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YexocnoBaukuii MaTeMaTHyeckuii skypuaa T. 11 (86) 1961, Ilpara -

APPLICATIONS OF COMPLETE
FAMILIES OF CONTINUOUS FUNCTIONS TO THE THEORY
OF @-SPACES

ZpENERK FrOLfK, Praha

(Received December 9, 1959)

In the present paper the concept of a complete family of continuous
is introduced and applied to the theory of N(m)-spaces (intersections
of m N-sets in their Stone-Cech extensions) and, in particular, @-spaces.
N (m)-spaces may be defined as the inverse images under continuous
closed compact mappings to the topological product of m real lines.
The section 3 is devoted to the problem, under what conditions on the
mapping is the image of a N(m)-space (in particular, of a @-space) an
N(m)-space (a @-space, respectively).

In [2] the concept of a complete indexed family of open coverings of a space
has been introduced. For convenience, we recall the definition. An indexed
family of open coverings '

(1) {B,; ae A}
is said to be complete if the following condition is satisfied:

If {F} is a centered family of closed subsets of P such that for each a in 4
there exists a V, in I, containing some F, ¢ {F}, then N{F} == 0.

In [2] the following theorem was proved:

A completely regular space P is an intersection of m open sets in every
compact extension of P if and only if there exists a complete indexed family (1)
of open coverings of P such that the potency of 4 is m.

In the present paper we investigate spaces possesing a complete family of
open coverings (1) of a special sort. If fis a contmuous real-valued function
on P then the open cover consisting of sets

{z; |f(@)| <n}, m==1,2,...

will be denoted by B(f). We shall consideér coverings of the form ¥8(f) only.
We shall prove that a completely regular space P possesses a family of oontl-
nuous functions § such that

)

{B(f); f « B}
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is complete (such a family § is said to be complete) if and only if there exists
a indexed family {IV;; f € §} of N-sets in SP such that

P = N{N;fe3}.
If the potency of § is at most m, then such spaces will be called N(m)-spaces.
A space is a @-space (for Hewitt’s definition of Q-spaces see [3]) if and only if it
is a N(m)-space for some cardinal m.

If f is a continuous function, then f is bounded on a set M if and only if there
exists a set in W(f) containing M. Thus we obtain a definition of complete
families of continuous functions which does not use coverings.

In section 1 we shall study complete families of continuous functions on an
arbitrary space. For convenience we shall use a more general definition of
a complete family. But for completely regular spaces both definitions are
identical.

In section 2 we shall investigate complete families on completely regular
spaces, more precisely, we shall study N(m)-spaces (in particular, @-spaces)
using the concept of a complete family of continuous functions.

The section 3 is devoted to the question:

Let @ be a mapping from a N(m)-space onto a space . Under what condi-
tions on @ may we assert that ¢ is a N(m)-space.

If 3 is a family of sets, then the intersection of 3 will be denoted by A3,
that is

N3=N{ZZe3;}.
For convenience we shall use the following convention: If V is a property of
sets, then a indexed family {M,; a € A} is said to have the property V if the set of
all M, has the property V. If V is a property of indexed families, then a set M
has the property V if the indexed family {M; M ¢ M} has the property V.

A topological space (in the sequel a space, merely) P is said to be an extension
of a space R if R is a dense subspace of P. An extension P of R is said to be
Hausdorff, regular, completely regular, compact if P is a Hausdorff, regular,
completely regular, compact space, respectively. The Cech-Stone extension of
a completely regular space P will be denoted by SP. It is well-known that P
is the compact extension of P uniquely determined by the property:

every bounded real-valued continuous function on P has a continuous
extension over SP.

It is also well-known that if K is a compact extension of P, then there exists
one and only one continuous mapping @ from SP onto K such that the re-
striction of @ to P is the identity mapping. This mapping will be called Cech-
Stone mapping.

Function will always mean a real-valued function. A subset M of a space. is
said to be a Z-set if there exists a continuous function f on P such that

M = Z(f) = {x; f(x) = 0}..
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A subset M of a space P is said to be a N-set if P — M is a Z-set. We shall use
the notation

N(f) = {=; f(x) + 0} .

1. COMPLETE FAMILIES OF FUNCTIONS

1.1. Definition. Let § be a family of continuous functions on a space P.
$ is said to be complete if the following conditions is satisfied:

1.1.1. If 3 is centered family of Z-sets in P and if for each f in § there exists
a Zy in 3 such that f is bounded on Z,, then A3 &= 9.
Note. We have at once that a family of continuous functions dontaim’ng

a complete family is a complete family.

1.2. Lemma. Let 3 be a mazimal centered family of Z-sets in a space P such that
the intersection of every countable subfamily is non-void. For every CONLINUOUS
function f on P there exists a Z in 3 on which f ts bounded.

Proof. Let f be a continuous function on P. Foreveryn = 1, 2, .. .vde'nIOte'by
Z, the set

(2) - {x;xe P, |f(z)] = n} .

If for some 7 the set Z, does not belong to 3, then there exists a Z in 3 with
Z, 0 Z = ¢. Then |f(x)] =<n for z in Z and hence f is bounded on Z. In the
other case we have Z, ¢ 3 for every n = 1, 2, ... By our assumption we have

Zy=N7Z, +9.
According to (2) "
veZy= |fx)] =n
for every n, which is impossible since f is finite-valued.
As an immediate consequence of 1.2 we have

1.3. Theorem. If there exists a complete family of contmuous functzons on
a space P, then the following condition is satisfied:

1.3.1. If 3 is a maximal centered family of Z-sets in P such that the intersection
of every its countable subfamily is non-void, then 3 == 0.

