that M(b) — M(a) < F(b) — F(a) + 3e. Using a similar construction
we find a minorant m of f on {a, b) such that m(b) — m(a) > F(b) — F(a) — 3e.
Hence there exists the Perron integral [© f = F(b) — F(a).

9. Theorem. Suppose that fe &, I = {a, b)y. Then B(f,I) exists if and only if
there exists the Perron integral [°f and the set I — L, is countable. In this case

ﬂ(f? I) = IZf

Proof. a) Suppose that B(f,I) exists. By the definition of B-integral and by
Lemma 6 we have I € u(S(Ly)), so that by Theorem 5 the set I — L, is countable.
By Theorem 7 the function F, F(x) = B(f, <a, x) for x € <a, b), is continuous on
<a, b). Now, we can apply Theorem 8 with G = L. Hence F is an indefinite Perron
integral of f on <a, b and (. f = F(b) — F(a) = B(f, I).

b) Conversely, suppose that the Perron integral [° f exists and the set I — L, is
countable. By Theorem 5 and Lemma 6 we have Ieu(R(L;)) = u(U n M(f)).

p
For A€l let us put o(4) = Y (F(b;) — F(a;)), where <a;,b;>, j=1,2,...,p,
j=1

are the components of 4 and F(x) = {7 f. By Theorem 7 the function ¢ is an additive
continuous function on IA. Since ¢(4) = [, f for Ae M(f) N IA, there exists

B(f 1) = o(I) = faf.
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