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ORBITS OF TRANSFORMATION GROUPS ON CERTAIN 
GRASSMANN MANIFOLDS 

OLDRICH KOWALSKI, Brno 
(Received November 3, 1966) 

INTRODUCTION 

Let a connected Lie group G act effectively on a manifold V" of the class C^. 
Denote by g the Lie algebra of G. Then G acts on g as the adjoint group Ad (G). 
Let us denote by Z^^'^ the Grassmann manifold of all linear subspaces ^ £ g of 
dimension k; then G acts canonically on Z^̂ .̂ Consider a fixed Lie subgroup Я of G 
and its Lie algebra Ij a g. Put h = dim ï). For any к ^ h, denote by Z,^ с Ẑ ^̂  the 
manifold of all subspaces ^ Ç g such that dim ^ = к and ^ ^ ï). Then H acts on 
the manifold Zj^. 

A. SvEC (see [1]) has occupied himself thoroughly with Cartan's method of spe-
ciahzation of frames in connection with the equivalence problem for surfaces. He 
has given a precise formulation of the equivalence problem and also an exact descrip­
tion of the gradual steps of the speciaization procedure; both in the terms of infini­
tesimal connections in fibre bundles. Roughly speaking, if we are given a surface M 
in a space F", then according to A. Svec, each step of the speciahzation procedure 
can be interpreted in the following way: we are given a manifold Zj^, a Lie group H 
acting on Zfc as above, and a system of orbits under H on Z ,̂. We have to construct 
a local submanifold of Z]^ crossing each orbit of the system exactly at one point. 

From this point of view it is a very important thing to obtain a survey of all orbits 
of Z;̂  under the group Я. This problem has not been treated in the work [1]. In the 
present paper we propose a method, which leads, in some cases, to a complete 
classification of orbits of an arbitrary Я-invariant manifold Z ç Z^^^. Our idea is the 
following one: we attach to any point ^ of the manifold Z a simple figure JR(^) of the 
original space F" (a "representing frame") such that 

a) the map R : ̂  -^ R{^) is one-to-one, 

h) the group Я acts in a similar way both on the manifold Z and on the set R{Z) 
of figures of F". 
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Then the original problem is reduced to a new one: find all the orbits under H of 
the set R{Z), The applicability of our method to problems of classical differential 
geometry is now guaranteed by the fact, that in those cases, V" will be the n-
dimensional affine (or projective) space and G, H will be some groups of affine (or 
projective) transformations. We can see that if the figures R[^) are really very simple, 
for instance composed of linear subspaces, we obtain eventually a problem of the 
linear geometry. 

In the first Part of this work our method will be fully discussed under the assump­
tion that V" is the n-dimensional affine space Л" and G is a subgroup of the group 
GÄ(n). It seems that some results of this Part can be generalized still further. In 
particular it could be interesting to re-formulate them for V" being a projective space 
and G a group of projective transformations. 

As an example, we shall solve the following non-trivial problem: let G be the 
group GÄ^(2) = the component of unity of the whole affine group GA(2), g its Lie 
algebra, Г4 the Grassmann manifold of all 4-dimensional subspaces of g. Find all 
orbits under G of the manifold Г4. A complete classification of orbits of Г4 will be 
performed in the second Part of this paper. Although it is of no use for the classical 
differential geometry, it is nevertheless valuable for testing the efficiency of our method 
and for collecting a great deal of various material. 

In the paper [6] our method has been appHed to the equivalence problem of surfaces 
of the equiaffine space A^. The representing frames constructed there are shown to be 
geom.etrical objects well-known from the affine diff*erential geometry. 

PART I. GENERALITIES 

1. G-COVERING SETS 

The words "diff*erentiable" or "smooth" will be used to mean "differentiable of 
class C°^". A differentiable action cp of a Lie group G on a smooth manifold M is 
a differentiable map cp : G x M -^ M such that (p{gh, x) = (p(g, (p[h, x)) and 
(p[e, x) = X for each g, h e G, x e M, where e denotes the unit element in G. Each 
diff*erentiable action cp induces a) a homomorphism Ф : G -> G(M) of G onto certain 
group of diflfeomorphisms of the manifold M, and b) a homomorphism Ф^: Q-> X ( M ) 
of the Lie algebra g into the infinite Lie algebra of all smooth global vector fields 
on M. The vector fields of the form Ф*(Х), X e g, are called fundamental vector 
fields of M with respect to cp, or else with respect to G, if cp is fixed. If Ф is an isomor­
phism, then Ф,;- is an isomorphism, too. The Lie algebra Ф*(д) с: Х(М) will be called 
the Lie algebra of the transformation group Ф(G) = G(M). The orbit under G of 
a point X G M is the intransitivity class of x, i.e., the set (p{G x x) = {(p{g, x)\ g e G}. 
If a fixed differentiable action cp : G x M -^ M is preassigned, we say that G acts 
(diff'erentiably) on M. We shall also write simply g . x instead of (p[g, x) in this case. 
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We shall also use analogous but more general formulations as "continuous action 
of a topological group G on a topological space X " or "a topological group G acts 
(continuously) on a topological space X". 

Definition I. Let a topological group G act continuously on a topological space X. 
Let и я Y ^ X Ы open subsets of X. The open set U will be called a G-covering 
set of 7if the following axiom holds: for any x e Y, and any neighbourhood V(e) of 
the unit element e of G, there is an element g в V(e) such that g . x eU. 

The following assertions result easily from the continuity of group actions and 
their proofs will be omitted. 

Proposition L Let G act continuously on X and let Y ^ X be an open set. Then 
a) If и I, и 2, ..., Uk are G-covering sets of Y, then so is their intersection U^ n 

b) If и is a G-covering set of Y and V ^ U is a G-covering set of U, then V is 
a G-covering set of Y, 

Proposition IL Let G act continuously on X and let U be a G-covering set of X, 
Then 

a) Each invariant subset of X, in particular each orbit under G, intersects U. 
b) If Xi, X2, ..., Xfc G X, and W ^ G is open, then there is an element g eW such 

that g , x^eU for i = 1, 2, ..., k. 
c) For any g e G, g .U is a G-covering set of X. 
d) If Xj, ..., X/, e X and W ^ G is open, then there is a G-covering set Ug = g .U 

of X such that g e Wand x̂  e Ugfor i = 1, 2 , . . . , k. 

Proposition Ш. Let G act continuously on the spaces X, Y and consider its 
induced action on the product space X x Y If U (or V) is a G-covering set of X 
(or y), then и X Vis a G-covering set of X x Y. 

Proposition IV. Let X be a fibre bundle with a bundle projection p :X -^ B, 
Let (p be a fibre preserving continuous action of G on X, and let ф be the induced 
action of G on the basis B. Then Ü ^ В is a G-covering set of В if and only if p~^{U) 
is a G-covering set of X. 

In case of differentiable action, we have the following sufficient condition for 
a subset to be G-covering. 

Proposition V. Let a Lie group G act differentiably on a manifold M, let N я M 
be some invariant subspace and U Я N. Assume that for each point p eN there is 

1) a neighbourhood 0(p) with respect to M and differentiable functions fi(q), 
/2(^)5 -"^fM) defined on 0(p) such that qe(N — U) n O(p)ofi(q) = 0 for i = 
= 1,2,..., К 
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2) a fundamental vector field X e X(M) such that Xp{f^ Ф 0 for some index f. 
Then и is a G-covering set of N. 

The p r o o f can be performed by standard methods and it will be left to the reader. 
Let us remark only that a) the property of U to be open and non-empty follows 
directly from conditions 1) and 2), b) condition 2) may be weakened by the assumption 
that p runs through N ~ U instead of the whole N, 

2. EQUIVARIANT OBJECTS AND REPRESENTING FRAMES 

Definition II. Let a topological group G act on topological spaces X and Y. A map 
О : 7-> exp (X) will be called an equivariant object on Y with values in X if, for 
any y E Y, g e G, we have 0(g . y) = g . 0(y). (Here g . 0(y) denotes the set 
{g . x\xe 0{y)} and exp (Z) the set of al subsets of Z.) 

^ Definition Ш. A finite set (Oj, O2, ..., 0^} of equivariant objects on the space Y 
with values in the space X is called a representing frame on Y with values in X, if 
the relations y e Y, y' G 7, Oi{y'^ = Oly) for / = 1, 2, ..., m always imply y' = y. 

3. COMPLEX ELEMENTS 

Let £ be a vector space over a commutative field K; we can associate to E exactly 
one affine space A over K. E is then called the space of free vectors of the affine 
space A. (See BOURBAKI [2]). Let A" be the n-dimensional affine space over real 
numbers, E" the corresponding vector space. Let us denote by CE" the complexifica-
tion E" + iE" of the space E" (See [3]). The affine space CA" which is associated to CE" 
will be called the complexification of the real affine space A". We have a canonical 
injection A" -^ CA", The elements of the set CA" — A" are called imaginary points 
of the space A". The one-dimensional complex affine subspaces of CA" are said to be 
complex lines of the space A". The usual lines of A" or the complex fines CA^ с СЛ" 
such that dimj^ (CA^ n A") = 1 will be referred to as real lines of A". The other 
complex lines will be called imaginary ones. As usual, we can introduce the notion 
of complex conjugate lines, and similar concepts for the subspaces of CA" of higher 
dimensions. 

Let Я be a connected subgroup of the affine group GA{ii) acting on A". Then Я 
acts on the space CA" according to the rule h{a + bi) = h . a + (h . b) i for h e H^ 
a, b e A", Let I) be the Lie algebra of Я, E the underlying vector space of I). By the 
complexification C\) of the algebra I) we mean the space CE together with the opera­
tion [X + ïT, X' + f r ] = [X, X'] - [7, F ] + i{[X, Г ] + [Y, X']}. Q is a com­
plex Lie algebra and dim^ CI) = dimj^ ï). The algebra CI) generates a connected 
complex Lie group СН of transformations of the space CA"; the latter will be called 
the complexification of the group H. Every complex one-dimensional subspace £,^ 
of CI) determines a one-dimensional complex Lie subgroup in CH, 
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4. INTRODUCTrON OF LOCAL COORDINATES IN Z^^^ 

Let У4" be a real affine space of dimension n. Any coordinate system in A" can be 
described as a diffeomorphism "ul"" : A" -^ R" onto a fixed coordinate space R". Any 
coordinate system 9Î^ in Л" induces canonically a coordinate system C9Î" : СЛ" -> 
-> C". Let ^ e GA{n) be some affine transformation of A"; then the coordinate 
system Ш^ : X -^ Ш^^^д . x) will be denoted by 91^ о 6̂ . Let G ^ G^(n) be some 
subgroup. Two coordinate systems 9?°̂ , 9î^ in Л" will be referred to as belonging to 
the same coordinate G-type if Sl'̂  = '^^ о g for some ^̂  e G. If a fixed subgroup G and 
a fixed coordinate G-type 9î(G) is chosen, then all coordinate systems 9̂ °" e 9?(G) 
will be called admissible. Let g be the Lie algebra of the group G, dim g = r. Let us 
choose once for all n x r functions rj](^^, ..., (̂ „) on the coordinate space R" such 
that the vector fields 

i^{(xî,...,x:)/-, 
j = l ÔXj 

i = 1, 2, ..., r, form a basis of g with respect to any admissible coordinate system 
W{x1, xl,..., xJJ). For instance, if G = GA{n), we can put 

(I) / l , . . . , 0 , ^ i , 0 , . . ! ,0 , ..., 4 , . . . , 0 \ 

( » / D ^ • 
\ 0 , . . . , 1, 0, 0 , . . . , ^ i , . . . , 0 , ...,ij 

Let SR" be an admissible coordinate system in A", 9l'x = (x", ..., x^) for x e Л". Put 
<3j,X = [al, ..., al) for any X e g, where the numbers a*,..., a^ are determined by 
the relation 

ij OX J 

with respect to the coordinate system 9̂ "̂ . The map 8^ : g -^ R** just introduced will 
be called an admissible coordinate system in g induced by W^. We can see easily 
that whenever У{^ = W о g, then 6^ = 8^ о Kà{g). The numbers a],, ..., Ö^ will be 
sometimes called briefly the coordinates of vector X e g with respect to the coordinate 
system 91''. 