1.4. Lemma. Let 3 be a maximal centered family of Z-sets in P. If the inter-
section of some countable subfamily of 3 is empty, then there emsts a contmuous
function f on P which is bounded on no Z in 3.

Proof. Let {Z,} be a sequence in 3 such that

(3) NZ, —9.

n=1
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Choose continuous functions f, on P such that Z, = Z(f,) and 0 < f, < 1

Consider the continuous function g = 1/f where f = z 2—1n fa. Clearly:
u=1

and hence, g(x) = 2" for éach xin N Z,. It follows immediately that f is bounded
on no Z in 3. =1

As a corollary of 1.4 we have:

1.5. Theorem. If a space P satisfies the condition 1.3.1, then the family of all
continuous function is complete.

1.6. Definition. A space is said to be quasi-compact if the intersection of
every centered family of Z-sets is non-void. A subspace R of P is said to be
relatively quasi-compact in P if the following condition is satisfied:

1.6.1. If 3 is a family of Z-sets in P and if 3 n R is a centered family, then
N3 n R =+0.

Note. Evidently every Z-set of a quasicompact space P is relatively quasi-
compact in P. Moreover, every intersection of Z-sets of a quasi-compact space P
is relatively quasi-compact in P. For further information see [1], 200—202.

* 1.7. Theorem. Let § be a family of continuous functions on a space P. § is
complete if and only if the following two conditions 1.7.1 and 1.7.2 are satisfied:

1.7.1. If F is intersection of Z-sets in P and if every f ¢ § is bounded on F, then
I 1s relatively quasi-compact in P.

1.79.2. If {Z;; f e §} is a centered indexed family of Z-sets and if f is bounded on
Z;, then
N{Z;feS} +0.
Proof. The necessity of conditions 1.7.1 and 1.7.2 is quite obvious. To prove
the sufficiency, suppose that 3 is a centered family of Z-sets in P and that for
each f in § there exists a Z;in 3 on which f is bounded. By 1.7.2 the set

F=nN{Z;/8}

is non-void. By 1.7.1 the set ¥ is relatively quasi-compact in P. Consequently,
to prove A3 == 0 it is sufficient to show that 3 n F is a centered family. But if
both Z, and Z, belong to 3, there again by 1.7.2 the set

N{Z,nZynZsfeFt=FnZ n Z
is non-void. The proof is complete.

We shall need the following
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1.8. Lemma. If 3 is a mazimal centered family of Z-sets in P and if the Z-sets
Zisy -y Zy, cover some Z e 3, then some Z; belongs to 3.

Proof. Suppose on the contrary that no Z, belongs to 3. According to the
maximality of 3 there exist Z; ¢ 3,5 = 1, 2, ..., k, such that Z; n Z; = 0. Then
k

Z n N Z; belongs to 3, which is impossible since

i=1

k k
ZoNZicZ—-UZ,=29.

i=1 i=1
This contradiction completes the proof.

Now we proceed to characterize complete families in terms of mappings of
a special sort.

1.9. Definition. A mapping from P to @ is said to be quasi-compact if the
inverse image of every point of @ is relatively quasicompact in P. A mapping
from P to @ is said to be a Z-mapping if the image of every Z-set of P is closed
in Q.

1.10. Theorem. Let § be a family of continuous functions on a space P. Consider
the space

ES = X{EB;feG},

where the E; are real lines; and also the continuous mapping @ : P — ES defined
as follows:

D(x) = {f(x) ; feT}.

The family § is complete if and only if D is a quasi-compact Z-mapping of P
to ES.

Proof. First let us suppose that § is a complete family. To prove quasi-
compactness of @ we shall show that

1.10.1. The inverse image of every compact subspace K of ES is relatively
quasi-compact in P.

It is easy to see that every function f from § is bounded on @-1[K]. Indeed,
we have we have f(x) = n/(P(x)) and f[@-[K] = 7/ K] where z;, denotes the
projetions of E¥ onto E,. Since 7, is a continuous function and X is a compact
space, 7r;{ K] is a compact subspace of E;, and consequently, s/ K] is a bounded
subspace of E; (in the usual metric). K is a compact, subspace of the completely
regular space ES and therefore K is an intersection of Z-sets in ES. Since @ is a
continuous mapping, it follows at once that f~*[K]is an intersection of Z-sets in
P. By Theorem 1.7 the subspace f~[K] of P is relatively quasi-compact in P.
Thus 1.10.1 holds and @ is a quasi-compact mapping. It remains to prove that
@ is a Z-mapping. Let Z, be a Z-set in P. Suppose on the contrary that O[Z,] =
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= F is not closed in ES. Then we may choose y = {¥s: f € §} in F — F. Consider
the family
3 = {Znyf; fG%, n = l, 2, ,_.} U (ZO)

of Z-sets in P, where
1
Zn,f = x;xeP, If(x) - yfl —S— ﬁ .

