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YexocaoBankuii MaTemaTuyeckuii kypuama, 1. 12 (87) 1962, Ilpara

DIRECT DECOMPOSITIONS OF LATTICES, II

OT1oMAR HAJEK, Praha
(Received June 4, 1960)

The main result of this paper is that the completion by cuts of partially
ordered sets with O, I is multiplicative; i. e. that

N ~
PyP, = PP,

where P denotes direct product and ~ cut-completion. This is then applied
to an analysis of the Glivenko-Stone theorem.

We shall, in general, use the notation of LT') with some exceptions. P will mean
a p. o. (partially ordered) set. In P, a is the set of x < a (M-closure); U, N and < are
set-joins, meets and inclusions, reserving v, A, < for the lattice operations; § is the
Kronecker delta,
5 = \/0 .if a*b,
NI if a=b;
P is the completion by cuts of a p. o. set P. The direct (““cardinal” in LT) product of
p. 0. sets P, (ae A + @) will be denoted by P,P,; and in P = P,P, the equality sign
“means “‘is isomorphic to”; if then x € P and [x,], correspond, we shall write x =
= [x,] (and also use [x,],.4 or [x,] merely).

1. CUT-COMPLETION OF DIRECT PRODUCTS
The following lemma is easily verified:

Lemma 1. Let x, = [x3],c4 € P4P,. Then \/x, exists if and only if /x5 exists for
* each a € A, where upon b b

\b/xb = \b/[X’,i]a = [Vxalas
b
also dually.

Let a p. o. set P have extremal elements, and P = P,P,; then every P, has extremal
elements, so that every

€, = [5?]@,4 &
1) G. BIRKHOFF, Lattice Theory, 2nd. ed., New York 1948.
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is in P (the central elements — see LT, 11, §9). Then the set of all these e, generates
a complete atomic Boolean subalgebra of P. Also, using the isomorphism of P =
= P,P,and lemma 1 repeatedly, we see that for any x € P there exist x A e, x Vv e,
etc., in P, and that quite generally

Lemma 2. x = V(x A e,) = A(x v e}) forall xeP.

Lemma 3. If e is central in P and \x, exists, then

e AVx, = V(e x,);
also dually.

Proof. There is a direct decomposition P = PP, in which e = [1, 0]; let then
X, = [x{, x§]. Using lemma 1 twice,

e A Vx, =[1,0] A V[x{,x5] = [1,0] A [Vx{,Vx3] =
= [Vx4,0] = V[x{,0] = V([1. 0] A [af. x{]) = V(e A x,).

We recall that (cf. LT, IV, §§ 5—7) X € P if and only if X = X** < P (“closed”
subset); also that
Lub. of X, in P=(UXx,)*",

g.l.b. of X, in P =X,

(all X, € P); finally that the injection P — Pis x — ¥ = x**. In a series of italicised
statements we will prove our main result:

Theorem 1. Let P be a p. o. set with extremal elements, and P = P,P,. Then
P = PP, under an extended map.

(More explicitly, if f is the isomorphism P — P,P,, and ¢ the isomorphism P —
— PP, to be constructed, then g is an extension of f, i. e. f < g.)

(1) As before, form central elements e, = [§9];.4. Using the lemma of LT, II, § 8,
we may and shall identify P, with &,; and then, in x = [x,], the x, is x A ¢,.

(2) If X € P, then (U (X n¢&,))* = X*. Forlet ye(U(X n&,))* Letxe X, ae A.

acA
Then y = x,, for all a; thus y = [y,] 2 [x,] = x, for all x € X; thus finally y e X*.
(3) If X € P, then (U(X n&,))** = X** o (U(X ng,))** — the latter inclusion
is trivial. Re-phrasing, for every x € P,

x=V(x re,).

(4) If X e P, then N(X U e)*" o X** 5 (X Ue)*t (the former inclusion is
trivial). Indeed, let y e N(X w ¢,)""; i. e., for every a € A: y < t whenever t > all

xeXandt 2 e, Takeany t 2 all xe X. Then t v ¢, = all x € X again, and = ¢,
implying y £ 1 v e, forevery a € 4; from lemma 2 we conclude y < A(t v e)) = 1,
for all our t € X*, i. e. y € X**. Re-phrasing, for every x € P, a

x=Alxve).

a
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(5) Each e, is central in P. For it is complemented in P, in P; and applying the
results of (3), (4) to the direct decomposition P = &,2, which takes ¢, into [1, 0], we
see that

x=(xne)Vv(xnrne)=(xve)Ar(xve)

for all x € P, and conclude that ¢, is central in P.2)
(6) Set Q, = {x A ¢,:xe P}, the M-closure of ¢, in P. Then