Let Ẑ ^̂  be the Grassmann manifold of all subspaces of dimension к of the algebra g; 
then for /c ^ r dim Z^^^ = k(r — k). For any admissible 9Î'' let us denote by El^j^__^ 
the subspace determined in g by the vectors 

i rjiix^, ..., x;) A , ..., i rjtSA, ..., xD -^- . 
j=i ôxj j = i dxj 

Further let W . be the set of all subspaces ^ e Z^^^ such that ^ n E^ i^_^ = 
= 0. Let 0* 6 Zf*' be given by the system of equations 

(») tm'X = 0, l = \,2,...,r-k, 
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with respect to 5H^ Then ^ e t/'?i,...,iv_^ if and only if the determinant [т |^, m- ,̂ . . . 
..., mf^_J Ф 0. Thus the open sets ï^îi,...,»v-k' where {i^, ..., Ï V - J «= {!» 2, ..., r ) , 
form a finite covering of Z'̂ ^̂ . In each U^^ »v-k ^ local coordinate system 

®!, , v - . : t / - , . . . . . , v - . - R ' ' ' " " 

is given as follows: for each ^ e t/fi,...,,v_^ we have 

^ i i ,...Jr-k\ 

f W 1 Д , . . . , M I Д 

\ ^ r - / c , l ' • • •? ^r-k,k/ 

if and only if the system of equations (II) being solved with respect to a'J, ..., a'^' "" 
assumes the form 

\ Ji < J 2 < • • • <Jk, 

r.ir-u ̂  .Л ji , , a j J {Ч. • • • . «r-b/l , ••-.A} = 1^2, . . . , rj . 
"a — ^^r~k,\^OL + • • • + ^^r-k,k^a } 

All possible local coordinate systems ^'\^,...,i^_^ will be called admissible; only the 
coordinate systems of this form will be used in the following. If, in a particular 
problem, only 8 J with a fixed multi-index В = (i\, ..., i^_j^ are used, then the 
coordinates ŵ  ^ with respect to S J will be called briefly coordinates with respect 
to W. If m^ = W о g, we shall also write 6^ = SJ о д. We can see easily that 
^B = ^1° 9 implies U^g = g~^ , U%. The subspaces ^ c: g belonging to a manifold 
Z^^^ in question will be called k-blocks or simply blocks in Z^^^. 

5. G-COVERING SETS AND EQUIVARIANT OBJECTS IN Z^^^ 

Proposition VI. Assumption A. Let H a G be two subgroups of the whole affine 
group GA{n), g the Lie algebra of G, dim g = r, and let Z^^^ be the Grassmann 
manifold {^ с g | dim ^ = k]. Let Ш cz Z^^^ be a subspace which is invariant 
under Я, or more precisely, under Ad (Я). Let ЩН) be a coordinate H-typ in Л" 
and let us suppose there is a coordinate system ^^ еЩН) and a multi-index 
В = (I'l, ..., i^_j^) such that Ш n U^ is an H-covering set of Ш. 

Assumption B. Let О : Ш -> exp (A") {Ш -^ exp (CA")) be a map. Let us suppose 
that: 

1) To each и еШ there is given a non-empty open set IJ{H, u) с 91(Я), 91(Я) 
being provided with the topology of the group H. 

2) There is an open set U cz R'̂ (''~̂ > and s functions F,((^i, ..., ^ ,̂ Wj^, ..., w^_^,.), 
(i = 1, 2, ..., s) given on R" x U (or C" x Ü) such that 
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a) for uem,We Ш{Н), ueU^we have 9i^ e U{H, u) if and only if 6^(w) e (7, 
b) whenever иеШ, We U{H, w), ueUl and xe Л%х e CÄ% then x e 0{u) if 

and only if the the relations 

(III) F,(ri , ..., С t^l,i, ..., t^^,,.) = 0 , i = 1, 2, ..., ^ 

F^(ri, ..., С t/^i.i, .-., <„ , , , ) Ф 0 , l^v + l,.,.,s 

hold, where ((^î, ..., ^^) = W{x) (or C9î^(x)), (i/'i,i, ..., u^r-k,k) = ^ß(^0- ^^^^ ^^^ 
functions Fl, Fl assume values from R (or C) and the functions Fj merely from R. 

Under these assumptions, the map О is an equivariant object on Ш with values 
in A" (or in СЛ") with respect to the actions of H on Ш and on A" (on СЛ"). 

Proof. Let be given и еШ, h e H, Fut W = {g e H {Ш"" о g~^ e U{H, hu)}, then 
W cz H is an open set. Because Ш r\Uß is supposed to be Я-covering set of Ш, 
there is an element h' eW such that h .u e h'(Wfl n Uß) = Ш n h'(Ul) (Proposition 
II, d)). Thus there is a coordinate system W e U(H, hu) such that h . и e (Ш n U^). 
We can put У{^ = Ш^ oh'~K Let us choose x e 0{u) and denote 91°̂  = 5R̂  о h. Then 
иеШ r\ h~^(U^); hence и еШ n Uß, Sß(t/) = '^ßQi . u)eÜ and consequently 
9 î"e t / (H, w). If we put 9î"(x) - (Г1, . . . , ^ï), ^1{и) = (м^д, ..., <_;,,^), the relations 
(III) hold. Now ^{i^{h . x) = Щх). According to the former relation &ß{h . и) = 
= Sß{u) 6 E7 we can see that the system (III) is satisfied by the j8-coordinates of the 
points h , xe A", h . и еШ, Because of h . и e U^ß, ^'^ e U{H, h , u) WQ have h ,xe 
G 0{h . u). Thus the inclusion h . 0{u) с 0{h . w) is proved. If we convert the parts 
of the points u,h .u еШ, we obtain h~^0(h . u) a 0(u) and this completes our 
proof. 

The complex case can be discussed in the same way. 

N o t e . We shall often use a particular case of the Proposition, where U[H, u) = 
= ЩН) for any M G Шг and U == R'̂ '̂'"^). 

Proposition VII. Let us suppose that the conditions A of Proposition VI are ful­
filled. Let Ol, ..., Ojn be equivariant objects on Ш with values in a spaceX. Suppose 
that there exists an integer 5 ^ 0 with the following property: to each идеШ we 
can assign a non-empty open subset U(H, UQ) G ЩН) such that for any W G 
G и(Н, UQ) we have UQ G U% and there are exactly s points Uj ф UQ in Ш n Uß 
such that Oi{uj) = OI{UQ) for i = 1,2, ..., m, ./ = 1, ..., 5. Then for any UQ еШ 
there are exactly s points Uj Ф UQ in Ш such that Oi(uj) = Oi(uo) for i = 1, 2, . . . 
.,., m, j = 1, 2, ..., s. Particularly, if s = 0, then the objects Ox, O2, •••> 0„ form 
a representing frame on Ш with respect to the group H. 

Proof. Let us suppose there are 5 + 1 points Ui, ..., и^,и,-^.1еШ such that 
Uj Ф uo, Oluj) = Oi{uo) for j = 1, 2, ..., 5 + 1, f = 1, 2, ..., m. Let us denote 
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by Wc: H the open set determined by the relation U{H, UQ) = 91^ о W. According 
to Proposition II, d), there is an element h e PFsuch that UQ, U^, ..., u, + i e h~^(U^), 
If we put 5R« = 9Î« о /i then W e U{H, UQ) and UQ, Ui, ..., Ug+i sdJl n U%, But this is 
a contradiction. 

6. IMPROPER ELEMENTS 

Let Л" be a real affine space, E" the associated vector space of free vectors. The 
one-dimensional linear subspaces ^"^ cz E^ will be referred to as improper points 
of Л". The set of all improper points will be denoted by Ä^^^. 

Suppose W is an admissible coordinate system in Л", L,"^ an improper point. The 
directional parameters v\,v'\, ...,v1 of a line which is parallel to ĉ "̂  are called 
homogeneous coordinates of ^°^ with respect to Э̂ "". 

If G с GA{n), then the action of G in Л" determines an action in E\ and in Л^~ ^ 
as well For any g G G, (̂ °° G Л^~^, the homogeneous coordinates of the improper 
point g . ^"^ with respect to ЭГ are the same as the homogeneous coordinates of ^"^ 
with respect to 91^ = 91% 0̂ . 

If CÄ" is the complexification of Л", we can introduce the set CA"^ ^ of improper 
points of CA' and the homogeneous complex coordinates in CA"^^. 

The following modification of Proposition VI can be easily proved: 

Proposition VIII. Let us suppose that the conditions A of Proposition VI are 
fulfilled. Let 0 : 9JI ~> exp (Л"^^) (or 0 : 9Л -^ exp (СЛ"^~^)) be a map. Further 
suppose that 

1) To each иеШ there is given a non-empty open set U(H, u) c: ЩН), ЩН) 
being provided with the topology of the group H. 

2) There is an open set U с R̂ *̂*"̂ ) and s functions Т^^^^, ..., <̂ „, м^д, ..., Wr-fc,r)> 
i = 1, 2, ..., s given onWxU [or on C" x Ï7) with values in R (or in C) such that 

a) Fi{^i,...^À^„, 1/1,1, ..., ^r-k,k)_= ^^' Fii^u •••, ^„, Wi,i, ..., Щ-к,к) identically 
on R xW X и (or on С X C" X U), 

b) for иеШ^'И^'е ЩН), ueU^we have W e U{H, и) if and only if S^(w) e Ï7, 

c) whenever иеШ, W e U{H, u), и e Ul and Г e Л"̂ ~̂  (or '^"^ e СЛ"^"^), then 
(̂ °° G 0(w) if and only if the relations 

(I ir) F{v\,..,, vl 1/^,1,..., <_,, ,) = 0 , f = 1, 2, ..., r 

Flv\,,.., vl 1/1,1, ..., <-.,fe) + 0 , J = / + 1, ..., s 

hold, where (t/i j , ..., u'^-k,k) = ^л(^) ^^^^ î» •••5 К ^^^ homogeneous coordinates 
of the improper point (J°̂  with respect to 9v̂  (or homogeneous coordinates of ^ °̂° 
with respect to С9Г). Under these assumptions the map О is an equivariant object 
on Ш with values in A"^^ (or in CA^^^). 
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7. APPLICATION OF THE METHOD IN THE AFFINE CASE 

If we have to classify the orbits of a manifold Ш Ç= Z^^^ under a group H cz G cz 
c: GA(n), our main task is to accomplish a suitable invariant decomposition Ш = 
= [JiШl and to construct a representing frame under H on each Ш^, with values 
in CA" u CA"^ ^ As a rule, we start with some open subspace ^ of 9Л consisting of 
"general" points. Then each further step of the mentioned decomposition will arise 
from the construction of representing frames at the preceding stage. The elements SWj-
of the decomposition will be, as a rule, some manifolds. On each manifold 9Ŵ  we 
first construct a sufficient number of equivariant objects. In order to obtain an equi-
variant object we shall often proceed a^ follows: in the first place we find a map 
Ç :Ш1 -^ Q (or ^ :Ш1 -^ Cg) into the manifold of all 1-dimensional subspaces 
(„directional elements") of the algebra g (or its complexification Cg). This map must 
not depend on the coordinates. The image (^(^) of ^ e Ш1 will be usually somehow 
related with the subspace ^ in the algebra g or Cg. For instance, ^(^) will belong 
to ^ or C ^ , or to a prolongation of ^ or C^ by the bracket operation. We shall also 
use some generalized maps such that the image ^(^) of ^ еШ; will be a finite or 
infinite system of directional elements. Having obtained a directional element ^(^) 
(or a system of directional elements) we construct a subset O(^) с CA" u CA" ~ ^. 
As a rule, O(^) will be the set of all singularities of (J(^) or some invariant set under 
the 1-dimensional transformation group determined by ^{^). Then we choose 
a suitable multi-index В = ( Ï \ , .,., i^-k), and thus a kind of local coordinates 8^ 
in Z^̂ ,̂ such that Up n Ш1 is an Я-covering set of 9Jlj-. Now we must express the object 
O(^) analytically using coordinate systems 9̂ °̂ , 6^, and show that this analytic 
expression has an invariant form. (See Propositions VI and VIII). So O(^) is proved 
to be an equivariant object. 