The point y being an accumulation point of F, the family 3 is centered. Moreo-
ver, each f in § is bounded on Z,, ;. It follows that A3 == 9. But this is impossible
since

N3 =9yl n Z,
and by our assumption y does not belong to F = @[Z,], that'is, O3 = 0. This
contradiction completes the proof of necessity.

To prove sufficiency let us suppose that @ is a quasi-compact Z-mapping.
Let 3 be a maximal centered family of Z-sets in P and suppose that for each f
in § there exists a Z, in 3 such that f is bounded on Z;. From quasi-compactness
of @ it follows at once that it is sufficient to prove the existence of a point y =
= {y;; fe &} in EB such that 3 n @-[y] is a centered family. We proceed to
construct such a point y.

Choose f in §. By our assumption f is bounded on Z,. Hence, there exists
a bounded interval I, of E; such that

flZ]c1,.

Let K., ..., K, be a finite cover of I; by closed intervals of lenght less than %
Since f~1[K,] are Z-sets in P and

k
U /K] Ze3,

it follows at once from lemma 1.8 that for some ¢ = 1, ..., k, f~1[K,] belongs
to 3.
Thus, for every n = 1, 2, ... and for each f in § there exists a closed interval

K., ;in E; of length less than % such that

Zyy = [Knsle3 .

Evidently for every fin §, {K, ;; » = 1, 2, ...} is a centered family of compact
sets. It follows that '

nKn,f :¥: Q .
n=1

This intersection contains only one point, namely ¥y, since the lengths of K, ;
converge to zero with n — 0o. The point {y; fe&} Will be denoted by y. Since
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@[P] is a closed subspace of ES, y belongs to @[P]. It remains to prove that
3 n @ [y] is a centered family. It is of course sufficient to show that

Ze3=>Zn Oyl +£0.

Let us suppose on the contrary that some Z in 3 does not meet @-[y]. The
mapping @ is a Z-mapping and hence F = @[Z] is a closed subspace of ES. By
our assumption y does not belong to F. In consequence, there exists a neigh-
borhood U of y which does not meet F. Since the lengthts of K, ; converge to
zero with n — 0, there exist K; = K, ;, (1 = 1, ..., k) such that

k
Ni'ElnZ=9.
i=1

But this is a contradiction, since f; '[K,] belong to 3. The proof is complete.
As a corollary of 1.10 and 1.10.1 we have

1.11. Theorem. If @ is a quasi-compact Z-mapping from P to the topological
product R of a family of real lines, then the inverse tmage of every compact subspace
of R is a relatively quasi-compact subspace of P.

2. @-SPACES AND N(m)-SPACES

In this section we shall study complete families of continuous functions on
a completely regular space.

2.1. Definition. Let m be a cardinal number. A space P is said to be an
N(m)-space provided that P is completely regular and there exists
a complete family § of continuous functions on P such that the potency of § is
= m. A space is said to be an exact N(m)-space provided that it is an N(m)-
space but not an N(n)-space for any cardinal n < m. A space is a @-space if it is
an N(m)-space for some cardinal m.

Thus a completely regular space is a @-space if and only if the set of all conti-
nuous functions is complete.

2.2. Definition. A mapping @ of P to @ is said to be compact if the inverse
images of points of  are compact spaces. @ is closed if the image of every
closed subset of P is closed in Q.

2.3. Lemma. A relatively quasi-compact subspace R of a completely regular
space P is a compact space. A quasi-compact mapping from a completely regular
space to a space is a compact mapping. A qua,si-compdct Z-mapping from a com-
pletely regular space to a space is a compact closed mapping.

Proof. Let R be relatively quasi-compact in a completely regular space P.
Let {F} be a centered family of closed subsets of R. Let 3 be the family of all
Z-sets in P such that for some F in {F} the inclusion F* c Z holds. Since P is

.
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a completely regular space, we have 03 = N{F}. By quasicompactness of R we
have
RonN3=+90.

Combining the above two relations we obtain (\{F} = 0.

The second statement of the lemma is an immediate consequence of the first.

To prove the third statement let us suppose that @ is a quasi-compact
Z-mapping from a completely regular space P to . Then @ is a compact map-
ping and it remains to show that @ is a closed mapping. Let F be a closed sub-
space of P. Denote by 3 the family of all Z-sets in P containing F. Since P is
completely regular, we have |3 = F. Put F, = @[F]. It is sufficient to prove

def
» F, = N{P[Z]; Ze3} =
The inclusion F; > F is trivial. For the other one, suppose that there exists
a point y in F'; — F,. We see at once that

(4) 30 &7yl
is a centered family of closed subsets of the compact space @-![y]. Thus we may
choose a point z in the intersection of the family (4). But thls is impossible

since
zeN3=F, Dx)=ynoneD[F].
From 1.7 and 2.3 we have
2.4. Theorem. Suppose that § is a family of continuous funciions on a comple-

tely reqular space P. § is complete if and only if the following two conditions are
satisfied:

2.4.1. If K is closed in P and if each | from § is bounded on K, then K is
a compact space.

2.4.2. If {Zs; fe T} is a centered indexed family of Z-sets in P such that f is
bounded on Z;, then

N{Zs;[edt 0.

Definition. m being a cardinal number, denote by E™ the topological product
of m real lines. ‘

As an immediate consequence of 1.10 and 2.2 we have

2.5. Theorem. Let § be a family of continuous functions on a completely regular
space P. Define ES and ® as in 1.10.
§ is complete if and only if @ is a closed compact mapping.

