Czechoslovak Mathematical Journal

Leetsch C. Hsu
An estimation for the first exponential formula in the theory of semigroups of

linear operations
Czechoslovak Mathematical Journal, Vol. 10 (1960), No. 3, 323-328

Persistent URL: http://dml.cz/dmlcz/100416

Terms of use:

© Institute of Mathematics AS CR, 1960

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100416
http://dml.cz

YEXOCJOBAIIKUN MATEMATUUYECKUN KYPHAI

Mamemamuueckuii uncmumym Yexocaosayroli Axademuu Hayx
T. 10 (85) IIPAT'A 15. IX. 1960 r., No 3

AN ESTIMATION FOR THE FIRST EXPONENTIAL FORMULA
IN THE THEORY OF SEMI-GROUPS OF LINEAR
OPERATIONS

LeerscH C. Hsu, Changchun, China
(Received July 9, 1959)

In this paper Hille’s theorem concerning the ‘‘first exponential for-
mula’ in the theory of semi-groups of linear operations has been shar-
pened without imposing any other conditions than the original ones.
Moreover a pair of convergence theorems similar to Butzer’s have also
been given.

1. Introduction. The main result of Chapter 9 of E. HiLLE’s comprehensive
treatise [1] is known as the ‘“‘first exponential formula’ which is contained in
Theorem 9.3.4 of the book. The principal object of this note is to reformulate
the exponential formula in a more sharp form.

As in the chapter 9 of [1], denote by & = {T'(£)}, (¢ > 0), a one-parameter
semi-group of linear operations on a complex Banach space X to itself so that
T(é 4 &) x = T(&)[T(&,) «] for all &, & > 0 and all x € X. Besides, a boun-
dedness condition of the form |7'(&)]] < M < + oo is assumed for 0 < o <
= § = max (¢ + 1, 2«), where M is in general depending upon 7'(&) itself.

1
Denote 4, = r [T'(n) — I, of which the strong limit 4 = lim 4, (whenever
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it exists) is known as the infinitesmal generator of &. Moreover, u(9, ) is used
to denote the rectified modulus of continuity of 7'(£)x in a certain given
interval [«, B] c (0, ), viz. u(d, x) = sup ||T'(&,) x — T'(&,) a||, the “sup” being
taken over all §,, &, with« < &, &, < fand | — & | < 4. Similarly we denote
w(0) = sup ||T(&) — T(&,)|| in case T'(£) is uniformly continuous for & > 0
and not merely strongly continuous.

Hille’s theorem concerning the first exponential formula can be now sharpen-
ed to the following form (cf. loc. cit., p. 187):

Theorem 1. If T'(&) is strongly continuous for & > 0, then for every x ¢ X and
every £(0 < o < & < ) and for n > 0 being small we have

(1) lexp [(£ — &) 4,] T(x) & — T(&) | = u(r®, ) + K .of* . |l ,
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where K = K(B, M) is a positive constant independent of n. Moreover, if T(£) is
uniformly continuous for & > 0, then

(2) lexp [(§ — &) 4,1 T(x) — T(&)| < u(®) + K .o .

Particular mention should be made to the work of Butzer [2] in one of his
recent papers, in which a quite sharp estimation for the left-hand side of (1)
has been given under certain types of Lipschitz condition together with the
uniform boundedness condition ||[T'(§)|| =M < + 0 (0 < & < o0) for T(£).
However, as will be seen from our proof of Theorem 1, it seems not quite easy
to improve our estimates of (1) and (2) without imposing any further conditions
upon {7'(£)}.

2. A special proposition. As may be observed, Theorem 1 can be proved
in a manner completely parallel to that of proving the following special pro-
position: .