Provided we have already found all required equivariant objects O^, ..., 0^, it 
remains to show the one-to-one-property of the map ^ - > Я(^) = {Oi(^), ... 
..., 0^(^)} on Ml. We use the equations (or more generally, the analytic expressions) 
of the objects O^, ..., O^ and Proposition VII for this purpose. At the same time we 
find the domain of values of the map ^ -> R(^). It remains to perform the clas­
sification of orbits of the domain R{Mi) of values. Let us remark that the evaluation 
of R{Mi) and also the proof of the one-to-one property will become easier if the 
employed coordinate systems S^ are not only Я-covering but even Я^-covering, 
where H^ с Я is a subgroup. Then we can confine ourselves to a coordinate Яl-type 
and the coordinates may be specialized in such a way that our analytic expressions 
take a simpler form. In the optimal case H^ = e, 6^ are global coordinate systems 
on Mi. Provided the equivariance property has been already proved, we can work 
from now on with a unique "canonical" coordinate system. 

In some special cases ^ e shall not be able to find a representing frame on Ю?,-; here 
we use the method of "reducing the dimension". Let us suppose we have constructed 
equivariant objects O^, ..., O^ on Mi such that the domain of values of the map 
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0i -> {Oi(^) , . . . , ОД^)} is a manifold of dimension p < dim Ш1. Then in order to 
obtain the complete classification of orbits on $Ш, it suffices to classify orbits of 
a manifold of dimension (dim Ш1 — p). If this number is sufficiently small the latter 
problem can be solved directly. 

As for the example discussed in the second Part, we shall always be able to obtain 
a representing frame or, in unfavourable cases, to reduce the dimension to dim StR,- — 
- p - 1. 

PART 11. APPLICATION 

In this Part we shall occupy ourselves with the following problem: Let G = GY4'^(2) 
be the group of all positive affine transformations of the affine plane A^ and Г4 the 
Grassmann manifold of all A-dimensional subspaces of the Lie algebra g = ga(2) 
of the group G. Find all orbits ofT^ under G. 

Let us introduce the following notation: 

G the group of all positive affine transformations of A^ 
g the Lie algebra of G 
T the group of all translations of A^ 
i the Lie algebra of T 
G^ the subgroup of all positive equiaffine transformations of A-^ 
ĝ  the Lie algebra of G^ 
Gc{p) the isotropy group of a point p e A^ with respect to G 
ç^c{p) the Lie algebra of Gc{p) 
^ec{p) the isotropy group of a point p e A^' with respect to G^ 
9ec(p) the Lie algebra of G^^CP) 

g^ the set of all vectors X EQ,X = и{д\дх) + v{d\dy) + axidjdx) + Ъх{д\ду) + 
+ cy{djdx) + dy^djdy) such that the invariant relation ad — bc = 0 is 
satisfied. 

Let us introduce, in the first place, the admissible coordinate systems in g. For any 
admissible Ш°'(х°', у"") in A^ we consider the ordered basis of the Lie algebra g con­
sisting of the vector fields djôx^ djdy^ x\dldx% x^djôy^ y\dldx^), / ( a / a / ) . For 
X £ g put ЩХ) = (w^ v\ a\ b\ c^ d') if and only if 

'^ л '> n о rs 

(1) X =^ u^-^ Л- ^ — + fl^x^' — + bV — + c V — + J%" - ^ . 
ax̂  a / ax« a/ ax« a/ 

So we have obtained an admissible coordinate system 6„ : g -> R^ on g induced 
by W. 

In the following we shall often delete the index a in such formulae as (l). This note 
concerns also the local coordinates on Г4 with respect to the coordinate systems (3^ 
(see below). 
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The canonical homomorphism G -> Ad (G) is an isomorphism and it induces a Lie 
algebra isomorphism g -^ ad (g). The latter is given, in arbitrary coordinate systems 
î̂"", (Зд, by the correspondence 

/̂ 4 д Ô ^ Ô д Ô , д (2) ^ -a ~ - b —, > ~c d — , 
dx du dv By du ôv 

ô a Я д 
X > и —о \- с — , 

дх ди дЬ ОС 
д ^ / лч ^ /д д X > и h (а — а) —--Ьс! 

ду dv дЬ \dd да 
д д /Ô д\ ,^ . д у J. у ^ 5 ] + (d - а) — . 
дх ди \да dd дс 

д д д d 
у ^^ \. 5 - с . 

dy dv dh de 
In the following notes we want to introduce some conventions and to remind the 
most simple properties of the algebra g. 

Note 1. The one-dimensional subspaces of the algebra g will be referred to as 
directional elements or simply d-elements of g. For any vector X e g, the ^-element ^ 
determined by X will be denoted by ^ = (X). The 1-dimensional subgroup of the 
group G determined by a vector X or by the corresponding i-element (X) will be 
denoted by G[X2 ^^ ^[(^)]- ^ ^ ^^^^^ ^̂ ê the analogous notation in the complex 
case (see Section 3 of Part I). Each invariant subset under G[Z] of the space CA^ и 
u CAlr, will be called a singular set of the vector X 6 g or else of the <i-element 
<J = (X). The singular points of a vector Z will be briefly called singularities of that 
vector, or else of the J-element (Z). (Cf. [6]). 

Note 2. Let y4i,..., ^^ be vectors or subspaces of a vector space V; then (A^,... 
..., Ak) will denote its linear closure in F. If Л, Б c: g are subspace, then by their bracket 
l^A, B] is meant the linear subspace spanned by all brackets [X, 7], X e A, Ye B. 
We can see that if ,̂ ?; с g are ^-elements, then either [(J, f|] = 0 or [f, ?;] is a d-
element. 

Note 3. If X e g, then its ordinary coordinates u, v, a, b, c, d with respect to an 
admissible coordinate system 6^ will be referred to as homogeneous coordinates of 
the d-element (X) with respect to в«. 

Note 4. Let X e g, X = (w, v, a, b, c, d). It is known (see [4]) that the characteristic 

roots of the matrix ( ' ) are invariants under the transformation group Ad (G). 
\c, dj 

Thus the functions ad —be, a + d are invariants. Each admissible ®̂  in g determines 
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a coordinate system C8^ in Cg, which is called admissible again. The complex co­
ordinates u, V, a, b, c, J of a vector X^ e Cg are given by means of the formula (1). 
The expressions ad —be, a + d are invariants with respect to the induced action of G 
on the complexification Cg. 

N o t e 5. Let given X e Q. We have X e t if and only i f a = b = c = J = 0 with 
respect to any (5«. We have X e ĝ  if and only if a + <i = 0. Finally the relation 
ad — be = 0 implies X 6 g^ (see the list of notation). 

The most simple results concerning singular subsets under 1-dimensional subgroups 
of G will be summarized in the following Theorem. 

Theorem 1. Let X e Q, X = (w, v, a, b, c, d) with respect to an arbitrary admissible 
coordinate system 6^. Then the following assertions hold: 

a) G[X] с T if and only ifa = b = c = d = 0. 
b) G[X] is a group of dilatations from a point if and only if a = d Ф 0, b == с = 0. 
e) / / ad^ be < 0, a + d = 0, then 0 [X] is a group of hyperbolic rotations. 
d) If ad — be > 0, a + d = 0, then 0 [X] is a group of elliptic rotations. 
e) If ad — be = 0, a + d = 0 and the vector X admits a singularity in A^, then 

G[Z] is a group of shear transformations. 
f) If ad — be = 0, a -{- d Ф 0 and the vector X admits a singularity in A^, then 

G[X] is a group of dilatations from a line. 
g) In the case a) X has a singularity in Al^; in the case b) X has a singularity in A^. 
h) In the case c),X possesses exactly one singularity [XQ, Уо] in A^ and two mutually 

different real singular lines passing through the point \XQ, JQ]- {Common 
asymptotes of hyperbolic trajectories?) In the case d), X possesses exactly one 
singularity [xo, Уо] In A^ ^nd two imaginary conjugate singular lines passing 
through the point [XQ, Уо]. (Common asymptotes of elliptic trajectories.) In the 
case e), X possesses a real line of singularities, ("a pointwise singular line''), 
namely the directional line of the shear transformations. 

i) In both cases c) and d) the corresponding couple of singular lines is given by 
the equation 

(3) b{x - Xo)̂  ~ 2a(x - Xo) (y - Уо) + c{y - Уo)^' = 0 . 

j) In the case e) the equation (3) expresses the double directional line of shear 
transformations; the point [XQ, Уо] can be an arbitrary point of that line. 

k) In the case f) the vector X admits: 

1) a pointwise singular line {the basic line of the dilatations), 

2) an improper singularity in A]^, which is different from the improper point 
of the former line. 
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For any point [xo, Ĵ o] ^ Л^ we have exactly one singular line joining that point 
with the improper singularity, 

1) In the cases e) and f), the pointwise singular line is given by each of the equations 

(4) a{x - Xo) + c{y - уо) = 0 , or b{x - XQ) + d{y - Уо) = 0 , 

here [xo, Уо] denotes an arbitrary point of the line. [At least one of the equations 
(4) does not vanish identically). In the case f), another singular line passing 
through the point [XQ, Уо] is given by each of the equations 

(5) a{y ~ Уо) ~ b(x - Xo) = 0 or c{y - уо) - d{x - XQ) = 0 . 

m) The paragraph f) and the formulae (4), (5) are valid in the complex case, too. 

Proof. All assertions of the Theorem can be verified with the help of "canonical 
coordinates". For the corresponding procedure see [4]. 

Let us remark that the formulae (3) and (4) describe some equivariant objects; 
each of them is defined on a submanifold of g and assumes values in CA^, , 

Let us consider an invariant decomposition of the manifold Г4 

(6) Г4 = F^ u r l u r ^ 

where F^ = ( ^ G F4, dim ( ^ n t) = 1} , г = 0, 1, 2 . , 
Each of these components will be discussed separately. 

1. THE MANIFOLD Г^ 

F4 consists of all blocks ^ G F4 such that ^ n t = 0 in g. It is an open submanifold 
of F4, dim F 2 = dim F4 = 8. Let S^ be an admissible coordinate system in g, 
(ЗДХ) = (w, V, a, b, c, d). In our notation (see Section 4 of Part I) we have i = EI2 
and thus F4 = [/i2for arbitrary a. Any block ^ G F 4 is given by equations of the 
form 

(7) и = u^a + U2b + W3C + u^d , V = v^a 4- 1̂ 2̂  + v^c + v^d 

where we delete the index a. The coordinate systems S12 • Г4 -> R^ make F4 a linear 
space; we have S i2 (^ ) = ("i, ..., W4, v^, ..., ^4). The fact that (З12 are global co­
ordinate systems will be fully exploited in the following computations (uniqueness 
problems). For the present, let us suppose 91°" to be arbitrary. 

Denote by N a G the subgroup consisting of all translations and of all positive 
dilatations from a point in Л^; let n с g be the corresponding Lie algebra. Then we 
have dim n = 3, n з t. If ^ G F ^ , then dim (^ n n) = 1 and ^(^) = ^nn is 
a real J-element with homogeneous coordinates a = d = 1, b = c = 0, (see the 
point b) of Theorem 1). From the system (7) we obtain и = u^ + u^,, v ~ vi + v^.. 
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The J-element <^(^) possesses a single singularity (the centre of dilatations) given by 

(8) Я (^ ) : X = ~ (wi + W4) , у = ~{v, + v^) . 

