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In this remark I merely show that a natural generalization of the notion , s-jet”
leads to natural non-trivial problems.

0. In the study of the differentiable maps f : M" - M™, M" and M™ being differen-
tiable manifolds, the fundamental notion is that of the jet of a map. The set of maps
£ g, ... : M" - M™such that j3(f) = j3(g), p € M" being a fixed point, is decomposed
in equivalence classes, f and g belonging to the same class if and only if j;“( f) =
= j3*!(g)- If M™ carries some structure” it is possible to consider a more profound
classification of the maps. By a structure I mean something like this: The p"™-velocity
in M" at x e M" is an r-jet of R? into M" with the source 0 and the target x; let
T;(M", x) be the set of p"-velocities in M" at x. Now, let W be an affine or vector
bundle over M", W(x) being the fiber ober x € M". The structure is the set of maps
o(x) : T(M", x) > W(x). For example, the affine connection on M" provides such
a structure, W being the affine tangent bundle and p = 1.

Let us restrict ourselves to the very simple case M" = R", M™ = R™, n < m.
Let f, g : R" » R™ be maps such that j§(f) = j3(g) is an invertible jet with the source
0 e R" and the target 0 e R™. Let t" = R™ be given by (df), (R"). Introducing the
coordinates x* (i = 1,...,n) in R” and y* (x = 1, ..., m) in R™ such that 7" is given
by y"*! = ... = y™ = 0, our maps are given by

(0.1) Y=, =g,

Consider the numbers

(0.2) Lo :<wa—_—1-)>, a;=1,...,n.

ay...as+1
° ox™ ... 0x"*' ),

*) This work was partly supported by the National Science Foundation through research
projects at Brandeis University (Waltham, Mass., U.S.A.).
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Let vy, ..., v,,, be vectors in t", the coordinates of v, being (vl, e 13,0, ...,0).
Define the vector vy * vy * ... % v, by
(0.3) [opev%.oxv JP= Y o, VT Ui
a;i=1,...,n
[w]” being the coordinates of the vector w. This definition does not depend on the
considered coordinate systems.
Let Lbe a linear subspace of R™ through 0. We say that f, g belong to the same

(s + 1)-jet mod L if v, *...* v,y € L for each (s + 1)-tuple vy, ..., v54, €7" If
= 0eR™, then j3"'(f) = j0+1(g) mod L, is, of course, equivalent to j§"'(f) =
s+ 1
‘Jo ( )

This notion is of some use in the theory of deformations of submanifolds of
a manifold S endowed with a Lie group G which acts transitively on S. Let M, M,
be two submanifolds of S, and f: M; — M, be a diffeomorphism. Denote by G(x)
the isotropy group of the point x € S, (x) = ® being its Lie algebra; suppose
dim 6(x) = r. Let & be the manifold of r-dimensional subspaces of ®, and
consider the maps ¢; : M; » G given by ¢(x) = 6(x), xe V.. Let M = | 6(x) =

xeS

< 6); each map y : S — S given by y(x) = gx, g € G, providesamap I' : M - M
given by I'(®(x)) = G(gx). Denote by {I'} the set of such maps. We say that f : M, —
— M, is the deformation of order r if, for each x € M, there is an element g, € G
such that ji(¢,) = ji(I' @), I’y € {I'} being induced by the map y(y) = g,y. It may
well happen that, for some r, each diffeomorphism f : M; — M, is the deformation
of order r, however, f being the deformation of order r + 1, there is an element g € G
such that f(x) = g(x) for each x € M,. As the space 8 has the structure of a vector
space, we may apply the notion of our generalized jets to obtain non-trivial types of
correspondences.

In what follows, I shall study two very simple examples of this general situation.

1. Let us consider two affine spaces 4", A" and the vector spaces V", V" associated
to them. Futher, let M" = A", M'"" = A" be two manifolds, and f:w —» M’ be
a diffeomorphism of a neighborhood w = M" of a point p e M". Denote by ", 7"
the tangent vector spaces of the manifolds M", M'" at the points p and f(p) resp.

Theorem 1. Let us choose

(1) a diffeomorphism F : Q - A", Q < A" being a nelghborhood of the point p,
such that Flone = f

(2) two vector fields v, w on Q such that v,, w, € 1". The vector

(1.1) v,*w, = [o,w], + [w,v'],,
where
(1.2) v, = (dF); ' (dF), 0., W, = (dF); ' (dF),w, for xeQ,
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depends only on ji(f), (dF),, v, and w,. We have
(1.3) vk W, =W,k 0,, v, *(aw, + a'wy) =a.v,*xw, + o« v, kW,
for v, w,w,et; oo’ €R.
Proof. Choose the following ranges of indices

Lj,...=1..,n; af,...=1..,r; AB ..=r+1,...,n,

and use the summation convention.