2.6. Theorem. 4 space P is an N(m)-space if and only if P is completely regular
and there exists a continuous closed compact mapping @ from P to E™.

Proof. First suppose that P is an N(m)-space. Hence P is completely regular
and there exists a complete family § of continuous function on P such that the
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potency of § at most m. Without loss of generality we may assume that the
potency of § is m. Define ES and @ as in 1.10. By 2.5 @ is closed and compact.

Evidently @ is continuous and E% = E™.

Conversely, let @ be a continuous closed compact mapping from a completely
regular space P to

E" = X{E,;ae A}
where the potency of the index set 4 is m and the E, are real lines. For each a
in A denote by =, the projection of E™ onto E,. Denote by f, the function
7.(D). Every f, is continuous as the superposition of two continuous mappings.
Evidently for each x in P,
D(x) = {fu(@); e 4} .

Applying 2.5 we obtain that the family of all f, is complete.

If @ is a closed compact mapping from P to @ and if F is a closed subset of P,
then the restriction of @ to F is a closed compact mapping. From this fact and
from 2.5 and 2.6 we have at once

2.7. Theorem. If § is a complete family of continuous functions on a completely
regqular space P and if F is a closed subspace of P, then the family of the restrictions
(to F) of all f e § is @ complete family on F. Closed subspaces of N(m)-spaces are
N (m)-spaces.

Now we proceed to characterize N (m)-spaces as intersections of m N-sets in their
Cech-Stone extensions.

2.8. Proposition. Let § be a family of continuous functions on a completely
regular space P such that f = 1 for each f in §. For each f in § denote by f* the
continuous extension of 1/f over SP (1/f is bounded).

Then § is complete if and only if

2.8.1. N{N({*); feS=P.

Proof. First let us suppose that 2.8.1 holds. Let 3 be a centered system of
Z-sets in P such that for each f in § there exists a Z; in 3 on which f is bounded.
PP being a compact space, the set

Fo=N{Z";Z3)
is non-void. It is sufficient to show that F c P. According to 2.8.1 it is sufficient
to show that

4) ' Z5 ¢ N(f*)
for each f in §. f is bounded on Z;,

veZ; = |f(x)| = M
say, and hence (f* is continuous)

veZ7 = |f*@)| = M
which implies (5).
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To prove necessity, let us suppose that there exists a point z in

N{N(*); fe} —P.
Let 8 be the family of all Z-sets in SP containing « in their interior. Evi-
dentely N{Z;Ze3) — () c pP — P.
Thus 3 n P is a centered family of Z-sets in P with empty intersection. To
prove that § is not complete, it is sufficient to show that for each f in § there

exists a Z; in 3 such that f is bounded on Z;. Fix fe § Since f*(x) == 0, there
exist a Z; in 3 and an ¢ > 0 with

yeZ; = |f*y) = e.
If follows that y e Z n P = |f(y)| = 1/e. The proof is complete.

As an immediate consequence of 2.8 we have:

2.9. Theorem. A completely regular space P is an N(m)-space if and only if
there exists a set N of N-sets in P such that the potency of M s at most m and
N{N; NeN} = P.

Now we shall proceed to give the usual characterisation of N(m)-spaces.
First we prove the following crucial property of continuous closed compact
mappings.

2.10. Theorem. Let @ be a continuous closed compact mapping from a regular
space P to a space Q. There exists no proper regular extension R of P on which @
may be continuously extended. '

Proof. Let us suppose, on the contrary, that there exists a proper regular
extension R of P and a continuous mapping @* from R to @ such that @ is the
restriction of @*. Choose x in B — P. Since @[P] is a closed subset of @ (P is
closed) and since by continuity of @*

P*[R] c O[P]

we have at once that @*[R] = @[P]. Hence, there exists a y in @[P] such that
@*(x) = y. Denote by K the inverse image under @ of y (that is, the set @[y]).
@ is a compact mapping, and consequently, K is a compact space. It follows
that '
xnone KX =K .

Since R is a regular space, we may choose a closed (in R) neighborhood F of
with F' n K = @. Consider the set F' n P. @ being a closed mapping, @[F n P]
is a closed subset of Q. Since F n K = 0, it follows that

ynone P[F n Pl = ®*F n P].
But this is impossible, since ®* is continuous, x ¢ F n P and ®*(x) = y. This

contradiction establishes the theorem.
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2.11. Definition. Suppose that P and @ are completely regular spaces.
A continuons mapping @ from P to @ is said to be non-extensible if for any
proper completely regular extension B of P and any continuous mapping &*
from R to @, the restriction of @* to P is different from ®.

Combining 2.6 and 2.10 we obtain at once:

2.12. Proposition. If P is an N(m)-space then there exists a continuous non-
extensible mapping from P to E™.

In the converse direction we shall prove:

2.13. Proposition. Let us suppose that there exists a continuous non-extensible
mapping D from a completely regular space P to E™. Then P is an N(m)-space.

Proof. Introduce the same notation as in the proof of 2.6:
E" = X{E;aec A}, D)= {f(x);aecA}.