The map ^ -> Я ( ^ ) is obviously an equivariant object on Г4 with values in Л^. 
We shall construct another point object from Г4 into Ä^. Let be given ^ e Г4 and 

put ^^ = ^ n g ;̂ then dim 0^ = 3. (See Note 5.) We can see from (7) that the sub-
space ^ e has a basis of the form 

(9) x^^x-^- У-- + {u, ~ u^) ~- + {v,- v^) - , 
ox oy ox oy 

д д д 
Y"" = X — + U2 — + V2 — , 

ду ôx ôy ' 

^a ^ ^ ^ 

Z = y h W3 h 1̂ 3 — . 
dx dx dy 

We can see that there are exactly two Hnearly independent vectors in the set ^^ n g^, 
for example the vectors 7°", Z"". 

Proposition 1. Let U^, U2 be two linearly independent vectors in 0^ n g°. Then 
there is exactly one vector We^^ such that W = X[Ui,U2li^, [ ^ ь ^ ] =^^i^ 
[U2, W] = 2U2 (modt). The vectors U^ + [ l / i , Pf], I/2 + [I/2, W] have a single 
common singularity Q{0) G A ^ . The point Q{0) is independent of the choice of 
linearly independent vectors Ui, U2 and it is given by the equations 

(10) e ( ^ ) : X = 1(1/4 - til - 2t;2) , y = i{v, - v^ - 2u,) . 

Proof. Let и I, и 2 meet the demands of the Proposition. Then there are real 
numbers a^, ß^, 0C2, ß2 such that D = а^2 - ^ißi + О, U^ = осф^Х"" + ß^iY'^ -
— oc^Z'', i = 1, 2. Now we obtain 

[U\, L/2] = D{ß,ß2[X\ y ^ + 0i,0i2[X\ Z^] + {a,ß2 + o^zßi) [ П ^ 1 } • 

From (9) follow the congruences 

(11) [ Z ^ Y'] = 2У«, [X^ Z"] = - 2 Z \ [ 7 ^ Z^] = X^ (mod t ) . 

Thus the wanted vector Pf has to satisfy the relation 

W = ß{2ßj2y" - 2aia2Z^ + {a,ß2 + ^ißi) X'} , /z Ф О . 

Further we obtain 

[[/,, W] = iiD{ß^[X\ y^] + a?[X^ Z^] + 2 a , ^ | y ^ Z^]} 
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and with regard to (U) the condition [(/;, W'\ = 21/; (mod t) yields /л = IJD. Hence 
U, + [U„ W] = [a,.;8,(3x - A ) - a',{3y - B)] (ö/5x) + [ß',{3x - A) - аф{Ъу -
— JB)] {djdy), where Ä = 1/4 — u^ — 21̂ 2, В = v^ — v^. — 2u^, For a common 
singularity of the vectors U^ + [ l / i , Ж], U2 + [C/2, Ж] we have the following 
conditions: 

ßi{3x - A) —(x^{3y - ß) = 0 , ^2(3^ - A) - oi2{3y - B) = 0 . 

Regarding D Ф 0 we obtain (10), q.e.d. 
The object ô ( ^ ) admits the following simple interpretation: Let ^^ be the d-

element given a = d = 0, b + с = 0, ^l the d-element given by a + d = 0, b = 
= с = 0 and (̂ 3 the J-element given by a = d = 0, b — с = 0. Then G\^Ci] is a group 
of eUiptic rotations about the point A"" : x = v^ ~ V2, у = U2 — u^, С^[й] is a group 
of hyperbolic rotations about the point B^ \ x = u^ — u^, у = v^ — v^ and G\^\\ 
is also a group of hyperbolic rotations about the point C^ : x = —1̂2 — t?3, J = 
= —U2 — W3. 

The points A^, Б^, C^ depend on the coordinate system and they are no equivariant 
objects. But the centre of gravity of the triangle l^A^B^'C'^ does not depend on W\ 
it is exactly the point ô ( ^ ) . It would be interesting to find a visualisable invariant 
construction of the object (10). 

Let X 6 g; according to (1) we have X = (w + ax + cy) [djdx) 4- [v + bx + 
+ dy) (djdy) and all singularities of X are given by the relations 

(12) и + ax + cy = 0 , V -}- bx + dy = 0 . 

If Xe0^, ^ еТ% then the coordinates u,v satisfy the relations (7). If moreover 
X E ^g, i.e., a + J = 0, then the equations (12) assume the form 

(13) a{x + Wi - W4) + bu2 + c{y + U3) = 0 , 

a{v^ ~ v^ — y) -]- b(x + V2) + ct;3 = 0 . 

Let x(x, y) e A^ be an arbitrary point; let us put 

(14) L(x) = X + ill — W4 , M ( x ) = U2 , iV(x) = j ; + W3 , 

R{x) = 1̂1 — t̂ 4 — у , S{x) = X + V2 , T ( X ) = Уз 

D,{x) = 

оз(х) = 

M(x), iV(x) I 
S(x). T(x)i 

L(x), M(x) 
Я(х), S(x) 

L(x), iV(x) 
i?(x), T(x) 02(x) = -

D(x) = D5(X) + D,{x) D,{x). 

Here we must keep in view that the functions (14) depend on the choice of a sub-
space ^ , and in addition, on the choice of the coordinate system W, These facts will 
be not marked explicitly. If a point x e Л^ is given the system (13) has a geometrical 
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signification: it determines all J-elements ^ с ^^ == ^ n ĝ  having a singularity at x. 
For any block ^ G Г4 we obtain an invariant decomposition of the plane Л^ 

(15) Л^ = ^ ° u ^ * , 

where we put x G ^ ^ , if the rank of the system (13) is 2, and x G ^ * otherwise. We 
obviously have 

(16) X G ^ * <4> Di(x) = D2(x) = 1)з(х) = 0 . 

Proposition 2. Let be given ^ e Г4, XQ G ^ ° . T/îé?n ^йеге /s exactly one d-element 
^ cz ,^g having a singularity at XQ. Moreover: 

a) For I>(xo) > 0, G[(^] is a group of hyperbolic rotations about XQ. 
b) For D(XO) < 0, G [ ^ ] is a group of elliptic rotations about XQ. 
c) For I>(xo) = 0, 0[c^] is a group of shear transformations with directional line 

passing through the point XQ. 

Proof. With regard to the assumption Xo G ^^ and to the notation (14) the wanted 
^-element (̂  с ^^ has homogeneous coordinates a = XD^^XQ), b = lD2{xo), с = 
= Д1)з(хо), d = ~ a ; Я + 0. The values of u, v are given by (7). It is obvious that 
ad — be = —)? D(XO), NOW our assertion follows from the points c), d), e) of 
Theorem 1. As we have seen, the sign of -D(xo) has a geometrical signification, and 
hence we have an invariant decomposition 

(17) ^- = ^ ° ( 1 ) u ^ ° ( ~ 1) u ^ ° ( 0 ) 

in accordance with sgn D(XQ) = 1, —1, 0. 

Proposition 3. Let us denote by x(^) cz СЛ^ the set determined by the equation 
D{x) = 0. Then 

a) the set x (^ ) does not depend on the coordinate systems 9Î^ 
b) x{^) is either the whole complex plane CA^ or a cubic which decomposes into 

three lines in CA^', 
c) the map ^ -> x (^ ) /5 an equivariant object on Г4 with values in CA^. 

Proof. First of all we must provide an invariant definition of the set x{^). We 
have a complex analogue of the decomposition (15): CA^ = ^ ^ ° u ^''*, where 
^^* = {xeCA^ I D{x) = 0, f = 1, 2, 3}. Let us denote by Cg^ the set of all 
complex vectors ^X G Cg, '^X = {u,v, a, b, c, d), such that ad — be = 0. The set 
Cg^ is independent of the coordinates (see Note 4). Now, to each x G ^^^ there 
is exactly one complex ti-element ^^ a C^^ having a singularity at x. Put ^^°(0) = 
= { x G ^ ^ ° I "è' ^ Cg°}. We have an obvious relation x(^) = ^"°(0) u ^^* and 
hence follows the assertion a). By a detailed analysis of the system i)i(x) = D2(x) = 
= 1)з(х) == 0 we obtain that the set ^^^' is always finite. 
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If X e ^ ' ' ° , we can see as in the real case that x e ^"^^(0) if and only if the cor­
responding J-element ^^ admits a pointwise singular hne (real or imaginary). By 
a direct computation we find that either the equation D(x) = 0 vanishes identically 
or it is of 3-rd degree. Thus x(^) is either the whole plane or a cubic. 

Let x(^) be a cubic and choose a point XQ e x{^). We can achieve that XQ e 0^""^ 
because the set î ""* is finite. The corresponding J-element ^̂  admits a pointwise 
singular line p(xo). If x e p(xo) n c^'"^, then the J-element ""'t, corresponds to x and 
hence x G ̂ "^^(0) с x(^) . Because of ^^* с %(^) we obtain p(xo) cz x(^) . The 
cubic x (^ ) decomposes into a hne and a conic. If x (^) — p(xo) Ф 0, we can choose 
a point Xi G (>(:(^) -• p(xo)) n ^ ' '°(0), and so forth. Hence we obtain the assertion b). 

Finally the statement c) follows immediatelly from Proposition VI, because the 
form of the equation D(x) = 0 does not depend on the coordinates, q.e.d. 

Proposition 4. The mappings ^ -> ^ ° ( l ) , ^ 
are equivariant objects on Г4 with values in A^. 

\-\), ^ ->^°(0), ^ ->^* 

Proof. Each of the named objects is described by a system of relations (equations 
or inequalities) of invariant form (see Theorem VI). 

Let ^ G Г2, XQ G ̂ ° and let ^ be the J-element corresponding to Xo on the basis 
of Proposition 2. Then <J admits two singular lines in CA^, which are real and different 
or imaginary conjugate or real and coincident, according to the sign of D{XQ). In any 
case, the equation of that couple of lines can be written in the form 

(18) ^2(^0) {^ - ^of - 2D^{xo) (x - Xo) {y - Уо) - ^з(^о) (у ~ УоУ = О . 

(Cf. the equation (З) and Proposition 2.) 
Let us introduce the following conventions and denotations : If x = Я ( ^ ) (see (8)), 

then the corresponding values of the terms (14) will be marked by omitting the 
argument. The corresponding values at the point x = ß ( ^ ) will be marked by 
omitting the argument and by a twiddle over the capital. Further let us denote 

(19) 

(20) 

Ai 
D, D, 

A = Al + 4A2A3 . 

A, = 
Dt D2 

The introduced symbols depend on ^ e Г^, and on the choice of a coordinate 
system Ш". 

Now let us put 

(21) a = XQ - x„ = |(2м4 + Ui - V2), ß = yq- Ун = 1(2^1 + v^ - u^) 

(Cfr. (8) and (10)). 
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From (14) we obtain immediately (taking into account (8) and (10)) 

(22) L - - 2 w 4 , R = 2ü^ , 

M = г/2 , S = V2 ~ u^ — W4 , 

N = 1/3 - v^ - v^, T = v^ . 

(23) L = L+ a., R = R - ß ^ 

M = M , S - 5 H- a , 

N = N + ß , f = Т . 

(24) D,=Di-ocN- ßS - aß , 

D2 = D2 + ß{R - N) - аТ~ ß^ , 

D^ = D^ -h ßM + a{L + S) + a^ . 

(25) а = ~^(2S + L) , ^ - K ^ - 2iV) . 

(26) LDi + Af D2 f ND^ = 0 , i^Di + SD2 + TD, = 0 . 

(27) LD, + MD2 + ND, = 0, RD^ + S ß , + ^63 = 0 . 

From (23) and (27) follows 

(28) Lßi + MD2 + ND, = -aD^ - ßD, , 

RDi + 5^2 + TD, = ßDi - aD2 . 

We can write (25) in the form 

(250 L = -2S - За , R = 2N + 3ß , 

and from (26) we obtain 

(29) ~-2SD^ + MD2 + ND, = 3ocD, , 

2ND^ + SD2 + TD, = -3ßDi . 