In the spaces A"and A™, let us choose the bases M, Jy, ..., J,; M', J{, ..., J. such
that: (a) p = M, f(p) = M’;(b) Jy, ..., J,and Ji, ..., J; are the bases of 1" and 7"
resp.; (¢) (dF), (z'J;) = z'J; for each z', ..., z" € R. In some neighborhood of the
point p, the manifold M" is given parametrically by

(1.4) xt=fit, ..., 1.
Let us suppose that the point p corresponds to the values t' = ... = " = 0, i.e,
i of’ i
(19 (=0, (L) =at.
at* /o

(f%)o denoting f(0, ..., 0), and &' being the Kronecker symbol. The other manifold M”"
and the map f : w — M'" are given, at least locally, by the equations

(1.6) yi=gi(t .. 1)

where

(17) (4 =0, (%f_): 6.
The map F : Q@ — A" be given by the equations
(1.8) yi=hix' .., x"
with the obvious conditions
. oh' .

(L9) () = 0, (5);_)0: 5
The condition F = fon Q n w is expressed by the identity
(1.10) gi(tt, .. ") = (I ) (S s )
for small |#*]. Derivating both sides of (1.10), we get

f?_g_" _oh'ofi ¢t _ ﬂ%@ﬂ‘ + oht o7

o oxior’ orol  Oxioxkar o | ox or o
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ie.

2 i 27,1 200
(1.11) 09T Z (N (9T
ororr), \ox*oxt), \orot’),

The vector field v on @ be v = vi(x?, ..., x") J,, i.e.

(1.12) v ="v(x", .., x") a_.
\ axl
We obtain
. onl 9 : ohl 0
1.13 dF), v, = v(x!, .., x")— —, v =0vi(x', .., x")__ —
(1.13) (dF) ( )6x‘ P ( )ax' P
and analoguos equations for the vector field w = wi(x', ..., x") J,. Further,
i Apk 2k Ak AR
(1.14) [v,w']:via—w,—?ﬁfa——l—viwj a‘h,—a———w'avv,%_—a—,
oxt ox’ ox* ox' ox’ ox* ox’ oxt ox*
, _ovt on* o N i A . owk ol o
[wo]=w— — + W — =
ox*' oxJ ox* ox' ox? ox* ox’ ox*' ox*
and we get
. . o2 h* 0
1.15 v, w | + [w, 0], = 2(v), (W — )
(119 [0+ D], =260 0 (575) 5

as a consequence of (1.9). According to the supposition (v*), = (w*), = 0 and (1.11),
we have

azgi aZfi
1.16 v, xw, = 2(v%), (W - J.,
(L16) / p* Wy = 2% () {(iﬁ“ aﬂ’)o <az“ a:l’)o} ‘

the validity of the equations (1.3) being easy to see. Q.E.D.
Let us write #; 4, A = (dF)p, instead of * if there is the possibility of confusion.

Theorem 2. Be given manifolds M", N" in A" and M, N'" in A’ Let pe M",
q € N" be fixed points and o = M', o' = N" neighborhoods of p and q resp. Be
given diffeomorphisms f : @ — M", f' : @' > N, ¢ : @ — N'; ¢(p) = q. Without loss
of generality, we may restrict ourselves to the case o' = ¢(w), all considerations
being local. Consider the map ¢’ : f(w) — f'(") given by the commutative diagram

M > o / flw)y e M
¢ @’
N5 o) = o' f(@) < N7 o
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Denote by i : M" — M", i" = M"" — M the identity maps. Let us suppose

(1.17) i) =730) s Jie(i') = ifelo).
Then

(1.18) ji(p)(i,) = ji(r))((p’)

implies

(1.19) Vp*pgWp = Up¥p g Wy

foreachv,, w,e 1" and each A : V" — V' such that A
for each v,, w, € 1" and at least one A, we have (1.18).

o = (df),. If (1.19) is satisfied

Proof. The proof follows directly from the explicit formula (1.16).