It is sufficient to show that {f,; @ € 4} is a complete family. Suppose, on the
contrary, that {f,; @ € 4} is not complete. Thus, there exists a maximal centered
family 3 of Z-sets in P such that

N{Z Ze3} =0
and for each a in 4 there is a Z, in 3 such that f, is bounded on Z,. fP being
compact and 3 being a maximal centred family of Z-sets, the intersection of the
family {Z?"; Z ¢ 3} contains exactly one point, namely x. Since @ is a non-
extensible continuous mapping, there exists a f, which is non-extensible over
P v (x), and clearly, since every bounded continuous function of P is extensible
over P, there must be
lim f,(2) = + oo.
Z—x
zeP
But, z is contained in the closure of every Z in 3, and consequently, we have
Ze/a’:>lirznfa(z) =4 .
Particulary, f, is not bounded on Z,. This contradiction establishes the Theo-
rem. ' :
Combining 2.12 a 2.13 we obtain:
2.14. Theorem. A completely regular space P is an N(m)-space if and only if
there exists a continuous non-extensible mapping from P to E™.
We shall need the following proposition (see [4] and [3]).

2.15. A4 space is a Q-space if and only if it is homeomorphic with some closed
subspace of E™ for some m.

Proof. Let § be the set of all continuous functions on P. Define E% and @ as
in 1.10 It is well known that @ is a homeomorphic mapping if and only if P is
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a completely regular space. Now the statement follows from the note preceding
1.2 and 2.5.
Now we are prepared to prove the following theorem.

2.16. Theorem. Let @ be a continuous mapping from a completely regular
space P to a Q-space Q. The following two conditions on @ are equivalent:

2.15.1. @ is closed and compact.
2.15.2. @ is non-extensible.

Proof. By 2.10 the assertion 2.15.1 implies 2.15.2. Conversely, suppose that
@ is non-extensible. By 2.15 there exists a homeomorphic mapping ¥ of @ onto
a closed subspace of E™ for some cardinal m. We see at once that the super-
position ¥(®) of ¥ and @ is a non-extensible mapping from P to E™. By 2.13
V(D) is a closed compact mapping, and consequently, ¥ being homeomorphie,
® is a closed compact mapping.

2.17. Theorem. Let P, ) and R be completely regular spaces. If @ is a continuous
closed compact mapping from P to Q and if ¥ is a continuous closed compact
mapping from Q to R, then the superposition of ¥ and @ is a contmuous closed
compact mapping.

2.18. If @ is a continuous closed compact mapping of a space P onto & compact
space @, then P is a compact space. (It may be noticed that if @ is a continuous
mapping from P onto a compact space @, then P is compact if and only if @ is closed
and compact.)

The proof of 2.18 is quite routine and may be left to the reader.
As an immediate consequence of 2.17 we have:

2.19. Theorem. A completely regular space P is an N(m)-space if and only if
there exists a continuous closed compact mapping from P to an N(m)-space.

2.20. Theorem. Let {P,; a € A} be an indexed family such that P, is an N(m,)-
space. Then the topological product P = X{P,; ae A} s an N(m)-space, where
m = X{m,; ae A}.

To prove 2.20 it is sufficient to show that:

2.21. Theorem. Let {P,; a e A} and {Q.; a < A} be indexed families of comple-

tely regular spaces. For each a in A let @, be a continuous closed compact mapping
from P, to Q,.

Consider the product spaces P = X{P,; ae A} and @ = X{Qa, ae A} and the
mapping D = {D,; a e A} defined as follows:

D(x) = {Du(,); a e A} .

The mapping D is continuous, closed and compact.
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Proof. The proof of continuity is quite routine and may be left to the reader.
Denote by =, the projection of @ onto @,. Let y be an element of @. Clearly

D 1y] = X{P; ' [ma(y)]; a e A} .

The spaces @; '[7,(y)] being compact, the space ®—1[y] is compact by Tycho-
noff’s theorem. Thus @ is a compact mapping. It remains to prove that @ is
a closed mapping. First, let F be a closed subset of P of the form
(6) X{F,;aeA}
where F, is a closed subset of P,. Clearly

D[F] = X{D,[F, ], aec A} .

@, being closed, the set @,[F,] is closed in @,, and consequently, @[F] is
closed in Q. Now, let F be an arbitrary closed subset of P. Let I be the family
of all closed subsets of P of the form (6), and containing F. @[M] being closed
in @, the set

Fy = N{P[M]; M « M}

is closed in @, and consequently, it is sufficient to show that F, = @[F]. Clearly
Fy, > @[F]. Suppose that there exists a y in Fy — @[F]. Thus ®-y] = K is
a compact subspace of P disjoint with F. Since

' N{M; MecM} =F,
there exists a M in M with M n K = @. ®[M] being closed, we have at once
that y non e ®[M] > F,. This contradiction completes the proof of 2.21.

Now we give another proof of 2.20 using 2.9 and Stone-Cech theorem (and
also Tychonoff’s theorem). By 2.9, for each @ in A there exists a family N, of
N-sets in P, such that the potency of N, is at most m, and

NV; NeN,) = P,.

Consider the space K = X{fP,; a ¢ A}. Denote by =, the projection of K onto
BP,. Let NF be the family of all z; '[N] where N ¢ N,. Denote by N* the union
of the indexed family {N¥; a ¢ A4}. Evidently * is a family of N-sets in K and

N{V; NeN*} = P.

