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YexocuoBankmii MaTeMaTHIeckKuii :kypHal, T. 9 (84) 1959, IIpara

ADDITION TO MY PAPER “GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS AND CONTINUOUS
DEPENDENCE ON A PARAMETER”

JAROSLAV KURZWEIL, Praha
(Received December 8, 1958)

This paper contains an improved treatment of section 3 of [1]. It
follows that the results of section 4 of [1] are valid in a more general
form. Further the results of section 5,1 [1] are formulated and proved
in a correct way.

We shall use definitions and notations introduced in [1].

1. We shall give new proofs of Theorems 3,1 and 3,2 [1]. In these proofs
weaker assumptions concerning the monotonity properties of () are needed.

Let () be defined for 0 =5 < g, (0 > 0), p(0) = 0, p(n) = 0. Let

> 2(2) M

j=1

converge uniformly. (This assumption is specially fulfilled if v(r) is nondecreas-

i iy | b
ing andjz1 27y (2]. < 0.) Let us put

V() = z (17;) for 0<n=o0, PO =0.

_3‘[\‘)

0

29 Z
If_"__77< S(k=0,1,2,...), (=2, then ¥(y) = Z M/’( )

2k+1 — i 4
j=k+1
As (1) convergences uniformly, it follows, that ¥(17) — 0 for 5 — 0 +
Let 7,, < v* <1, + 0. Let Q be the square 74 =¢ = 7%, 7, =7 < 7%
Let V(, ) be defined on Q, 7, < A4, < A =7 Let us denote

2i—1

St(I/9 }'17 lz) - Sz - Z [V(C]? Cf+1) - V(Ci: C])] s (la,)
§=0, .
2i—1
ZV; dy hs) = By =2 [V(Ejan Cita) — V(Cit15 6)] " (1b)
i=o
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where

=/ +

21(/1 — ), §=0,1,2, ..., 2.

Lemma 1. If %tV: = o(t, t) is continuous and if |v(z,t) — (¥, t)] = Clr — 7

Ay
Jor 7,7, t € (T, T, then [ DV ewists and
A

Ag Ae
[DV = [o(r,7)dr, (2)
A A

fDV—th = lim Z, . (3)

17
Proof. Let h(t) = fU(T, 7) dr. As
t

h(t) — h(z) — V(x, t) + V(z, r)|—if d&—fv(r, E)dSt <

g ]t—1i2>

o] Q

it follows, that h(t) + et (resp. h(t) — et), ¢ > 0 is an upper (lower) function
of V, the lntegral f DV exists and (2) holds (cf. [1], section 1,1). Further

A 2i1 _ Si+1 i1 9i_1 i+l
lfDV“SiI‘Z Z [fv(t,r)dr—fv(ij,r)dr] < fC(T—— () dr =
1 i=0 g =07

= A
2 21
Similarly
Aq
C (2 24)?
‘IDVWZI =5

and (3) holds.
Theorem 1. Let U(x, t) be defined and continuous on @ and let

if 0 <n=oandif (t+n,t+n), (T +n7),(@t+n), [7t)eQ Then [DU

T
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exists and

7
IAfDU — Uld 4) + U(dy, M)l = 3(Re — ) P(2, — 4y), (4)
3
|[JDU — U2y, 45) + Uy, 2)| = 32 — 24) P(dy — 4y) (5)
h

forv® < A, < 2, < v

Proof. By a usual approximating process we find such a sequence of
functions U,(z, t) on @ that

i) Uiz, t) has continuous derivatives of the second order,

ii) Uz, t) — Uz, t) uniformly,

iii) for every ¢ > 0 there is such a K(9), that

Uit +n,t +n) — Us(v + 1,8) — U, t + ) + U, t)] < (n)
if
k> K@), ve +9=1<t4+n=v"—9,
R OSt<tfn=1t—9.
Let
>0, 17 +9 =4 <A <% — 9.

{—>00

Ay Ag
According to Lemma 1 [DU, exists and [DU, = lim S,(U,; 4,, 4,).
A A

Si41(Us Ay, A) — Si(Uys 4y, Ay) =

201
= Z [Ux(é, ;) — Unéy, &) — Ulé; — n, & + 1) + U(&; — 7, €)1,

j=0
] Ay — 4 Ay — A
5;‘ = l] ’4‘% (}*2 - Zl) + - 22“.1 L: n= —22‘1-11—1 .