Similarly we obtain from (28) the relations 

(30) -2SDi + MD2 + ND, = 2aD, - ßD, , 

2ND^ + SD2 + TD, = •~2ßD^ - (XD2 . 
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Finally, let us introduce the following notation: Let be given a matrix of the form 
di, dj, dj\ ^^^^ ^^ ^^^ 

du ^2^ ^ 3 / 

(31) Ai(d) = 
« 2 , «3 

^ 2 , ^3 
, à2{d) = -

du d^ 
, Аз(^) = 

di, d2 
du ^2 

Л(^) = Al{d) + 4 A2{d) As{d), 

In case that df = D^, d^ = Di for any ^ G Г4 we have obviously A,(rf) = A,-, A{d) = 
= Л. 

Proposition 5. Let k^, /c2 be two couples of lines in CA^ given by the equations 

(32) /ci = d2{x - x^f - 2d^{x - x^) {y - y^) - d^{y - y^f = 0 , 

/C2 = d2{x - ^2)^ " 2(ii(x - X2) {y - y2) - d^{y - У2У = 0 . 

Then the following two assertions are equivalent to each other: 

a) A{d) = 0. 
b) There is a line of the couple k^ which is parallel to a line of the couple /c2. 

Proof. We can see easily that A{d) is the resultant of the quadratic forms ^2^^ ~ 
~ 2d^xy — d^y^, ^2^^ — 2dii^xy — d^y^" (See [5]). Thus we have A(d) = 0 if and 
only if these forms have a common hnear factor. Hence follows our assertion. 

Now, let us denote 

(33) mg = {^бГ°|Я(^)б^°}, 

Taking into account that Я ( ^ ) , Q(^), ^ ° are equivariant objects, we can see that 
the sets (33) are invariant under G. In case that ^ e 93lg denote by k„{0>) the couple 
of hues (18), where XQ = Я ( ^ ) . In case .that ^ e Sng denote by ко{^) the couple of 
lines (18), where XQ = Q[^). We have obtained two equivariant objects of the form 
кц : a«g -> CЛ^ kQ : ang -> CA^ given by 

(34) к„{ёР) s D^ix ~ x„Y - 2D,{x - Хя) (у - y„) - D,{y - y„f = 0 

(35) kQ{^) = D^ix ~ XQY - 2Di(x - XQ) {y - уо) - D,{y - y^^ = 0 . 

kjj{^) is a couple of lines, which are real and different, or imaginary conjugate, or 
real and coincident if Я(<^) e ^ ° ( l ) or H{0>) e s^°{-1) or H{<P)e ä^°(0), 
respectively. Similarly for к^{^). 
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Let us consider an invariant decomposition 

(36) ' П = Г2(1)иП(0) 

where Г^(1) = {^еГЦ Я ( ^ ) ф ß ( ^ ) } . 
Let us start with the manifold Г4(1). Put 

(37) m = m^ n Tl{i), 9K = 9Л* u 9Л% SR* = {^ G шг IA Ф 0 } . 

Considering Proposition 5 we see that the relation ^ e 5[R* has a geometrical signifi­
cation: it means that neither line of the couple кд{^) is parallel with a line of the 
couple ко(^). Ш1* and 501° are G-invariant submanifolds of Г^ as well. 

Proposition 6. Let HQ ф QQ be two points of A^ and k^, /c2 two line couples in CA^ 
with the following properties: HQ is a double point of the couple k^, QQ is a double 
point of the couple /C2; neither line of the couple k^ is parallel with a line of the 
couple /c2. Then there is at most one block ^ e 5Ш* such that Я ( ^ ) = HQ, Q{^) = 
^ ßo, K{^) ^ h, kl0>) ^ k,. 

Proof. Let ÎR̂  be an arbitrary admissible coordinate system and let the couples 
/ci, /с2 be given by the equations (32) with respect to ÎR'̂ , where HQ = [x^, j i ] , 
QQ = [x2, ^2]- P^it (XQ = X2 — Xi, ßo — У2 -~ У1- Then the conditions Я ( ^ ) = HQ, 
g ( ^ ) ~ QQ can be re-written in the form Я ( ^ ) = HQ, a = ao, ß = ßo (see (21)), 
and with respect to (8), (22) and (25) we obtain 

(38) 

(39) 

From (22) we find easily that the coordinates w ,̂ ..., W4, v^,...,v^ are uniquely 
determined by the values L, M, iV, R, S, T, u^, v^. With regard to (38), (39) it remains 
to show that the functions M, N, S, T are uniquely determined by the conditions 
/сд(^) = fci, kQ{^) ~ /c2. If we compare (34) and (35) with (32), we see that the 
triplets (Di, D2, 1>з), (dl, d2, d^) and also the triplets [D^, D2, D3), {d^, ^2, ^3) shall 
be proportional. From (29) and (30) we obtain 

(40) d2M + d^N - Id^S - 3ao^i , 

Id^N + d2S -{- d^T= -^ßQdi , 

d2M + d^N - Id^S = 2ao3i - ßQcl^ , 

2d^N + ^2^' + Я3Т = —IßQdi — «0^2 • 

We find easily that the determinant of the system is A(d) and thus non-zero according 
to Proposition 5. This completes the proof. 
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From Proposition VII we obtain 

Theorem 2. The equivariant objects Я(.^), ß ( ^ ) , ^я(^) , кц[0^)/огт а representing 
frame on the manifold 9Л* with values in CA^. 

We have not yet determined the domain of values of that representing frame. Let 
us consider an invariant decomposition 

(41) Ш'^^и'Щи]),, /,j = 1,-1,0, 

Ш1*(/, j) - {.^J> e ^* I H{^) e ^^{i), Q{^) e ̂ Щ} . 

We shall bring out all necessary calculations for the manifold 9Л*(1, 1); the other 
cases v/ill be discussed quite concisely. Let us denote by 51(1, l) the domain of values 
of the representing frame {Я(^), Q{^), /%(.^), kQ{^)} on the manifold 9Л*(1, 1). 
Let ©(1, 1) be the manifold of all configurations (HQ, QO^ k^, k^ Hke those from 
Proposition 6 and such that both k^ and /c2 consist of real mutually different real 
lines. Then 33(1, 1) is a dilferentiable manifold of dimension 8. We wish to show 
that 51(1. 1) is an open submanifold of ©(1, 1). 

Let be given a configuration {Яо, Qo, k^, ^2} e 33(1, 1) and let us choose the fines 
of the couple k^ as coordinate axes for 9Г. Then we can write 

/ci = {x - Xi) {y - yi) = 0 , 

/C2 = d2{x - Х2У - 2d,{x - X2) {y ~ У2) - ä^{y - У2У = 0 . 

The system (40) takes a simpler form because of ^2 = ^3 = Ö and after calculating 
M, N, T, S from it we obtain 

D = MT- NS = (î Q^3 - ^Q^o î) i^pdi + 2ßod^) - 9(Xoßod2d^ 

It is obvious that the coordinate system W can be speciahzed in the unique way 
such that d2 = 1, d^ = ± 1 , OCQ = 1. Then ßg and d^ are continuous local functions 
on 93(1, 1). Denote by V{Dj) с ©(1, 1) the subset of all configurations Jf e ©(1, 1) 
such that the determinant D^ computed from (40) is non-zero with respect to the 
canonical coordinate system for , ^ . Then V^D^) is a non-empty open subset of 
S ( l , 1). In the similar way we obtain open subsets ^(^2), V^D^), ..., 1^(0з) 
of ©(1, 1); ртЩи 1) = lV{D,) u V{D2) u V{D,)] n [V{D,) u 7(^2) u V{D,)l 
5(*(1, 1) с Щ1. 1) is an open subset and we have obviously Щ1, 1) с ^ * ( 1 , 1). 
If J T Е5Г*(1 , 1), then the corresponding block .^ еГ1 belongs to 9Jl°; thus the 
objects Я ( ^ ) , б ( ^ ) , /ся(^), /CQ(^) are defined. Because the coordinates M,iV, ..., f 
of the block ^ satisfy (39) und (40), they must also satisfy the relations 

diL + d2M + d^N = 0 , d^R + ^2^ + d^T = 0 , 

d^L + d2M + d^N = 0 , d^R -{- ^28 + d^T = 0 , 
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Thus the non-zero triplets (D^, D2, D3), (61, 62. ^з) are proportional to the triplets 
(Ji , d2, < з̂), {dl, ^2? ^з)- (Cf. (26), (27)). Hence it follows easily, that the block .^ 
satisfies the requirements of Proposition 6 not only formally but also geometrically. 
Thus W(l, 1) = W*(l, 1) is an open subset vv'hich was to be proved. 

Now it is obvious that ^Л(1, 1) consists merely of orbits of dimension 6. We shall 
show that the corresponding orbit space 5ï(l, l) is diffeomorphic to an open subset 
of Я^. In this case we say that ^Л(1, 1) consists of cc^ orbits of dimension 6. Formu­
lations like that will be often used in the following. 

Let us denote by Щ\, 1) the orbit space of 33(1, 1). Let X G Ф ( 1 , 1) be a con­
figuration. (Let us remind that the plane A^ is oriented.) We denote the lines of the 
couple k^ by h^ and /z2 such that the following condition is fulfilled: if the lineHoßo 
rotates about HQ in the positive sense, then it coincides successively with h^ and hj-
Then we denumerate the lines g^, ^2 of /c2 in a similar way. Let us denote by ^ , Б, C, D 
the intersection points h^ x q^, h^ x q2, /̂ 2 x Qi, ^2 '^ Ч2 ^^ this order. Then the 
ratia X ~ HA : AB, ß — HC : CD communicate a diflfeomorphism ^ ( 1 , 1) -^ K -̂
Щ(1, 1) is an open subset of ©(1, 1), pan consequently, its image is an open subset 
ofK^, q.e.d. 

We can discuss all submanifolds Юl*(i, j) except Ю1*(0, 0) in the same manner. 
We can see without difficulties that each of the manifolds 5D1*(1, —1), Ш^[—\, 1), 
9Л*(—1, —1) consists of 00^ orbits of dimension 6 and each of the manifolds 
Ш?*(0, 1), a)l*(0, - 1 ) , 9Л*(1, 0), 9Л*(-1 , 0) consists of 00^ orbits of dimension 6. 

As for 9}l*(0, 0), let us prove the following proposition: 

Proposition?. / / ^бШг*(0, 0), then neither of the double lines /сн(^), кд{0) 
coincides with the line H{^) Q{0), 

Proof. If the double line (35) coincides with Я ( ^ ) ß ( # ) ~ ß{x - x^ -
— a{y — Уо) = 0 (see (21)), we obtain aD^ + ßD^ = 0, ßD^ — aD2 = 0, and from 
(26), (28) follows D^ : D2 : D^ = D̂^ : D2 : ^3 and Л = 0, which is a contradiction 
with the assumption ^ e Ш^\ We show in a similar way that кн{^) ф Я(^ ) б ( ^ ) . 
Now, let us denote by 93(0, 0) the set of all configurations {HQ, QQ, k^, /̂ 2} ^ ^^> 
where к^эНд, /c2 э бо? Hg Ф Ôo ^ ь ^i ^г^ real and non-parallel hnes such that 
k^ Ф HQQQ Ф /C2. Then 93(0, 0) is the domain of values of the representing frame 
{H, Q, kji, k̂ o] on the manifold Ш*(0, O). Indeed, let us choose a coordinate system Ж^ 
such that the coordinate axes x, j are parallel to k^ and /c2. Then we have k^ = 
= (x - Xi)^ = 0, /c2 = [y - у2)^ = 0. We can put J^ = ^3 = 0, ^^ = ^2 = 0 î"̂  
the system (40) and hence M ^ S - T - 0 , i V = -ß^, R = ßo, L = - 3ao , 1)2 = 
= RN - LT= -ßl Ф 0, 63 - LS - МК = ~2al Ф 0. Thus ^ G 9Л° and we 
obtain easily that 0 e 5[H*(0, 0). Since G preserves orientation of A^ we can see 
thatS(0, 0) consists of two orbits of dimension 6 under G. 
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ТЬеогещ 3. The manifold 50î* = U ^ * ( i J ) i-s composed of the following types of 
orbits: Шг*(1, 1), 9W*(-1, 1), ^ * ( l , - 1 ) , Ш1*(~1, - 1 ) consist of oo^ orbits of 
dimension 6 each; 9И*(0, 1), Ш%0, - 1 ) , 9Л*(Ь 0), 9Л*(-1 , 0) consist of oo^ orbits 
of dimension 6 each; Ш1*(0, 0) consists of two orbits of dimension 6. 