Theorem 3. Let M" < A", M'" = A’ be manifolds and f:w — M be a diffeo-
morphism, = M" being a neighborhood of the point pe M". Let A:V" > V™
be a non-singular linear transformation such that Al = (df),, and let 0 + v, e 7"
be a fixed vector. The vector V = v, x, 4 v, has the following geometrical significa-
tion:

Let y: (-—1, 1) » M" be any curve through p; suppose e.g.. 7(0) = p; which is
tangent to v,; i.e. the vectors v, and (dy)o (1) are linearly dependent. There ise > 0
such that y{(—¢, €)} = w. Let us define the curve y' : (—¢, &) > A" by the formula
Y(t) = (A7fy) (1) for t e (—e, €). Of course, jo(y) = jo(y'). There are three possible
cases:

A. V= 0. Then j3(y) = j5(¥")-

B. V%0, Vand v, being linearly dependent. Then jo(y) =+ j3(y'), but there is
a small number &;, 0 < &, < &, and a diffeomorphism & : (—&,, &) = (—¢, &) such
that jo(v) = jo(v") where y"(t) = (y'0) (1) for te (—¢y, &)

C. Vand v, are linearly indepedent. Then j3(y) # j5(7') and there are no &, and &
satisfying the condition B. Let A" * be any hyperplane in A" which does not contain
the vectors V, v, in its vector space, and let m : A" — A" be the parallel projection
in the direction V. Then ji(ny) = j&(ny’).

Moreover, in the case B there is no projection n satisfying the condition C.

Proof. The proof of this theorem is more simple than its statement. Let us keep
the notation of the proof of Theorem 1. The curve y be given by

(1.20) t*=c1), te(—1,1); ¢(0)=0,
i.e., in the linear coordinates in A", by
(1.21) ' xt = fic(1), ..., () = Fi(¥) .
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The curve y’ is given by _ .
(1.22) x'=g'(c'(®), ..., (1) = G(1).

Because of (1.5) and (1.7), we have

(Fi)o — (Gi)o ) (dF) _ 5; <d*c _ dGi ’
dt /o dt/, \ dt J,
Le. jo(y) = jo(¥"). Of course,
(123) vp= o —d—cj Ja’ V = 2@2 E _c_iiﬁ az(gi —f') Jia
dt /, de Jo\dt J,\ orrot* )/,

¢ ¥+ 0 being a real number. From

aZFi _ aZfi c—ic—a —d_C_ﬂ N dfl d2ca
ot* oot dt dt  drt de?

and the similar equation for d*G’/d?, we obtain

2 i i
(1.24) GG —FN, Ly
. dt2 o 2Q2

If V = 0, we have (d*G'[dt?), = (d*F’[dt?), for each i, and A is proved. Now, let us
consider the case B, i.e.

(1.25) V=a<£) J;, 0+0eR.
. dt /o

Let 6 = §(t) be an arbitrary function which is defined for # € (—¢,, ¢,) and is such
that 6{(—¢,, &)} = (—¢, &) and .

2
50 =0, (¥) =1, (L) -_ 2,
dt /, de* J, 20?

The curve y” = '8 is given by H(f) = G*(5(t)), and we have
». ; ; dH! dG* d2H! d2G? o [dG*
(1.26) (H)o = (G')o , - (49, (& ) = (€9 - o (49
dt /, dt /o dt* /o de® J, 20"\ dt /,

ie.
dZHl' _ dZFi
az ), \d® J,

substituting (1.25) and (1.26;) into (1.24). The case C is obvious from (1.24).
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2. The goal of this paragraph is merely to show a utilization of our *-multiplication
which may lead to natural non-trivial problems in areas which are considered to be
“known’.

Let S be the set of surfaces M in A3 such that at each point p € M there are exactly
two asymptotic tangents. Let f: M — M'; M, M' € S; be a diffeomorphism, and
denote by 7(p) the tangent plane of M at p e M. The map f is called the p;-deformation
(i=12 3) if for each point p e M there is a linear transformation C,: V3(A3) —
— V3(A4%) such that C,z(p) = (df), and =, (¢(p)) (1) = trivial zero-vector space;
(2) = one-dimensional tangent vector space at p; (3) = an asymptotic vector space
at p. Here, V*(4?) denotes the vector space associated to A%, and #(L) is the set of
all vectors 1y = 1,51, 1, € L.

Theorem 4. (1) If f: M — M’ is a p,-deformation (i.e. a deformation of second
order), the surfaces M, M’ areequal up to an affine collineation of A>.(2) Let M € S
be given. The couples (f, M') such that f: M — M’ is a p,-deformation exist and
depend of five functions of one variable. (3) The triplets (f, M, M") such that f : M —
— M’ is a us-deformation exist and depend on seven functions of one variable.

In (2) and (3), we suppose that M and M’ are not equal up to an affine collineation.
The generality is to be understood in the terms of Cartan-Kuranishi’s theory of
systems in involution.