X = [X A ea]asA
is a meet-homomorphism taking P into P,Q,; this meet-homomorphism is obviously
an extension of the isomorphic map P = P P, — ‘see (1). Choosing any x, € Q,, we
have Vx, = [x,], since e, A V x, = V(e, A x;) = x, (e, central in P, lemma 3;
beA b

¢, A X, < ey, A e, =0fora = b); thus the mapping is onto P,Q,. Finally, x A ¢, =
=y Vv e, for all a e 4 implies x = V(x A ¢,) = V(y A ¢,) = y, so that the map is
1—1. Now, a | —1 meet-homomorphism onto is an isomorphism (LT, I, § 5, ex. 7a),

and we obtain P = P,Q,.

(7) If e is central in P, X = &(M-closure in P), then X is closed in P if and only
if it is closed in @; i. e. X € P precisely when X € &. For let X < &. If y is such that
v < twhenevert > allxe X and t < e (i. e. y e (**)-closure of X in &), and if z >
all xe X, then z A e = all x e X again, so that y < z A ¢ by assumption, y < z;
thus y-is in the (* *)-closure of X in P; the converse being obvious, we see that (* *)-
closures in ¢ and in P coincide.

(8) From this we conclude Q, = P,. For Q, consists of X < ¢, closed in P, thus in
¢, = P, also; conversely P, consists of X = ¢, closed in ¢é,, therefore in P also. Thus
finally P = P,P,_ q.e. d.

- . . .. S~ ~

~ Thus presence of the extremal elements is a sufficient condition for P,P, = P,P,.
The converse theorem also holds, in non-trivial decompositio‘nsﬁ)

Theorem 2. Let P, P, (a € A) be p. o. sets, with A and all P, containing more than

one element. If
P=P,P, and P =P,P,

then P, and consequently all P, also, contains both 0, 1.

Proof. Assume that I non € P, say. Then some P, will also have I non € P,. Take
any element x € P = P,P, whose o-th coordinate is I and other coordinates are
arbitrarily fixed x, € P,. By definition of completion by cuts, x is the (* *)-closure of
the set of elements y € P with y < xin P, i. e.

x=(Xn P)** .
2) LT, II, exercise a) in § 8; P is a lattice. Incidentally, the result of this exercise can be easily
extended to the case when L is merely p. o.
3) The motivation of Theorem 2 is LT, 1V, § 7, exercise 4.
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Now consider the set ¥ N P. It contains all elements [y,] € P = P,P, with y, < x,
for a # o, but with quite general y, € P,. Then (X n P)* is void, for no element of
P =P,P, can have o-th coordinate > all y,eP, (recall Inon e P,). Thus
(X n P)** = P, i.e.x = Iin P. But this cannot hold for all x’s of the type described,
for there is more than one such; a contradiction.

2. AN ANALYSIS OF THE GLIVENKO-STONE THEOREM

A consequence of theorem 1 is the

Lemma 4. If P is a p. o. set, then every central element of P remains central in P.

For if e goes into [, 0] under a decomposition P = PP,, then it must go into
[1, 0] again in the extended map taking P = P, P, (this indeed is our statement (5)).

Conversely, of course, an element of a lattice P which is central in P is only neutral
in P; and it is not difficult to construct an example to show that it need not be central
in P (i. e., not complemented).

Lemma 5. Let P be a p. o. set. If
xA(yvz)y=(xAay)v(xAaz)inP

whenever x € P but y, z € P,*) then P is distributive.

Proof. Take X, Y, Z in P; in any case

XA(YvZ)yZz(XAY)v(XAZ)in P

(A, v are bounds in P; however, A is also set-meet). Take any ue P, ue X A
A(Yv Z);thusueX, ueYv Z, and therefore ueit A (Y v Z). By assumption,
uea A(YvZ)=@AY)v(@aZ) (X AY)v (X AZ); we conclude that
also X A(YVv Z) £ (X AY) v (X A Z). Thus L6’ holds in P (LT, IX, § 1).

As a special case, we obtain the

Lemma 6. If all elements of a distributive lattice D are neutral in D, then D is also
distributive.