Let us go on and consider the submanifold Ш^ determined in Ш by the invariant 
relaiton A = 0 (see (37)). We have an invariant decomposition 

(42) дл''= (jm%ij), i,j = 1,-1,0, 

which is analogous to the decomposition (41). 

Proposition 8. Suppose ^е{Ш^ -^ Ш%0, 0)). Then 

a) there is a line of the couple ^я(^) ^hich is parallel to a line of the couple 

b) there is a line, either in кд[^) or in kq^^), which is not parallel to any line of 
the other couple. 

Proof. The first assertion follows from the geometrical signification of the relation 
A = 0. It remains to prove the second one. It is obviously valid for each submanifold 
W^(i, j) such that either i = 0 or 7 = 0. Let us suppose that ij ф 0 and b) is false. 
Then there is a translation of the complex plane СЛ^ which transfers kfj{^) into 
/CQ(^). From (34), (35) follows D^ : D2 • ^3 = ^ i • ^2 • ^ 3 . Taking into account 
(26) and (28) we obtain осВ^ + ßD^ = О, ßD^ — (XD2 == 0. The determinant of the 
last system is ß Ф 0 and hence a = ß = 0 and Я ( ^ ) = ß ( ^ ) — a contradiction, 
q.e.d. 

Let us consider the manifold Ш^(1, 1). As a consequence of Proposition 8, we can 
distinguish four equivariant objects Pi (^) , Pzi^), Ръ{^\ PÀ^^ on 5Ш (̂1, 1). These 
objects are determined by the conditions {pi(^) , Piif)} ^ ^н(^) . {Ръ{^\ pS,^)} = 
= k^^\ Pi{^) II Рз(^), and consequently Pzi^) 1 РЛ^)- A coordinate system 91^ 
will be called canonical for ^ G 9 J I ° ( 1 , l) if x = P i (^) , у = Pzi^)- ^^ canonical 
coordinates we have /сд(^) = xy = 0, /CQ(^) = ~2Di{x — XQ) (y — уд) — 1)з(у — 
- y^y = 0; hence D2 = D^ = 0, D2 = 0. ^1 + 0, ^^^з Ф 0. 

Let us choose a fixed .^ e 9Jl^(l, 1) and a fixed canonical coordinate system Ш"" 
for ^ . Let us denote by the letters di, di, OCQ, ßg the corresponding values of the 
functions D;, fîf, a, ß. Then the system (40) has the form 

(43) -2d^S = 3aoJi , 2d^N = ~3ßod^ , 

d^N - Id^S = 2ao^i ~ /io^3 . 2d^N + d^T = -Iß^d^ . 
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From the first two equations we obtain S = - f a o , N = ~j:ßo and the third equation 
implies 

(44) 2aod, - ßod, = 0 . 

Finally, the last relation (43) yields T = ßod^ß^ = {ßoyi2oto and L = R = 0; 
hence u^ = U4. = v^ = V4, = 0 and 

(45) D, = i^M-laoßo, b, = ^ ^ M - \a,ßo . 
2(XQ AOLQ 

We establish easily a geometrical signification of the condition (44): 

(44') R{p2{ä^), Ръ{^), PA{^), HQ)= ~l, 

where R{pi, Pi^ Ръ^ PA) will always denote the cross ratio of the four improper 
points of lines p^, Pi, Рз, PA,- (Also imaginary elements are admitted.) 

Thus the lines Pi (^) , Рз(^) depend on the other objects P2{^\ РАГ{^), H{^), ß ( ^ ) . 
The system (43) lets the function M indeterminate; thus the constructed objects are 
not sufficient for a representation of the manifold Ш^(1, 1). We have to construct an 
additional object independent of the previous ones. Let ^ e 9JÎ^(l, 1). There is 
exactly one J-element т(^) с t having as its singularity the improper point of the 
line Я ( ^ ) ß ( ^ ) . We have т(^) = {(x{dldx) + ßidjdy)) with respect to any W. We 
wish to find all complex (i-elements ""^ c= C^ such that 

b) ""̂  admits a singularity in СЛ^. 
The requirement a) leads to the relations aa + ßc = 0, ocb + ßd = 0 for homoge­
neous coordinates a, b, c, d of ""^^ and we can put a = fiß, с = —fia,b = Aß, d = 
= —Да, where À, fi are suitable complex numbers. The conditions (12) then have the 
form 

(12') и + fi{ßx ~ ay) = О , V + X{ßx ~ ay) = О 

and the condition b) implies AU — JIV = 0. According to (7) we obtain 

(4^) ^'^Ißiß ~ ^4^~\ ~~ ^l^lßzoc — v^a + V2ß ~ ^iß^ + 1^^\^ъ^ ~ ^iß^ — Ö • 

We can see that there are two J-elements ""^^^ ^"^2 ^ ^^ corresponding to the solu­
tions Я̂  : /il, /I2 • î 2 of (46), which meet our demands. Because of ad — be — Q 
each of those J-elements admits a pointwise singular line. From (12') we obtain 
a common equation of both singular lines in canonical coordinates: 

(47) y{^) = (aj; - ßxf + aßD^ = О . 

The equivariant object y{^) we have just constructed consists of two parallels (real 
or imaginary conjugate), which correspond to each other in a reflection of CA'^ in the 
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line Я ( ^ ) Q{^). Let us remark that after (44') the lines Pi (^) , p2{0^) are not parallel 
to HQ and, in canonical coordinates, we have aß Ф 0. Because i)i ф 0 the lines 
(47) are always mutually different. We see from (45) that D^ = Di + laß, and the 
condition ß i Ф 0 has the following geometrical signification: provided that the 
couple y(^) is real, let us denote by C, С the points of intersection ofy{^) with P2{^), 
and by Б3, B4. the points of intersection Рз(^^) x P2{^), pj^^) x P2(^)- Then the 
condition ß j Ф 0 is equivalent to the geometrical condition 

(48) ЯС^ = HC'^ Ф ЯБз . Я^4 , or HC^ = HC^ Ф ^HBi. 

Proposition 9. Let two real points HQ ф Qo ^^<^ v̂vo r^a/ non-parallel lines 
Р2 Э HQ, P4 Э QQ he given such that P2 Ф HQQQ ф p^^.Let у he a couple of parallels, 
either real or imaginary conjugate, which correspond to each other in a reflection 
of CA2 in the line HQQQ, In the real case let us suppose that у ф HQQQ and that the 
analogue of the second relation (48) holds. Then there is exactly one block ^ G 
еШ\\, 1) such that Я ( ^ ) = Яо, Qif) = ßo, P2{^) - Ръ P^{^) = PA. У{^) - 7-

Proof. Let us construct a real line Рз э QQ such that JR(P2? РЪ^ PA. ^OQO) = — L 
Let us draw a parallel p^ to p^, through the point Яо; put k^ = {p^, P2}, î 2 = 
- {рз, p^]. Then the conditions Я ( ^ ) = HQ, Q{0>) = QQ, p2{^) = P2. PA{^) - PA 
can be replaced by the conditions ku{^) = ^1 , ^<^Q(^) = ^̂ 2- L€t us choose a co­
ordinate system W such that x = p^, у = P2? then fc-^ = x}̂  = 0, /c2 = ~~2di{x — 
~ °̂ O) (.V — ^0) "̂  ^ъ{у ~ ßof = 0, where ao, ßo are the coordinates of the point QQ. 
The conditions of coincidence кн(^) = k^, /CQ(^) = /c2 lead now to the system of equa­
tions formed by (38), (39), (43). Our construction obviously quarantees that (44) 
holds and the system (43) possesses a single solution S, T, N as above. With respect 
to (38), (39) it remains to determine M. The hne couple у can be described in the form 
{^оУ ~ ßo^y + <̂ ô ô o = Ö, where с Ф 0. A comparison with (47) shows that D^ = с 
and from the first equation (45) we obtain a unique value of M. According to our 
construction we have D^ Ф 0. Owing to the formula (44) and to the analogue of the 
second relation (48) we see that с + 2ao^o + 0. Llence and from the second relation 
(45) we obtain D^ Ф 0. Thus the block ^.determined above belongs to 9Л°. One can 
verify easily that ^ e Ш^(1, 1) and that the primary geometrical requirements of the 
Proposition are satisfied. 

Theorem 4. The equivariant objects Я (^ ) , Q{^), P2{^), P4.{^). y{^) form a rep­
resenting frame on the manifold 9Jl^(l, 1) with values in CA^. The manifold Ш^{\, 1) 
naturally decomposes into four systems of 00̂  orbits of dimension 6. 

Proof. In Proposition 9 we have proved the one-to-one property and also found 
the domain of values of the frame. The mentioned systems of orbits will arise if we 
combine the real or imaginary case of the couple y{^) with the case of positive or 
negative orientation of the triangle Я ( ^ ) Q{^) B{^), where B{0^) denotes the 

1-68 



intersection point Pzi^) x PA{^)- Î ^ ^^ch orbit system the orbits are described by 
a suitable division ratio of three points, where the line P2{0) intersectes the parallels 
of y(^) and the line P4{^). 

Theorem 5. 

a) a)l^(l, - 1 ) = Ш1°(-1, 1) = 9Л^(0, - 1 ) = 9Л^(-1 , 0) - 0 
b) Ш%-1, ~1) = 0 
c) Ш%0, 1) = 9Л^(1, 0) = 0 

Proof. The assertion a) follows from the part a) of Proposition 7 and the assertion 
b) will be obtained by combining both parts of that Proposition. Assume that 
^ 6 Ш^(1, 0). We put the coordinate axes x , ? hito the lines of the couple kj^{^) in 
such a way that, in addition, the axis ~x is parallel to the double line kq^^). Then we 
have /%(^) ~ xy == 0, /с^(^) ^ (у ~ yqf = 0. 

By comparing that with (34) and (35) we obtain D2 = D^ = D^ = D2 = 0, 
D^D^ + 0. From (26), (27) follows L = R = 0, N = f = 0; from (23) we have 
N + ß = 0 and from the second equation (25') we obtain ß = 0; hence N = 0. 
Now we have D^ = MT — SN = MT— SN = 0 ~ â contradiction. Consequently 
501 (̂1, 0) — 0. The second relation c) can be proved in a similar way, q.e.d. 

It remains to discuss the submanifold Ш^(0, 0). It will be advantageous to in­
vestigate this manifold together with a new one. Consider an invariant decomposition 

(49) П(1) - m = 2,2 u £21 u £ 1 , u £02 u £20 u £10 u £01 u £00 , 

where £^̂  denotes the submanifold of all blocks 0 e T^{l) such that the rank of the 
system (13) is / at the point Я ( ^ ) and / at the point ß ( ^ ) . 

For max {/,7} = 2 consider another invariant decomposition 

(50) £,, = £,,(!) uf i , , ( - l )uß,XO) 

corresponding to the decomposition (17). (Let us remind that, in this case, exactly one 
of the points Я ( ^ ) , Q{^) belongs to ^ ° . ) 

Proposition 10. Let ^ е Г ^ ( 1 ) , H{^)EK{0), ß ( ^ ) G ^ ° ( 0 ) , and assume that the 
double line k^0) coincides with H{0) ô ( ^ ) . Then ^/zecwbfcx(^) (see Proposition 3) 
decomposes into the double line H(ßP) Q{^) and into another line 

(51) Щ ЕЕ T{x - хя) + f~T-3N- 3ß\ {у ~ y^y ~ f(D2 + Toe ~ ßN) = 0 . 