Proof. Associating to each point p € M the frame A4, J, J,, Jysuch that 4 = p
and J,, J, are tangent vectors, we may write (at least locally) '

(21)  d4 = 0'J, + 0*J,, dJ, = olJ; + &), + 03J5,
dJ, = olJ; + 02J, + @35, dJ; = i), + 03], + 03],

with the integrability conditions v

(2.2) do' = o’ A 0}, dol = Awl; i,j=1,...,3.

Our surface is given by the equation

(2.3) ®*=0 ,

with the integrability conditions

(2.4) o} = ao' + fo’, o) = po' + yo?.

The vectors J,, J, being asymptotic, we may choose the frames in such a way tﬁé.t

(2.5) 07 =0, 0=o0", .

the integrability conditions being

(26) 202 A @' + (0] + 0] —03) A 0* =0,

(0] + @3 — 03) A ©' + 205 A @ =0.
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The surface M’ be given by the equations (23'), (2.5") and the diffecomorphism f by
(2.7) =0, *=0;
we use the notation
(2.8) =0 - t=o0-of.
The differential df being now given by
(df) (x'J, + x2J3) = x'J} + x2J5
let C: V* — V? be given by C(x'J,) = x'J}. We have
2.9 2 (0" + 0*Jy) xp (0T + 0?T,) =
= (rjo' + 130°) J, + (rjo' + jo?) J, + (o' + 1e?) J;,

this equation being deduced from the expression C d24 — d?4’ following the proof
of Theorem 3. Finally, from (2.7) and the obvious equation 7> = 0 we get

(2.10) i = do' + b'o’, = bo' + cw*; i=1,23.

(1) The triplets (f, M, M’) such that f : M — M"'is a p,-deformation are given by
the equations (2.3), (2.5), (2.3’), (2.7) and

(2.11) =un=1t=1=13=13=0
with the integrability conditions (2.6) and
(212) = @'Ati=0'ATi=0, o' A=A =0,

1, 3
o' A=A =0.

From (2.12), we obtain tj = 73 = 73 = 0, and the surfaces M, M’ are equal up to
an affine collineation A*> — 4>, the systems (2.1) and (2.1') being equal.

(2) Let M e S be given, i.e. the left-hand side forms in (2.3) and (2.4) are known.
The couples (f, M") such that f: M — M’ is a p,-deformation and =, (1) = (.) J,
are given by the system (2.3"), (2.7) and

(2.13) R B N
with the integrability conditions
(214) o'AT + AT =0, o} Al (00 + po?) At}=0,

73 A @f + (B’ + y0*) A 12 =0, (20" + w?) A (13 —1}) =0,

(Bo' + y0®) A 13 + 15 A (20! + pw?) =0.
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This system is in involution, the determinant of the polar matrix being equal to

3

wj(w'o} + 0’03) (rjo; — wit)).

(3) The triplets (f, M, M') such that f : M — M is a ps-deformation and *, (t) =
= (.) Jy, J; being an asymptotic vector, are given by (2.3), (2.5), (2.3"), (2.7) and

(2.13) with the integrability conditions (2.6) and

(2.15) o' ATl A =0, AT+’ AT3=0,

2
A+ ATi=0, o' A -0 AT =0,

o? A (3 — 1) =0.
The determinant of the polar matrix is
20" (0?)* ('t} — ©’13),

and the system is in involution. Q.E.D.

3. Inthis paragraph, we shall describe the set of (so-called special) diffeomorphisms
f:Q— A, Q = A3, with this property: there is a vector field ¥ on Q such that
vk a,w = (.) Vfor any vector fields v, w on Q. The *-multiplication being commuta-
tive, it is sufficient to replace the considered property with a weaker one: vk, 4,0 =
= (.) V for each vector field v on Q. The only diffeomorphisms f: Q — 4* with
vk, 4,0 = 0 for each v on Q being the affine collineations, we exclude them from

further consideration.

To each point p € Q, let us associate a frame 4, J, J,, Jyin A and 4', J}, J3, J;
in 4" such that 4 = p, A" = f(p) and (df), (x'J;) = x'J;. Then we have the equations

(3.1) dA = o'J;, dJ;=lJ;; dA' = o'VJ;

i

with the integrability conditions

(3.2) do' =’ A 0}, do}= oA ol;

i

do' = 0¥ A 0}, dof =of Ao,

the map f being expressed — see (2.8) for notation — by
(3.3) tl=12=13=0.
Of course, we suppose

(3.4) o' A 0P A @ £0.
It is easy to obtain — see (2.9) — the formula

(3.5) (') *7,a/(@'T;) = drjo’J; .