If > K(9), then
[8;+1(Uss Ay, Ao) — S(Us; Ay, A)| < 27 (12“2:71&)

and
Ay
!fDUk — U4y, 42) + Uiy, 4y)| = l_ﬁm e =
Py i->00
< < . [ — 4| 1
= Z ISz'+1 - Szl gz 2%y ( 22i+1 1) = 3 (A — 4y) P(A, — ) . (6)
=0 i=0
Similarly

AU, — Uy 1) + Vsl ) S 30— 1) ¥ — 2) . (1)
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Let 0 <=0 and let 4 = {¢0>Ty, ), ..., 7, x,} be such a subdivision of
(A A (e h=o <o < <=1y =T =0 = S0 =
<7, < o,) that
Ti— o1 <0, a;—1;< 0. (8)

Let us put

S

RV, 4) = 2.V, a) = Vs, o)1
=

Then

.
lfDm~RwW&:
|
M

Z [ fDUk — Ulz;, i) + Ui(ts, 00-1) + fDUk — Ulz;, «;) +
i=1 s

*j—1 i

+ U7, Tj)]l = z % [(v; — 1) P(r; — a;) + (2, — 75) P, —1)] =

2, —
<2 2! sup P(t).

~ 0<t=d

If 4,, A, are subdivisions of {1;, 4;> which fulfil (8), then
|R(U,, 4,) — R(Uy, 4,)] < (2, — 4)) Osggaql(t) . (9)

As U, — U it follows that R(U;, 4,) — R(U, 4,), R(U,, 4,) - R(U, 4,) and
|R(U, 4,) — R(U, 4,)| = (4, — 2,) sup P(t). (10)
0<t=é

Ay
Consequently [DU exists as ¥(6) — 0 with § — 0.1)
Ay

2
1) Summarizing the results of [1], section 1 we obtain, that f DV exists if and only if
for every ¢ > 0 there exists such a positive function §(z) that 4

[B(V, 4,) — R(V, 4))] <& *)

if the subdivisions A; = {&g, Ty, &1, -0y Tgy g}, Ay = {&, 7,5 &5 ooy 775 "} of (A, A9
fulfil the conditions

T, — oy < 0(ry), & —1;<6(ry), §=1,2,..,s,
T — oy < O0(ry), o —T <O(r), j=1,2,...,7r. (**)
2
In this case | [DV — R(V, 4,)] < ¢ .
Ay
Let 6, be such a positive constant, that (1, — 4;) ¥(J) < e for 0 < § < J;. We proved
that (*) is fulfilled for V = U (cf. (10)) if (z) = 6,. As in this case (4(r) = J, = const) (**)
is equivalent to the usual conditions (that the respective subdivisions 4;, 4, are fine

2
enough) of the Riemann theory of integration, we may say, that [ 'DU exists in the sense
of Riemann. ’ A
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It follows from (9) and (10) that

2y
lfDUk — R(Uy, 49| = (2, — 2y) sup P(t),
M 0<t<é
Ay
|/ DU — R(U, 4,)]| £ (3, — 4,) sup ¥(t) .
A 0<t=<d

2 Iy
As 0 is arbitrary and R(U,, 4,) — R(U, 4,), [ DU, — [ DU.
Py i

Passing to the limit for £ — oo in (6) and (7) we obtain (4) and (5) with the
additional assumption 7, << A; < 4, < 7%,
ps
Let ( € (14, 7*). As [ DU is uniformly continuous in 1 on (4, 7*) and Ul(x, t)
¢ &

2g
is continuous on @, fDU exists if 7, =< A, < A, < v* (cf. Theorem 1,3,5, [1])
i
and (4) and (5) hold for 7, = 1, < 4, = v*. Theorem 1 is proved.
Let S be the set of such (7,¢) that 7, <7 <%, 7, St < * |t — | Zo.