Let f(s) be a continuous function defined on 0 = s << oo and satisfying the
condition |f(s)| < M +s (s < 0) with M = 1. For each fixed s = 0, define

(3) E,(s) = et (St, f( ) t>0).

k=0

Then for all sufficiently large t we have

) B — o = o5 ([ 1)+ & (4

where K is a positive constant independent of t, and »’F () = max |f(s;) — f(s,)]
(Is; — 85| = 9) stands for the modulus of continuity of f(u) as restricted to
a certain neighborhood of u = s.

Actually (3) is a well-known singular series, of which the convergence pro-
perty has already been investigated by several authors (see, for instance,
G. MirakYAN [3], G. Szec6 [4] and O. Szasz [5]). Here we are going to
establish (4) under the much wider condition [f(s)| =< M1+,

Obviously it suffices to prove, for § > 0 the inequality:

)l =)

Let us split the summation S(f) as a sum of two parts
S(t) = e~s4Z" 4+ X"),

the summations X’ and X" being extended over all k (k = 0, 1, 2, ...) subject
to the following conditions respectively

=]

Sty = e=st >

k=0

Sk —st) S, Tk — st] > 833,
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"

Accordingly, for the sake of comparison, we introduce a summation >" subject
k
to the condition

Sk — st MM > 3R

1
Notice that the inequality MY < 1 + 7 (M — 1) holds for ¢ = 1. Thus st <

=< stMY* < st + s(M — 1); and we see that for all large ¢ the summation X"
is included in £”,i. e. " < X",

It is also known that the following simple inequality (Lemma 9.3.2 of [1])

* i
(5) e~ (;; < N-2.
k

holds for every w > 0, where £* extends over all those values of k for which
[k — w| > N. Thus by repeated application of (5) it is seen that for all large ¢
we have the following estimates (in which 4 is freely used to denote a positive
constant, not depending on ¢ and not necessarily the same at each occurrence):

S e \f(zc_)

eMStZ k' st)’" + Ae_Stz W (st)*
oo S M A (st) <

+i ) & <

N IA
S
In

IA

" 1 1 1/3
<M. e'-"tz o (LAY 4 A (7)

1t (1 -2 1 1/3
= M. emstest (5 t) (stM”‘)—i—A.(—t—) <

1\3 1\8 1\
§M.€S(M_l).A.(T) -'-A.(T) §A.(7) .

On the other hand we easily find, for large ¢,

-7 ' 1 %
3 =or(({f)
Hence the inequality (4) is proved.

3. Proof of Theorem 1. For proving the general theorem, it requires only
to notice that

(6) lexp [(¢§ — &) 4,1 T(x) 2 — T'(¢) of| =

Se st Z TclT (st)* [T(oc -+ %)— T(x + s)]x
k=0




where s = & — «, t = 1/n. Moreover, we may restrict ourselves to the typical
T (oc -+ l;) x
can be thus treated in exactly the same way as in the estimation of S(t), and
so we have the inequalities (1) and (2).

14+ K
<M . |le|. The rigt-hand side of (6)

case M = 1, so that

Clearly the theorem can also be extended to cover the case « = 0, if 7T'(&)
is assumed to be strongly continuous for £ = 0, in which 7(0) is defined as
the strong limit 7'(0) = lim 7'(n).

70

It seems somewhat interesting to determine whether the estimate on the
right-hand side of (1) can be improved to the form u(n® x) + K .%°. |z
with @ > 1. In fact, this has not yet been decided in this work, though we may
observe that the estimate of (4) seems improvable by using our device of
proof.

4. An application. It is easy to deduce from Theorem 1 (or the special
proposition) the following consequence:

If f(s) is a continuous function satisfying the condition |f(s)| < M1+s
(0 =< s < oo)with M = 1, then for any given interval x S s < (0= < B <
<< 00 ) there ts a sequence of polynomials of the form

S (st (S (st (B
Pis) = (Z hsl ) (Z ! f(?))
h=0 k=0
with m = [108t], n = [(f + 1) ¢] (t = 1,2, 3, ...) such that, for ¢ being large,

. o rin <o|(1J] <o (3]

where C = ¢(f, M) 1is a positive constant independent of t, and w,(8) denotes the
modulus of continuity of f(s) for x < s = B.