Since the potency of M* is at most m, the space P is the intersection of m N-sets
in K. Let @ be the Cech-Stone mapping from P onto K. Evidently

N{@-[N; N eN*} = P

and @[N] are N-sets in BP. By 2.9, the space P is an N(m)-space. The second
proof of 2.20 is complete.

In conclusion we give a summary of definitions of N(m)-spaces:

2.22. Theorem. T'he following condition on a completely regular space P are
equivalent:
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. (1) There exists a complete family § of continuous functions on P such that the
potency of F is < m.

(2) There exists a continuous closed compact mapping from P to Em.

(8) There exists a continuous non-extensible mapping from P to Em.

(4) There exists a continuous closed compact mapping from P to an N(m)-
space.

(5) There exists a continuous mon-extensible mapping from P to an N(m)-
space.

(6) P 1s an intersection of m N-sets in some compactification of P.

(7) P 1s an intersection of m N-sets in SP.

3. IMAGES OF @-SPACES

All spaces are assumed to be completely regular. Let @ be a continuous
mapping from a Q-space P onto Q. Under what conditions on @ may we assert
that @ is a @-space?

We recall that a subspace P’ of P is said to be relatively pseudocompact in P,
if for every sequence {Z,} of Z-sets in P such that {Z, n P’} is centered, the

intersection P’ n A Z, is non-void. Equivalently, P’ is relatively pseudo-
n=1

compact if and only if every continuous function on P is bounded on P’.

3.1. Theorem. Let @ be a continuous mapping from P onio Q such that

3.1.1. The images of Z-sets are Z-sets, that is, if Z is a Z-set in P, then D[Z] is
a Z-set in Q.

3.1.2. The inverses of points under @ are relatively pseudocompact, that is, for
each y in Q the subspace D—[y] of P is relatively pseudocompact in P.

Then if P is a Q-space, Q is also a Q-space.

Proof. Let us suppose that 3 is a maximal centered family of Z-sets in ¢
such that the intersection of every countable subfamily of 3 is non-void. Let 3’
be the family of all ®-1[Z] where Z ¢ 3. Evidently, 3" is a centered family of
Z-sets in P. Let 3" be a maximal centered family of Z-set» in P containing 3'.
We shall prove that the intersection of every countable subfamily of 3" is
non-void. Indeed, let {Z,} be a sequence of Z-sets in 3”. By 3.1.1 the sets Z, =

= @[Z,] are Z-sets in @, and clearly Z, ¢ 3. Choose a point y in f} Z,. By 3.1.2
n=1

we have Pyl 0 N Z 0.
n=1
P being a @-space, the set [\{Z’; Z’ € 3"} is non-void. Choose a point x in this
intersection. Evidently :

DY) e N{Z; Ze3}.

The theorem is proved.
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We proceed to quotient mappings:
3.2. The image of a Q-space under an open continuous mapping may fail to be
a @-space.

Proof. Let us suppose that @ is not a @-space and let
Q= U{K;aecd},

where K, are compact subspaces of ¢. Finally, suppose the indexed set A
endowe with the discrete topology is a @-space. Under these assumptions we
shall construct a @-space P and a continuous open mapping @ from P onto @.
Consider the product space B = @ X A and the subspace

P = UK, X a;aeA}

of R. By 2.19 the space P is a @-space. Indeed, the mapping ze¢ K, X a - a
is a closed compact continuous mapping of P onto 4. Denote by @ the pro-
jection map of P onto @, i. e. @ is the restriction of the projection of R onto @.
It is easy to show that the mapping @ is open and continuous. The proofs of
existence of @, K, and 4 may be left to the reader.

Modifying the construction in 3.2 (to consider the disjoint union) we obtain
at once:

3.3. The image of a §-space under a compact open continuous mapping
may fail to be a @-space.

Note. If the topological product P X @ is a @-space (N (m)-space), then both
P and @ are @-spaces (IV(m)-spaces, respectively).

We shall need the following assertion:

3.4. Lemma. Let @ be an open, closed and continuous mapping from P onto Q.
Let f be a continuous function on P. For each y in @ put

F(y) = sup {{(x); P(x) = y} .
If F(y) is a real number for each y in @, then F is a continuous function on Q.

Proof. Let y, be an element of @ and let ¢ be a positive real number. For
each z in X = ®-[y,] choose an open neighborhood U(z) of x on which f varies
less than ¢. Denote by U the union of all U(x), ¢ X. Put

V = U{@-y}; oyl c U} .
@ being closed, V is an open subset of P. Evidently
ye OVl = Fly) = Fly,) + .

@ being an open mapping, @[V] is an open neighborhood of y,. Thus F is an
upper semi-contiriuous function. It remains to prove that F is lower semi-
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&
continuous. Choose a point x, in X such that f(%e) > F(y,) — 3. Choose an

open neighborhood W of z, such that
€
e W= () > f@) — 5 -

@ being open, W' = @[W]is an open neighborhood of %,. We have at once
ye W = F(y) > Fy,) — <.
This establishes lower semi-continuity of  and completes the proof of 3.4.

3.5. Proposition. Let us suppose that @ is a closed open and continuous
mapping from P onto Q. Let § be a complete family of continuous non-negative
functions on P. Suppose that for each f in § the function F defined as in 3.4 is
real-valued, that is, F is finite. Denote by §' the family of all ¥ where f ¢ §.