Proof. As /CQ(^) is a double line and /CQ(^) = Я(^ ) Q(^), we have obvious 
relations 

(52) ocD, + ßD, = 0, aD2 - ßD, = 0 . 
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The cubic x{^) is given by the equation 

(53) D{x) - Tx' - 3{N + ß) x'y ~ 3{S + a) xf + Mf ~ 

- 1(^2 + Ta- ßN) x^ + 3{D^ + ocN + ßS + 3aß) xy + 

+ 1(^3 + ocS - /^M) y^ = 0 , 

which follows from (52), (26), (27) and from the assumption Я ( ^ ) e к{^), i.e., 
D = 0. For the double line Я ( ^ ) Q{^) we have (ßx - ayf = 0. (We put for 
brevity X = X — Xjj, у — у -- Ун) Our statement must be now verified by a direct 
calculation. It remains to show that (51) cannot vanish identically. But in case that 
(51) vanishes identically so does (53) and, in particular, T=N-\-ß = S + oi = 
M = 0. The last relations can be written in the form f = N = S = M = 0, and 
from (25) we obtain L= R = 0. Thus the system (13) is of rank 0 at the point ß ( ^ ) — 
a contradiction. 

Proposition 11. The map 0^ -^ / (^) is an equivariant object on the manifold 

Ш%0, 0) u £12(0). 

Proof. It is obvious that Я ( ^ ) e x{0\ Q{^) e ^ ° ( 0 ) holds on both components 
of the manifold. It remains to show that /CQ(^) = Я ( ^ ) Q{^), 

a) Let ^ e Ш^{0, O), then the double lines /c^(^), кд(^) are parallels and thus the 
non-zero triplets (D^, D2, D^), (ß^, ^2? ^3) are proportional. From (26), (28) we 
have (52) and consequently /CQ(^) = k^i^) = Я ( ^ ) Q{^), 

b) Let ^ e £12(0) and let us suppose /CQ(^) Ф Я ( ^ ) ß ( ^ ) . Choose a '^canonical" 
coordinate system 9Г such that 3? = ^Q{^)^ 'У — Н(0) ß ( ^ ) . In canonical coordinates 
we obtain D^^ = D2 = 0, a = 0, D^ =¥ 0, ß =¥ 0. From (27) follows N = f = 0, 
and from (25') we obtain Л = 27V = 0. If we substitute these values into the second 
equation (24), then with respect to D2 = 0, D2 = 0, we obtain j5 = 0 — a contra­
diction. 

Proposition 12. For each ^ e 9Л^(0, 0) u £12(0) we have 

a) 1{0))KH{^)Q{^); 
b) ô ( ^ ) Ф Щ. 

Proof, ad a). Let us suppose l{0) \\ H{f) Q(^). Choose a coordinate system W 
such that 7 II l{^)- Then a = 0, j^ Ф 0, fij = 5з = 0, 62 Ф 0 follows from the rela­
tion kQ{^) II Я ( ^ ) б ( ^ ) 11 ? . From (27) we obtain M = S = 0, and from (25') 
L = 0. After (51) we have iV + Ŝ = 0, and (25') yields Я = /?, i.e., JR = 0. Thus 
^2 = M - I f = 0 - a contradiction. 

ad b). Let us choose a coordinate system Jt"" with the origin Я ( ^ ) such that x || / (^) , 
j ; II Я ( ^ ) Ö(^) Il kQ{^). Then as above, we obtain successively a -= 0, ^ ф 0, ß^ = 
= 63 = О, ^2 Ф О, i& = О, S = L = 0; hence M = S = L = О and i)2 = î iV. The 
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equation (51) transforms into -~-3Ny ~~ -|(RiV - ßN) = 0. We see from (25') that 
R ~ ß = 2Й, and finally, we obtain 

(5Г) Щ = y+N = 0, А^ФО. 

Since ß ( ^ ) = [0, ^ ] , iV Ф 0 we have Q{^) ф l{^), q.e.d. 

Proposition 13. Let HQ ф ßo be two points of A^ and I a A^ a real line such that 

11 HQQQ, I Ф QQ. Then there is exactly one block ^ e Ш1̂ (0, 0) u £12(0) such that 

H{^) ~ HQ, Q[0>) = QQ, l{^) - /. Moreover, ^££12(0 ) if and only if I inter-

sects HQQQ at the point HQ, or at the point ZQ given by HQZQ : HQQQ = 3 : 2 . 

Proof. Let us choose an Ш"^ with the origin HQ and such that ^ = HQQQ, X |j /. 
Now we can specialize W so that QQ = [0, 1]. Firstly we obtain four conditions (38) 
and (39), where we put x^ = Vi = 0, ao = 0, ßo = 1. It remains to determine 
M,N,S,T The condition ^еШ%0,0) и 2^2(0) implies /CQ(^) = Я ( ^ ) ß ( ^ ) . 
Thus /Cß(^) Il J and we obtain, as usual, Й = S — 0. Besides that we have a = 0, 
ß = 1 and thus M = 5 = 0. Further we can write I ~ y - yQ = 0, and the condition 
Z(^) = / imphes, taking into account (51) and (5Г), T = 0, N -= -ßQ. The block ^ 
is uniquely determined. We can see easily that L = 0, jR = 3 — lyQ, D^ == D^, = 
= D, = D, = 0 and D2 = {2yQ - 3) yQ, ß^ = 2(1 - уоУ. 

As ßo ф I we have jo - 1 + 0 and ^2 + 0; thus ß ( ^ ) e ^ ° (0 ) . Further the 
condition ^ G £12(0) is equivalent to D2 = 0; hence either yQ = 0 or yQ = f, which 
our Proposition asserts. It is obvious that all geometrical conditions are really satisfied. 

Theorem 6. The equivariant objects H{0^), Q{^), l{^) form a representing frame 
on the manifold 50î°(O, 0) u £12(0)- This manifold decomposes into 00^ orbits of 
dimension 5; each orbit is given by an invariant 

I = ё ^ М = D2 + Ta- ßN ^ ^ ^ 

H(^QÏ^) 2(аТ - ßN ~ ß^y 

where Z(^) denotes the intersection point of lines l{^), H{^) ß ( ^ ) . An orbit 
belongs to £12(0) if and only if, either /I = 0 or Я = f. 

Proof. Our assertion follows from the preceding Propositions; the formula can 
be deduced from (51). 

Let us remark that Theorem 6 completes our investigation of the manifold Ш 
(see (37)). 

Theorem 7. Each of the manifolds £12(1), - 2 i ( 0 ' ^ i 2 ( ~ l ) ' ^2 i (—0 ^̂  <̂ ^ orbit 
of dimension 6. 

Proof. We start with ^ e £21(1). Let us put the coordinate axes of a canonical 
coordinate system ^ï^ into the lines of the real couple /сд(^). From (34) we get 
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Dl Ф о, D2 =: /)з = о in canonical coordinates. From (26) follows L = R = 0 and 
(25') implies N - -3j5/2, S = - За /2 . If we substitute these values and also the 
value 0^ = 0 into the first equation (24) we obtain D^ = laß. Since Dj 4= 0 we have 
aß Ф 0, and thus neither of the lines of kfj{^) coincides with Я(#) ö ( ^ ) . 

Let now two points HQ Ф 6O ^^^ ^ couple к of real non-parallel lines crossing 
at HQ be given, Qo Ф k. Choose a coordinate system having the lines of the couple к 
as coordinate axes. Then the conditions H{^) = HQ, Q{^) = QQ, кц{^) = к will 
be satisfied in a unique way by the values L = R = 0, N = ~ ^ßgjl, S = — Зао/2 
and Т = (ßoYJlaQ, M = (ao)^/2^o- (The last relations follow from the second and 
third equation (24) with respect to D2 = D2 == D^ = D^ = 0. We also make use of 
the relation (38)). We can see easily that ^ e £21(1)' ^^^^ ^̂ "̂^ geometrical conditions 
of coincidence are actually satisfied. Now it is obvious that {Я(^), ß ( ^ ) , kji(^)} 
is a representing frame on the manifold £21(1) and the domain of values of the frame 
is an orbit of dimension 6. 

The manifold ^12^) can be treated analogously. 

Let us suppose ^ E 22i{—l); then the couple /сд(^) is imaginary conjugate and 
ß i = D2 = D^ = 0. Let us examine the uniqueness. Choose two points HQ ф QQ 
and a couple of non-parallel imaginary conjugate lines with the common point HQ. 
We can see easily that the coordinate axes can be chosen so that jT = HQQQ and the 
couple к is given by к = dx^ + y^ = 0, d > 0. The conditions Я(^) ~ HQ, .^ G 
G i ^ 2 i ( - 0 ' Ô(^) = Ôo. ^я(^) = ^ lead to the relations D^ = 0, ос = 0. From the 
first equation (24) we obtain S = 0, from (25') L = 0, and from (26) T = 0, Hence 
D2 = RN, Making necessary substitutions in the second equation (24) we obtain 
(R ~ ß){N + ß) = 0. Here R - ß = 2{N -h ß) according to (25'), and finally 
R ~ ß =: N + ß = 0. If WQ put QQ - [0, j^o] we obtain N = -ßQ, R = ĵ o- The 
condition of coincidence кд[^) = к yields, with regard to (34), D2 + dD^ = 0. 
Taking into account the values we have computed so far, we obtain D2 = —ßl, 
£)з = —MßQ and thus M = ßol^- We make sure easily that the block ^ just deter­
mined meets our demands. Thus the objects H(^), ß ( ^ ) , /c^(^) form a representing 
frame on the manifold £2i( - - l ) and the considered configurations form an orbit of 
dimension 6. The proof is quite similar for the manifold £i2(—!)• 

Theorem 8. The manifold i^2i(ö) consists of two orbits of dimension 5. The 
manifold £20(0) is an orbit of dimension 4. 

Proof. Let ^ G £21(0) u £20(0). An argument like that which we have used in 
the proof of Proposition 11 shows that kii{^) = H{^) Q{^). Unfortunately, 
the cubic я(^) is of no use in this case because it becomes the 3-fold line HQ. There­
fore, some direct computations are necessary. Let us choose two points Яо Ф бо-
A coordinate system Ш"" will be called canonical if HQ = [0, 0], QQ = [0, 1] with 
respect to Ш". From the requirements Я ( ^ ) = Яо, Ö(^) = Qo and ^ e £ 2 i ( ö ) ^ 
u £20(0) follows /CH(^) = HQQQ, and hence a = 0, ß = 1, D^ == D^ = 0. The 
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equations (26) imply M — S = 0 and from (25') and the second equation (24) we 
obtain (N + 1){R - 1) - 0; thus N = -1, R = 1, Hence the blocks 0 e £21(0) u 
u £20(0) with a prescribed position of the basic points Я(^) , ß ( ^ ) are, with respect 
to arbitrary canonical coordinates, uniquely determined by the values of the para­
meter T. Denote by 9Л(Яо, QQ) the set of all blocks satisfying the preceding require­
ments. Obviously each transformation from G = GÄ'^(2) leaving the points HQ, QQ 
invariant belongs to a connected subgroup Я, dim H = 2. The corresponding Lie 
algebra 1} is given by ^ — (^x^djox), x(djô}^) in arbitrary canonical coordinates. If 
we denote by cp the representation of the algebra I) in the space X(22i(ö) ^ -20(0)) 
we obtain, in canonical coordinates 

(p (x -^Лт^ -T, cp fx ^Лт= R + N = 0 for each 0 e Ш{Но, go) • 

By the integration we obtain that, for any transformation h e Я, the parameters T, T' 
of two blocks ^ , h . 0 E 501(Яо, QQ) differ only by a positive factor. Having fixed 
a canonical 9̂ "", we can see that Ш(Нд, QQ) decomposes into three orbits given by the 
relations Г > 0, Г = 0, Г < 0. As the group Я is connected, these relations hold out 
any variation of canonical coordinates. 

Obviously we have T = 0 if and only if ^ e £20(0)- Because GA^{2) acts transitively 
on the couples {HQ, QQ},W^ obtain both assertions of the Theorem without difficulties. 

N o t e . The following criterion can be deduced very easily: Let ^ , ^' e £21(0) ^ 
u £20(0) he given. Let l̂"" be a canonical coordinate system with respect to the basic 
points Я(^ ) , ö ( ^ ) ^^^ l^t ^Я^ be a canonical coordinate system with respect to the 
basic points Я(^ ' ) , Ô(^')- Then ^ and 0' belong to the same orbit if and only if 
sgn T = sgn T' in the corresponding canonical coordinate systems. 