Theorem 2. Let the functions Uy(t, t), k = 0, 1, 2, ... be defined and continuou&
on S and let

[Up(v +n,t +n) — Ut + 0, ) — Uz, t + ) + Uylz, t)] = p(n)

if

0<n=o, (CH+nt+n, @+nt), Tt+n), (r,1)es.
Let Uz, t) — Uz, t) uniformly on S with k — co. (11)
Then

s s
[ DU, — [ DU with k — o uniformly for v, <3 = 1, =v*. (12)
2 7

Proof. From (2) and (3) we obtain in a similar manner as in the proof of
the preceding theorem that

A
’AfDUk — B(U, )| = (4, — 4,) sup ¥(0)

0<t=d
in the subdivision 4 of {4;, 1,y fulfils (8), 0 < 6 < o and (12) follows from
(11), as B(U,, A) — B(U, A) with k — oo (cf. Theorem 1,3,4, [1]).
Note 1. The results of section 4, [1] (specially Theorems 4,1,1, 4,1,2, 4,21,
Lemma 4,1,1) are valid, if we omit the assumption that #~'y(») is nondecreasing

(we assume of course, that Z 29y (%) < 00; p(n) = wy(n) wy(n) is nonde-
. j=1 ~
creasing, as w;(7) and w,(n) are nondecreasing).

Note 2. Suppose that the values of the function Ul(z, ) (7, e {7y, %))

belong tc a Banach space B. For X ¢ Blet | X| be the norm of X. Let (1, 4,> ¢
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C LT, 7). If A = {0, 715 &1, ..., Ty, &4} is & subdivision of (4;, 4,>, put
R(U, 4) = ZI[U(Ti’ ;) — Ulr, xi-4)] -

Suppose that for every ¢ > 0 there exists such a function §(r) > 0 that
[B(U, A) — R(U, 4")| < ¢

if the subdivisions 4 = {xg, 7y, &y, ..., 7, 5.}, A’ = {xg, 1103, ..., 7), 57} Of
{2y, Agy fulfil the conditions

Ty — ey << O(T), x;—1T, < Ot), 1=
T — gy < 0T, x—T < 8T, i
Then there exists such a W ¢ B that
W — R(U, 4)| <
if the subdivision 4 of {4,, 4,) fulfils (1*). In this case we define

,2,...,8,
2

1
1,2,...,r. (1%)

I

)

2
[ DU, ¢) =W.
Ay

We shall show that Theorem 1 remains valid if the values of U belong to B.
Let us put

S(U; 24, 4) = lim S(U; Ay, 4) , (2%)
Z(U; ay, dy) = lim Z(U; 4y, 4y) (3%)

where S, Z; are defined by the formulas (la), (1b). In the same manner as
we deduced (6) we obtain that the limits in (2*) and (3%) exist and that

I8(U; 21, 2) — Uy, A) + U(dy, 1)l = 3(Ae — A1) P — 4), (4%
\Z(U; 24y 2o) — Uldgy 2) + U(hg, 1)l = §(ha — 20) P(de — 4y) . (5%)
Obviously 4
PSy(U; Ay, do) = Si@U; Ay, Aa) s 9Z(Us Ay ko) = Zi(@U; Ay, Ay)
where ¢ is a linear functional on B. It follows that
2 -
P8(U; 2y, 4y) = fD‘PU(T, ) = @Z(U; Ay, 4y)
Ay
Hence B
S(U; 2y, Aa) = Z(U; Ay, 4y) (6%)
and B B _
S(U; 2y, ) 4 B(U; Aoy A5) = S(U; 4y, 2s) - (7%)

Let 6 > 0 and let 4 be a subdivision of {A;, >, &; — 7, < 6,7, — o¢;—y < 0,
1=1,2,...,s.
It follows from (4*)—(7%) that

IS(U; 4y, &) — R(U, 4)] = (4, — 4y) sup ¥(t).
0<t=s
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2
Consequently [ DU(z, ¢) exists and
ll

A
[DU(z,t) = S(U; 24, 2,) .
Ay

From (4%), (5*) and (6*) we obtain (4) and (5). Theorem 1 holds.
Theorem 2 follows from Theorem 1 in the same manner as in the scalar case.

2. Some considerations in section 5,1, [1] are not correct (especially p. 444,
formulas in the 3 and 58 line from below and p. 445 formula in the 6 line
from above). The aim of section 5,1, [1] was to prove that the solutions of
generalized linear differential equations are unique and to establish the
variation-of-constants formula. Here we shall give the correct proofs. The
author intends to use the variation-of-constants formula for an investigation
of linear differential equations. Therefore we shall work with general moduli
of continuity w,, w, while in section 5,1 [1] it was assumed that the respective
moduli of continuity are powers of 7.