87



Let f be special, and suppose that the vector field V coincides with J;. The special
diffeomorphisms f satisfy the system (3.3) and

(3.6) =t =tl=1=11=32=0.

The integrability conditions of (3.3) and (3.6) are

(3.7) o' AT P AT+ AT =0,

(38) wiyATI=wiATi=0s AT =0 AT =0y ATy =0)AT3=0.
The map f being not an affine collineation, we have

(3.9) 7 +£0 foratleastone i=1,2,3.

This assumption and (3.8) lead to

(3.10) w3 A 0y =0,

and there is a 1-form 0 such that } = a,0, w} = a,0. We have

dJy = 0(aJ; + a,J,) + wils,
and we may specialize the frames in such a way that
(3.11) o3 =0.

Further, we have dwj = w} A (0] — »3), and the case w} = 0 is geometrically
significant. Let us introduce the following types of correspondences:

Type I is given by the system (3.3), (3.6) and
(3.12) 0y =w;=0;

Type Il is given by the system (3.3), (3.6) and
(3.13) 0:=0, w+0.

First of all, let us determine the correspondences of type I. For o' = »® = 0,
we have

d4d = *Jy, dJ; = (03)41zwz=0 I3,
dA’

COS.]g 5 ng = (wg + Tg)wl=w2=0 J’3 .
i.e., both the points A, A’ run along a line. It is easy to see

Theorem 5. The special diffeomorphisms f:Q — A" of type 1 are given, in

suitable coordinate systems in A® and A3, by
k3

(3.14) x'=ax+ by, y=cx+ey, z'=0¢(xyz).
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Let us consider type II. From (3.8), we obtain
(3.15) = a0k, =00}, 1=,

and we have o, = a, = o3 = 0 only for affine colineations. Further, w} A dw} = 0,
and such a function t exists (at least locally) that @} A dt = 0.df being the differential
of our map, let us introduce the affine collineations C = C(p): 4°> —» 47, pe Q,
byCA= A, CJ; = J, = (df)(J;). Weget dC . A = 0,dC. J; = ayw3J5, dC . J, =
= a,wiJ%, dC . J3 = a;w3J;. The affine collineations C depend on ¢ only, and if the
point A runs through the plane given by &' + a,&% + 3E% = 0 in the local
coordinates A + E'J, + &*J, + E3J;, Cis fixed. Roughly speaking, we get two
one-parametric systems of planes o(t), () in a 1-1-correspondence in A* and A"
resp., and our diffeomorphism is the union of co' affine collineations between the
couples of corresponding planes. This being done, we have only to consider the
possibilities for the structure of the families a(f), «(f) and the structure of the family
C = C(f) : o(t) - o/(z). To obtain the precise statement, let us introduce the following
sets of homeomorphisms f: Q — 43, Q < 4° (we present only the types of these
maps; in each case, we must establish the conditions for the functions in the formulas
in order to obtain really a diffeomorphism — not a map only; this is left to the reader):

(a) fe®, is given by

, 2
(3.16) x = g,(w) + u dg,(w) . d (pl(w)’
dw dw?

2 2
y=¢aw) +u dq:izw()w) +0 d (;pngw)’ z = qs(w) +u d(gigw) +0v d:’;gw) 3
(b) f e @, is given by
(3.17)
dey(w)

x =u@w)+ v , },:l,(,,(w)+bd‘Pz(“) :=u§03(W)+Ud(P3(W);
dw dw dw

(c) fed;is given by

(3.18) x=g@,w+u+v doy(w) ,
dw

dos(w)

y=0)w)+ v = @3(w) + v—>-3
dw

dw
(d) fe d, is given by

(3.19) x=u-+ve(w), y=0v0w), z=00sw);
(e) fe s is given by

(3-20 x=u+ ¢, (w), y=v+ 0w, z=0sw).
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Theorem 6. The special diffeomorphisms F :Q — A", Q < A3, of type 1l are
constructed as follows: Take two diffeomorphisms f:Q — A%, f':Q — A'3;
Q < A% fe ®, f' € &; (the values of i, j being specified below) such that the map
F: f(Q) » A" given by the commutative diagram

A () —— A

N

be a non-linear diffeomorphism. The diffeomorphism F is special of type 1l in the
following cases: (1) fe @, f' € ®y; (2) fe D,, f € Dy; (3) f€ D3, f' € Py; (4) fe s,
fedy; (S)fe Dy, [ €Dy (6)f€ Ps, f' € &s; (7)f€ Ps, f' e D,

Author’s address: Praha 8 - Karlin, Sokolovska 83, CSSR (Matematicko-fyzikalni fakulta
Karlovy university).
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