Then §’ is a complete family of continuous functions on @.

Proof. By 3.4 the functions ¥ ¢ §' are continuous. To prove completness of
§’, let 3 be a centered family of closed subsets of @ such that for each F in§’
there exists a Z; in 3 with F bounded on Z;. Denote by 3’ the family of all
®-[Z] where Z ¢ 3. Evidently, 3’ is a centered family of closed subsets of P.
Moreover, for each f in § there exists a Z; in 3’ such that f is bounded on Z,.
Indeed, if F is a function corresponding to f, we may put Z, = ®-[Z;]. § being
a complete family, we have

Fo=N{ZZe3}+9.
Clearly @[F ] c N{Z; Z ¢ 3}. Thus §' is complete.
As an immediate consequence of 3.5 we have:

3.6. Theorem. Let @ be a closed, open and continuous mapping from P onto Q.
Suppose that the tranches of @ (that is, the sets of the form @=[yl, y € Q) are rela-
tively pseudocompact spaces. If P is an N(m)-space, then @ is an N(m)-space. In
particular, if P is a Q-space, then @ is a @Q-space.

4. N(1)-SPACES AND N(x,)-SPACES

4.1. Theorem. Let m = 1. 4 discrete space M is an N(m)-space if and only if it
18 homeomorphic with some closed subspace (discrete, of course) of E™,

Proof. The theorem is obvious for finite m. Suppose m= %,. We shall use
2.22, condition 2.22.2. To prove necessity let us suppose that @ is a continuous,
closed and compact mapping from M to E™. The tranches of @ being compact
and discrete, they are finite. Thus M and @[M] has the same potency. The ima-
ge under closed mappings of a discrete space is a discrete space. The discrete
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spaces M and @[M] have the same potency, and consequently, they are
homeomorphic. The sufficiency is obvious.

As a corollary of 4.1 and of the fact that B™ is a metrizable and separable
space we have r

4.2. Theorem. T'he following conditions on a discrete space are equivalent:
4.2.1. M is a N(1)-space.

4.2.2. M is a N(X,)-space.

4.2.3. The potency of M is at most ¥,.

4.3. Theorem. The following conditions on a space P are equivalent
4.3.1. P is a N(1)-space.

4.3.2. There exists a continuous function f on P such that every closed sub-
space K of P s compact if and only if the function f is bounded on K.

4.3.3. There exvists a sequence {K,} of compact subspaces of P such that K, c
cint K,,, and U K, = P.
n=1

4.3.4. P s locally compact and o-compact.

Proof. By 2.4 the conditions 4.3.1 and 4.3.2 are equivalent. If f is the func-
tion from 3.1.2 and if we put

K, = {z; |[f(@)] = n},

we obtain a sequence {K,} satisfying 3.1.3. Thus 3.1.2 implies 3.1.3. Suppose
3.1.3. Choose continuous functions f,, » = 3, 4, ..., such that

f(@) <n for znonek, ,,
x) =
0 for zeK,_,

and 0 < f,(x) < nforevery x. Put f = Z fn. Evidently, fis bounded on a set M

=3

if and only if the set M is contained is some finite union UK It follows at
i=1

once that f satisfies 3.1.2. Thus 3.1.83 implies 3.1.2. The proof of equivalence of
3.1.3 and 3.1.4 is quite routine and may be left to the reader.

4.4. Theorem. 4 metrizable space is an N(1)-space if and only if it is separable
and locally compact.

Proof. First suppose that P is a metrizable N(1)-space. Evidently P is
locally compact. By 4.2 and 2.7 the space P contains no uncountable discrete
closed subset. Thus P is separable. Conversely, P being a separable and metri-
zable space, P has a compact metrizable extension K. P being locally compact,
P is open in K. An open subset of a metrizable space is an N-set. Thus P is an
N-set of a compact space K. It follows that P is an N(1)-space.
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Recall that a space P is said to be a G4-space if it is a Gy-set in every extension.
It is well-known that a metrizable space is a G-space if and only if there exists
a metric ¢ for P such that (P, ¢) is a complete metric space (for further infor-
mations see [2]). By [2], theorem 2.8, a completely regular space P is a Gy-space
if and only if it is a G4-subset of some compact space. Thus every N(¥,)-space
is a (-space. :

4.5. Theorem. T'he following two conditions on a metrizable space P are equi-
valent:

4.5.1. P is an N(X,)-space.
4.5.2. P is a separable Gy-space.

Proof. As we note above, an N (¥,)-space is a Gy-space. Thus, to prove that
4.5.1 implies 4.5.2, it is sufficient to show that every metrizable N(%,)-space is
separable. By 4.2 and 2.7 the space P contains no uncountable discrete closed
subspace. It follows that P is separable. Conversely, suppose 4.5.2. P being
separable, there exists a compact metrizable extension K of P. P being a G-
space, P is a Gy-subset of K, and consequently, P is an N(¥,)-set in K. Thus P
is an N(%,)-space.
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Pesome

NPUJIOKEHUS TOJHBIX CEMENCTB ®YHKIUUNA B TEOPUU
OYHKIMOHAJIBHO 3AMKHYTBIX ITPOCTPAHCTB

3JEHEK OPOJIUK, (Zden&k Frolik), IIpara
IMopmuoxecTBo N npocrpanctsa P maseiBaior N-MHOKECTBOM, €cii CyIIECT-
ByeT HempephBHasA Qynxumda f Ha P Ttak, 4ro
N = N(f)={z; 2 ¢ P, f(x) + 0}.