Let wy(n) w,4(n) be nondecreasing on {0, 6), ws(n) = ¢, wy(n) = cn (¢ > 0),
w5(1) = max (wy(n), wa(n)), a(n) = wi(n), ps(n) = w5(1) w4()-

o

S o; |0 27 .
Suppose that zl 20y, (—2—]) < o and put P,(n) = ,Zl o »; (%), 1= 4,5.
J= : ==

Let A(t), t e (— o0, c0) be an n X n-matrix and let B(t) be an n-vector and
suppose that

[[A(ts) — At)] = wullt, — t)| for |ta — b =0, (13)
1B(t;) — B{ty)|| = wy(lty — t,]) for [t — 4] =o. (14)

Lemma 2. Let ¢ E,. There exists at most one regular?) solution x(t) of

2) Let F(x,t) € F(G, o, w,, 0) (cf. [1], section 4,1). Let x(z), 7 € {z;, 7,) be a solution of

dx
el DF(x, 1) .
z(t) is a regular solution, if there is such a ¢’ > 0, that |[z(r;) — 2(7,)]| = 2w,(|73 — 74])
for 73, v, € {71, 7o), |73 — 74| = o’. This definition is equivalent to Definition 4,2,1 [1], as
the interval {7, 7,> is compact.
Let y(r) be a solution, of
d;
= prae y + BE) (16)
on an interval I [I may be closed, open or I = (— o, ©)]. Let <7, 7,> be a compact
subinterval of I . y(7) is continuous on I (cf. Theorem 1,3,6 and Definition 2,1,1 [1] and
therefore there exists such a bounded open subset G of E, ., [(n + 1)-dimensional Eucli-
dean space], that contains all the points (y(), 7) for 7e {7y, 7,)>. Obviously A()y +
+ B(t) € F(G, Kgwg(n), Kgwy(n), o) it K, is great enough. (), T €7y, 7o) is regular [with
respect to F(G, Kyw;(n), Kzw,(n), (0)], if there is such a ¢° > 0, that ||y(z,) — y(ry)]| <
< 2K3m5(|7y — T3]) for T3, 74 € {7y, T), |7, — T3] < ¢’. We shall say that y() is a regular
solution of (16), if for every compact subinterval (7;, 72> of I there exist such positi-
ves K, and o’ that |[y(z,) — (73)]| = K,w;(|7y — 73) for 74,7, € (71, 1), [1p — 73] £ 07
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g; = DA(#) x, (15)
which fulfils x(t,) = c.

In order to prove Lemma 2 we may use the proof of Lemma 5,1 [1]. At the
same time Lemma 2 is a consequence of Theorem 1 [2]. )

Lemma 3. The reqular solutions of (15) are defined for v € (— oo, o0).

Lemma 3 is a consequence of Lemma 2 and Theorem 4,2,1 [1], where we
put Fi(z, t) = Fy(z,t) = A@) z, zo(r) =0, e=1, G = E, ¢tz <1). It
follows that for every 7' > 0 there is such a 6 > 0 that the regular solutions of
(15) which fulfil ||2(0)|| < é are defined on. {0, 7" and fulfil |lx(z)|| < 1 on <0, T).
By the substitution ¢’ = — ¢ we obtain that the solutions of (15) which fulfil
[lz(0)]] << 6" are defined on {—7', 0> and fulfil |z(7)| < 1 on {(—T, 0>.

The fundamental matrix of (15) is a » X n-matrix @(r), P(0) = E?) every
column of which is a regular solution of (15). It follows from Lemmas 2 and 3
that @(7) is defined uniquely for 7 ¢ (— o0, o).

Our aim is to establish the variation-of-constants formula for the solutions
of

dz

& = DlA®) = + B@) . (16)

Let A,(t), Bi(t) be such matrices and vectors, that A,(t) — A(t), Bi(f) — B(f)

uniformly on every bounded interval, %Ak(t) = a,(t), %Bk(t) = by(t) are
continuous, A,(¢) fulfil (13), B,(t) fulfil (14).
As the generalized equation
dx
T = DlAu(t) @ + B0)]

is equivalent to the classical equation

d
T = @0z + b0,

we have the variation-of-constants formula
2(8) = Di(s)[z +6f E(8) by(t) dt] =

= D,(s)[z —-}—jDEk(‘L’) By(t)], ,(0) =z, (17)

where @,(7) is the fundamental matrix of
dz

T = Di4i() 2] (18)

and E(r) = &5 (7).