Now taRe for P a Boolean algebra B. The famous Glivenko-Stone theorem states
that B is then also Boolean. Using only the results of this paper, we have, first, that
every element of B is central in -B (lemma 4); therefore the condition of lemma 6 is
satisfied, so that, secondly, B is distributive. Having got thus far, one is tempted to
seek conditions for complementation of B; thus showing that every element of B is
neutral and complemented, i. e. central. Surprisingly enough, this direction leads to
a theorem which by itself is a new proof of the Glivenko-Stone theorem. Namely, we
will show that this last is a consequence of Birkhoff’s theorem 17 in LT, X, § 13.

Let P be a p. o. set with 0, I. We generalise trivially a definition of LT (VIII, § 8) by

4) If P is also a lattice, then this condition implies, and is stronger than, distributivity of P.
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calling P orthocomplemented if there exists a map x — x’ taking P into itself and such
that, for all x, y in P,

xAx' =0, xvx'=I, x=x", x<y implies x" =y .

Note that x = x” implies x — x"is 1—1 onto, i. e. a dual automorphism, so that con-
versely x’ = " implies x < y. In lattices we can conclude x" A y" = (x v y)’ and
dually; and then we may dispense with the condition x v x" = I. An orthocomple-
mented lattice with unique complements is a Boolean algebra (LT, X, theorem 17).
But of course there are non-Boolean orthocomplemented modular lattices — see LT,
VIII; possibly the simplest is in the fig. 1.

Fig. 1.

Theorem 3. If P is orthocomplemented, then P is such also (under an extended dual
automorphism).

Proof. Let capitals denote elements of P, i. e. closed subsets of P; let X’ be the
set of all x" with x € X, so that X'* = X', etc. (recall that x — x" is onto). We pro-
ceed to show that the map X — X’™ has the desired properties.

First, X'* is closed, since (X'*)** = X*** = (X**)'* = X'*. Similarly, the
map is an extension of x — x’ (interpreted in P, of course): X' * = x**'* = (x')***,
and this is readily shown to be x’. Again, the map has period two, since X' *'* =
= X** = X** = X. Also X  Yimplies X’ = Y’, X’* o Y’". Since Ps a lattice
and X A X't = X n X'* = 0is obvious, we conclude that P is orthocomplemented.

Theorem 4. If B is a Boolean algebra, then so is B.

For proof it suffices to show that B has unique complements and then to apply our
theorem 3 and the theorem 17 of LT, X already mentioned.

Now,if X A Y=0,thenx Ay =0,y < x",forallxeX,yeY;ie, Y= X'*.
Conversely, B = (X U Y)** implies (X U Y)* =1I; then teX’* v Y’'* implies
t<allx,aly,t 2alxaly te(X UY)*=1I,t=0. Thus we have X'* A
A Y'" = 0; as before, this has as consequence X’* = Y'*'* = Y. We conclude that
the only complement Y of X in Bis X'*.
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Pe3ome
IMPAMBIE PA3JIOXXEHUSA B CTPYKTVPAX, 11

OTOMAP T'AEK (Otomar Hdjek), Ilpara

Mycts PP, — npsiMoe NpOW3Be[eHHE CHCTEMBI YACTHYHO YIOPSIOYEHHBIX (YacT.
yiI.) MHOXeCTB P,, u mycTs P 0603HauaeT MOMONHERME YacT. Y. MHOXecTBa P
¢ TIoMOLIBIO ceueHuit (T. e. MeTox JleAeKnHAa B 4acT. yII. MHOXeCTBax). JlokasbiBa-
JOTCSL CJICIYIOIIME TEOPEMBI:

Ecau 6 uacm. yn. mnoscecmeax P, cywecmeyiom sxcmpemanvhivie s1emenmol O, I,
—~—r ~
mo PP, = PP, npu zomomopusme, A81A10WUMCA eCIeCmMEeHHbIM NPOOOANCEHUEM

pazaazaroweso 2omomopgpusma PP, — P,.

~~— ~
Obpammo, 6 HempuguaibhblX pasioxncenuax, uz PP, = P P, caedyem nasuuue
IKCIMPEMALbHHBIX dAeMeHmos y ecex P,.

OTOT pe3yibTaT NPUMEHSETCS K aHalu3y OTHENbHBIX HPEeAJIOXKEHUN TeOpeMbl
T'nmuserko-Crone (nononHeHHe Oynesoii anre6psl ecTh OyieBa anreﬁpa). Haxosnen,
TeopemMa I'nmBeHKO-CTOHE BBIBOOUTCS KaK CJIEACTBHE M3 OJIHOW Teopemsl I'. bupk-
roda, KoOTOpas SBIAETCA TakUM oOpa3oM GoJiee OCHOBHOIA.
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