In fact we easily find that (cf. the estimation of e~st%" in § 2)

Sl B

k=n+1

(8)

and moreover, we have (with 0 < @ = O(m) < 1)
9)

> 57

h=m+1

I\

(r(rftz: +11)' et < (155 T +11)| = (meﬁf 1)m+1 = (%)mm < e108t,

The inequality (7) may therefore be inferred at once from (8), (9) and (4).

-326



5. Convergence theorems similar to Butzer’s. As a simple constructive
proof for the Weierstrass polynomial approximation theorem, it has been shown
by the author [6] that the following limit relation

tim > 6 1 (£) = s

holds uniformly for any continuous function f(s) defined on an interval ¢ < s <
= 1 — ¢ with any small ¢ > 0, where

(10) ):pk,n('s) = V% [1 - (% - 8)2]" .

Thus by making use of a theorem of BuTzEr [2] we get at once the following

Theorem 2. If T'(§) is strongly continuous for & > 0, then for every x € X the

limat relation
N k
{Z Pnls) T (}3)} x— T(s)a
k=0

holds uniformly for ¢ = s < 1 — ¢ with any small ¢ > 0.

(11) lim =0

n—oo

Moreover, in order to approximate any bounded continuous function f(s)
defined on the infinite interval (0, oo ), the author has introduced polynomials
of the form

k 8

1 os k 2n
V_ﬁizf(ﬁ)[l_(;—m)] , (0<s< o).
k=0

Thus if we define
1 k s \27»
(12) ¢k.n(8)=V—n—;‘[1~(%_W)] , m=1,2,3,...)

then by the same method as used in proving Theorem 2 we may also obtain
the following result:

Theorem 3. If T(&) is strongly continuous for & > 0, and if || T(&)|| £ M < oo
(& > 0), then for every x € X, the limit relation

(13) lim [ 3 @y,(6) Tlkfrd)} & — T(5) o] = 0

holds uniformly on any interval x < s < fwith 0 < x < f < .

The whole proof of this result is just the same as that of Theorem 3 of [6],
and may therefore be omitted here.
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Pesowme

OLNEHKA JUJIf ,,TIOKA3ATEJILHON ®OPMVJIBI“ XUJIJIE
B TEOPUUM TOJYIPYIII JIUHENHBIX OIIEPATOPOB

JI. 4. CIOi1 (L. C. Hsu), Yanuyun

Mycers {T(&)}, & > 0 — MHOKeCTBO JIMHEIHBIX ONIEPATOPOB, OTOOpaKAIO-
nwx npocrpaHcTBO Banmaxa X Ha cefs M YHOBICTBOPSIONINX CJEAYOMIAM
TpeOOBAHUAM: '

(1) T + &) x=T(E)T(5) ], narme zeX, & >0, 8 >0;
(2) lm||T(n)x—TE) =0, Kakmoe zeX, & > 0;

n—>§

3) TG =M=MT) <+ o0 ma 0<a=£&<max(x-+ 1, 2x).

Yenosue (2) osmauaer, yro 7'(§) ¥ B avercBe (yHRIuM & CHILHO HeIpepbIBeH
g & > 0.
M1 noxasainu ciaenyrouryio TeopeMy (cp. Xumre [1], erp. 187):

Teopema 1. Ecau {T(£)} — cemeiicmeo onepamopos, yJo6aemeopaouur
yeaosuan (1), (2) u (3), mo

loxp [ — &) 4,1 T(x) & — T(8) 2, < p(n, ) + K . o |
ona 0 < o < & < B u dan manozo wucaa 1 > 0;

%=%WW“H,K=M&M>0.

Kpowme Toro, B paGoTe T0Ka3aHbL elie Be TeopeMbl 0 cXogmMocTi (TeopeMa 2
o TeopeMma 3).
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