Theorem 9. £00 = -^oi = ^02 = 0, 

Consequently, the manifold Го(1) does not contain any orbits except those we 
have found before. 

Proof. If the system (13) is of rank 0 at the point Я ( ^ ) we obtain M = N = L =^ 
= R = S=T=0, hence a = j5 = 0 and ^ G Г^ (0 ) (see (36)). Thus £00 = i^oi = 
= £02 = 0' If the system (13) is of rank 0 at the point Q{^), then from (23) L = - a , 
M = 0, N = -ß, R = ß, S = -a, T = 0, D^ = aß, D^ = -ß\ D^ = a^. As far 
as ^ G Г4(1), at least one of the determinants D,- is non-zero. Because D — 0, we 
obtain ^ e £20(0), a case treated in the preceding Theorem. Thus £^0 = £20(1) = 
= -^2o(-l) = 0- Let us suppose finally that ^ E 2^^, i.e., 0^ = В^ = 0. Choose 
a coordinate system 9V such that 'y = Я ( ^ ) ô ( ^ ) , then a = 0. From the equations 
(24) and (25') we obtain S = M = L=0, N= ~2ß, R = ~ß, D2 = RN ~ LT = 
= 2ß^ = О, and hence ß = 0 ~ a contradiction. 
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Let us pass over to the manifold Г4(0) given by the condition Я ( ^ ) = Q{^). Let 
us consider an invariant decomposition 

(54) Tl{Q) = 9I2 u « 1 u 9̂ 0 

built up after^the rank of the system (13) at the point Я ( ^ ) , and another decomposi­
tion 

(55) yÏ2 = 912(1) ^ Щ-1) ^ ^2(0) 

where 5^2(0 = {^ e Щ \ Я ( ^ ) e ^ ° ( 0 } , *̂ = 1, - 1 , 0. 
Because a = j5 = 0 on the manifold Г4(0), the equation of the cubic x{^) assumes 

a simple form 

(56) x(^) = Tx^ - 3Nx^y ~ 3Sxf -^ Mf ~ IJ)^^'^ + 

Let ^ e 9^2(1)- I^ ^^ P^t t^^ coordinate axes into the lines of the couple /c^(^), we 
obtain /ся(^) = xy = 0. In our canonical coordinates 1)2 = ^3 = ^' ^1 + ^' ^^d 
from the equations (26), (25') follows L = j R = i V = S = 0. We obtain 

(56a) K{f) = Tx^ + My'^ + SDiXj; - D^ = 0 . 

Here T Ф 0, M Ф 0 since i)i = ГМ Ф 0. /ся(^) and %(^) possess exactly two real 
common points, namely 

(57) Л,И=[0,У(о?/М)],Л,(^^) = [У(о?/Г),0], Al0>)^H{»)^Al3P). 

(The numeration depends on the coordinate system employed.) 

Theorem 10. The point Я ( ^ ) and the (non-ordered) couple [Ai(0^), A2(^)} form 
together a representing frame on the manifold 3^2(1)- That manifold is an orbit of 
dimension 6. 

Proof. Let us choose three mutually different points HQ, A^Q, A20 in A^". We alter 
the numeration of the points Л ^ , ^20 if'necessary so that for an admissible co­
ordinate system W we have HQ = [0, 0], A^Q = [Ö, 1], ^20 = [1? Ö]. Such a co­
ordinate system is uniquely determined. The conditions of coincidence Я ( ^ ) = HQ^ 
{A^{^), ^2(^)1 = {Л10, A20} can be written in the form Я ( ^ ) = HQ, A^{^) = 
= A^Q, A2{^) = ^20 In the coordinate system W we obtain ŵ  = t;4 = 0, L = 
= î  = ДГ = S = 0 and Dl\M = Z)?/T= 1 (Cf. (57)). Hence M = T - 1, D^ = 
= TM = 1 Ф 0. Thus the block ^ is uniquely determined and it belongs to 9t2(l). 
Consequently our conditions are geometrically satisfied. The domain of values of 
our representing frame consists of configurations [HQ, A^Q, A20}, where Яо^ю^^а 
is a positively oriented triangle; thus we obtain a single orbit of dim.ension 6. 
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Let now 0^ e 9l2(— !)• Choose a coordinate system Jî*̂  such that the imaginary line 
couple ^я(^) is given by the equation x^ + y^ = 0. Then D2 = —i^a, I)i = 0; and 
from (29) follows M = N, S = T. The equation (56) assumes the form 

(56b) Tx^ - ЗМх^у - ЪТху^ + Му^ - 3(М^ + Т^) (х" + j;^) 4-

+ 4(Т2 + М^)2 = О. 

According to Proposition 3, Ь), the cubic %(^) decomposes into three lines in CA^ 
because (56b) can not vanish identically. 

a) The lines of x(^) are mutually different. 
In fact, we find easily that the intersection points of /ся(^) and x{^) are, in canonical 

coordinates defined above, given by the relations 

x^ == (T^ -h M^) (T + Mi), у = ± ix . 

We have 6 different intersection points, which proves our assertion. 
Щ The lines of к{^) are all real. 
It is obvious that among the canonical coordinate systems there are coordinate 

systems with any prescribed direction of the axis x. Particularly, the axis x can be 
chosen so as to intersect x(^) at three different points of СЛ^. Then if we put у = 0 
in (56b), the corresponding cubic equation has the discriminant D = 532M^(T^ + 
+ М^ут~^. According to our choice we have D ф 0, thus D > 0, and the equation 
has three real roots Xi, X2,x^. Hence the real line x intersects x{^) at three real 
points, which proves the assertion b). 

c) The three lines of x (^) have no common point in A^. If such a point existed, 
we could choose a (non-canonical) coordinate system with the origin at that point. 
In our coordinates we should obtain, by comparison with (56), D^ = D2 = D^ =^ 
= 0 — a contradiction. 

ä) The three lines of x(^) have no common improper point. Let us choose a ca­
nonical W for which the axis x is parallel to a line of x(^) . If the other fines of x(^) 
were also parallel with x, then among the leading terms of (56b) only the term My^ 
would be non-zero — a contradiction. 

e) All lines of the cubic x{^) are mutually non-parallel. The last assertion will 
be proved as a part of the following Proposition: 

Proposition 14. Let XQ be a triplet of real lines having no common, proper or 
improper, point. Then 

a) If all lines of XQ are mutually non-parallel, then there is exactly one block 
^ e 9 l 2 ( - l ) such that x(^) = XQ. 

b) If two of the lines of XQ are parallels, then there is not any block ^ e ^2(~" 1) 
with x(0^) ^ XQ. 
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Proof. Let us put the coordinate axes x,y into two non-parallel lines of XQ. 
Here we can assume that the axis x is not parallel to the third line of the triplet. Then 
the separate Hnes of XQ are given by equations x = 0, y = 0, x + к y + q = О, 
^ ф О, and for the whole XQ we obtain 

(58) x^y + kxy^ + qxy = 0 . 

In our (non-canonical) coordinates we obtain (by comparing (56) with (58)) T = 0, 
M = 0,N = -À,S= " Ы , where Я Ф 0. According to (25') we have L = 2kÀ, R = 
= —2Я and hence D^ = ~kl^, D2 = 2Я ,̂ D^ = -2 /c^P . If two of the lines of XQ 
are parallels, then к = 0 and D^ = DT, = 0. Hence D = 0, which is contrary to the 
condition ^ e ^ 2 ( " 0- ^̂ ^ ^^^ opposite case the equation (56) takes the form 

(59) Àx^y + kXxf - Л^х^ ~ kk^xy - k4^f + кЧ^ = 0 , 

X = X - XH , У = У - Ун • 

Let us denote by F(x, y) the left side of the equation (58) and by G(x, y) the left side 
of the equation (59). The condition of coincidence x{^) = XQ is given by the relation 
G(x, y) = ÀF(X, У) and hence 

{dxY ' {dyf ' дхду 

From here we obtain 

Уя + Я = 0 , Хя + /сЯ = О , /сЯ ф (? = О . 

These equations together with the preceding ones uniquely determine ^ . Taking into 
account the assertions a) — d) proved above we can see that Proposition 14 defines 
the domain of values of the object x{ß^) on the manifold 9^2("~ !)• 

Theorem 11. The object x(^) is a representing frame on the manifold 9^2("~l)-
The manifold 9^2(~~l) ^^ ^^ orbit of dimension 6. The isotropy group under G 
at each point ^ e 9^2(~ 1) i^ a finite cyclic group of order 3. 

P roo f is obvious. 

No te . The last assertion of Theorem 11 admits an inversion: the only blocks 
^ еТ^. whose isotropy groups are cyclic of order 3 are the elements of the sub-
manifold 9^2("~ !)• Iî  order to prove it, we have to perform the complete classification 
of orbits of Г4 beforehand. 

Let ^ e 9^2(0). Choose a coordinate system 91^ with the origin Я ( ^ ) such that 
jT = кн{^). Then D2 Ф 0, Di = D3 = 0, and from the equations (26), (25') follows 
M = S = L = 0, D2 = 2N^; thus iV Ф 0. The equation (56) has the form 

(56c) x(^) = Tx' - 3N^y - 3N4^ = 0 . 
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Thus к{^) decomposes into the double line x^ = 0 and into another line 

(60) r(^) = Tx - 3iVy - 3iV̂  = 0 , N Ф 0 . 

Obviously r(i^) 1 kji{^), H{^) ф r{^). 

Proposition 15. Let two real non-parallel lines Гд, k^ and a point HQ be given such 
that HQ G UQ, HQ Ф TQ. Then there is exactly one block ^ E ̂ 2(0) such that Я(^) = 
= HQ, / С Я И = kQ, r(^) = Го. 

Proof. Choose a coordinate system 91^ with the origin HQ suchthat 3Г = /CQ, 
3c II Го. From the conditions of coincidence we obtain easily M = S = L = 0. If 
Го = 3; - Уо = 0. Уо + ö, them Т = О, N = -уд, R = -2уд and D2 = 2у1 Ф 0. 
Hence we obtain our assertion and also the following Theorem: 

Theorem 12. The equivariant objects H(^), кн{^), r(^)forma representing frame 
on the manifold 9^2(0)- The manifold ^2(0) ^^ ̂ ^ orbit of dimension 5. 

Let us consider the case ^ e^^. Choose the origin of the coordinates at the point 
Я(^ ) . According to Di = D2 = 1>з = 0 the equation (56) implies 

(56d) x{^) = Tx^ - 3Nx^y - 3Sxy^ + My^ = 0 . 

The relations D^ = D2 = D^ = 0 can be re-written as TM = NS, N^ = - 5 T , 
52 -= -^MN, and hence we can deduce easily that %(^) is the threefold line (Tx + 
+ Myf = 0. 

Let a point HQ and a real line qQ э HQ be given; put 5^(Яо, qg) = {^ еШ^] Я ( ^ ) = 
= Яо, У({^) = ql}. If we choose a coordinate system Sî'̂  with the origin Яо such that 
X 11 qo, then for any ^ e ЩНд, qo) we obtain T=N = S = 0, L=R = 0, u^ = 
= f4 = 0. The blocks ^ G 5^(ЯО, ^o) are thus uniquely determined by the parameter 
M 4= 0. We find easily that a dilatation from the origin Яо, x' = Ax, y' — Xy, 
preserves the set 9fl(Яo, q^, and the parameter M is subjected to the transformation 
M' = ЯМ. From here we deduce that 9^(Яо, ^o) is an orbit of dimension 1 under G. 
From the preceding we obtain 

Theorem 13. The manifold Ш1 is an orbit of dimension 4. 

The p r o o f of the following Theorem will be left to the reader: 

Theorem 14. The point H{ßP) is a representing frame on the manifold ^XQ. The 
manifold ^0 ^^ an orbit of dimension 2, its elements are subalgebras of ga(2). 
Each subalgebra ^ е^Яд determines an isotropy group with respect to the action 
of G in the plane A^, namely the isotropy group of the point H{0^). 

(To be continued) 
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