Ecim N sasuserca N-muomecTBoM, TO P — N Ha3pBaloT Z-MHOMKECTBOM.
ITpocrparcrBo P HaseiBaerTcsi QYHKOMOHAIBHO 3aMKHYTHIM (milm Q-IpocTpaH-
¢TBOM, cM. [3]) eciiu BHIIIOJIHEHO CIELYIOMFE YCIOBHE: BCSIKasg MaKCHMallbHAs
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CYeTHO IEHTPUPOBAHHAS cHcTeMa Z-MHOMKeCTB (T. e. MaKcHMaJlbHAasg CHCTeMa
Z-MHOKEeCTB TaKasi, 9To jobas cdeTHasi MOJCHCTeMa MMeeT HelycToe Iepecede-
HEe) MMeeT HelycToe Iepecevenue. B craThbe aercs onpepenenue (-npocTpaHCcTB
IpH IOMOIYM HOJIHBIX ceMelcTB HenpepHBHHX ¢ynrnmit. CemeiicrBo § Hempe-
PHIBHBEIX ()YHKIMI HAa3BIBAeTCs HOJIHBIM, €CJIM BHIIOJHEHO Cilefylollee yCIOBHeE:

Ecnm 8 — Takas HeHTPHPOBaHHAA cHCTeMa Z-MHOFKECTB, YTO BCAKAA QyHK-
Iy u3 § orpaHMYeHa Ha HEKOTOPOM MHOKECTBE U3 3, TO IepecedeHne CHCTEeMb
3 He mycTo. '

OxassiBaercs, 9TO BIOJIHE PeryiispHOE IPOCTPAHCTBO ABJIAETCA (J-IPOCTpaH-
CTBOM TOTJIa W TOJIBKO TOTJIa, €CJM CeMeHCTBO BceX HeNpepHIBHBIX (yHKIUA
TIOJIHO.

B crarpe onpepenens . Has. N(m)-mpocTpaHcTBa (M — HEKOTOpOE Kapmu-
HasbHOe 4meno). P massiBaeTcss N(m)-IPOCTPAHCTBOM €CIH CYUIECCTBYET IIOJI-
Hoe cemeiicto {f,; € A} menpepsisEbix gynkumit Ha P Takoe, 4T0O MOIHOCTH
mHO3KecTBa A paBHa m. Mrak, BHONHE peryisgpHOe IPOCTPAHCTBO SIBIACTCSA
(-IIpOCTPAaHCTBOM TOTJA W TOJBKO TOTHA, €cJM OHO ABisgerca N(m)-mpocTpaH-
cTBOM [iisi HeKoToporo m. Ilycts @ — oroGpaskenme mpocrpasersa P B mpo-
crpaHcTBO (); D HaswBaeTcs OMKOMIAKTHBIM, ecliM IPo0OPa3bl TOYEK OGUKOM-
TIAKTHBI, 3AMKHYTBIM, eciii 00pasbl 3aMKHYTHIX MHOJKECTB 3aMKHYTHI; HAKOHeIl,
HempepbiBHOe @ Ha3BIBaeTCA HePACHIMPHUMEIM, €CJId, KAKOro OBl HH OHLIO IpO-
crpancrBo R, R > P, R = P, R + P, orobpaskenne @ Helb3si PACOIUPUTH [O
HeIpephBHOro 0To0paskenns: npocrpanctsa R B Q. [loxkasana ciaemgyomas

TeopeMa. Cuedyrowue ceoticmsa enoane peeyaspHozo npocmpancmea P akeu-
sasenmuyl (M — KApOUHAAbHOE UUCAO):

(1) P ssasemcsa N(m)-npocmparcmeom.

(2) Cywecmseyem Oukomnakmmuoe. 3amMEHyMOe U Henpepwvlieroe 0mobpadcenue
npocmpancmea P 6 monoaozuueckoe npoussedenue m NPAMbIL.

(8) Cywecmeyem menpepvisroe Hepacutupumoe omobpaxicerie NPOCMPAHCMEA
P ¢ monosozuueckoe npousgedenue m npamMuix.

(4) P ssnaemca nepecewenuem m N-MHOMCECME 8 HEKOMOPOM C80eM OUKOM-
naKmHoOM pacuLuperuu. '

(5) P agasemcs nepeceueriem m N-mHOMcCECME C CB0EM UeLOBCKOM OUKOMNAKM-
HOM paculuperuu. !

B mocnenmeir wactm paccMaTpuBaeTcs BOIPOC, IIPU KAKUX YCIOBHAX He-
npepsBHEIL 06pa3 N(m)-npocTpaHcTBa ABIgeTcs N.(m)-IpocTpaHCTBOM. Y Ka-
3bIBAETCS, YTO MOCTATOYHO TPEI0JaraTh, 4To OTOOpaskeHme B3aMKHYTO, OT-
KpBITO, ¥ IOJIHBE IP00OPAsHl TOYEK OTHOCHTENIHHO IICeBIOKOMIAKTHEL
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