3) E is the unit matrix.
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According to Lemma 2 and Theorem 42,1, [1] D(r) — D(r) uniformly on
every bounded interval. As 5j(r)*) is the fundamental matrix of

de _ _parp)a, (19)
dt

it follows similarly, that 5 (r) — £*(v) uniformly on every bounded interval,
where Z*(r) is the fundamental matrix of
e paxtya.
dr
Passing to the limit for k — 00 in @x(7)E(r) = K we obtain that &(r) Z(r) =
= F (E = EB*¥),
Let T > 0. As the columns of Fy(r) are regular solutions of (19), there
exist such K, and oy, that
[Ex(te) — Ex(ty)l] = Kspwallte — tlil) for ¢, t,e (=T, T),
[ty — 4] = o -

It follows that there exist such constants Kg, that
[Ex(te) — En(ty)l] = Kawy(lts — L) for 8,8, e (=T, T,
[ty — b =0
According to Lemma 4,1,1 [1] there exist such ¢* > 0 (¢* = 0) and L > 0
(independent on k) that

| E(ts) — Ex(t)]| = Log([t, — &) for by, t,e T, T,
lty, — 1] = 0™ .9) (20)
Similarly
[@u(ts) — Di(ty)]| = L'wy(lt, — 1)) for b, t,e (=T, T),
[ty — 1| =< o*. (21)
Theorem 2 together with (14) and (17) implies that

j‘ DE(z) By(t) — fs DE(r) B(t) wuniformly with % — oo for

' ' se(—=T,T>. (22)
Consequently the uniform limit lim a,(f) = 2(¢) exists. From (13), (14), (17),

. (20), (21) and Theorem 1 we obta,k;l“;;hat

1o
I/ DEL(x) But)| = Kqoy(lty — ti]) for ty,tae (=T, T), [ty —t] =%,
i

lwn(ts) — 2ty = Ksws(lt, — 8]) for &y, t,e (=T, 1), |t —1t] = o*.

1) 5.* is the conjugate transpose to Z.

%) The number ¢* which occurs in Lemma 4,1,1 [1] depends only on K, G,; »;, m,, not
on the right-hand side of equation (4,1,04). Let us denote by &,;*(z) (£;%(z)) the j-th co-
lumn of the matrix Z;*(r) (£*(z)). In the present case we choose such an open and
bounded set G, that contains all the points (&, ,;*(7),7), (§*(),7), k =1,2,3,... j =
=1,2,..,n1el{—T,T.
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According to Theorem 4,1,1 [1] 2(z) is a solution of (16).%) Passing to the limit
for k — oo in (17) we obtain the required variation-of-constants formula

z(s) = D(s)[z + zDE(r) B@)], x(0)=-=z2. (23)

As the difference of two regular solutions of (16) is a regular?) solution of
(15), Lemma 2 implies that z(z) is the only regular solution of (16), which
fulfils 2(0) = =.
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Pesonme

HJOBABJIEHUE K MOE CTATBHE ,,0BOBUIEHHBIE
OBBLIKHOBEHHBIE JUOOEPEHIIMAJLHBIE YPABHEHUA
1 HEIIPEPBIBHAA 3ABUCHUMOCTL OT IHAPAMETPA“

APOCJIAB KYPUBEMJIb (Jaroslav Kurzweil), ITpara
(Hocrymmio B pepakmuio 8/X 11 1959 r.)

Haercst ynydmenHoe usioskenue Tpersero maparpada crarsu [1]. B noseix
IOKA3aTesbCTBAX TeopeM HTOTo Iuaparpada ymorpebisoorca Oosee ciaabbie
NpeiooIKeHns, Kacaomecss Monorornocty Qyurnuu y(n). CiemosarensHo,
B 9THX 60Jiee OOMIX HPeAI0JIOKeHuAX BePHBI Y OCHOBHBIE PE3YJLTATLL CTATHH
[1], comepsxammuecs B werBeproM maparpaje. Jamee, nysi 0600IeRELIX JHHEIH-
HBIX YpaBHEHWIl BHIBOJMTCS (OPMYJia BapHAlMM IOCTOSHHBIX (YTO IpeJi-
cTaBilAeT KOPPeKTHOe u3joskenne naparpada 5,1 crareu [1]).

8) Ay(t) & + By(t) e F(G, Kywy(n), oy(n), 6) where G is a suitable bounded set and
K, is great enough.
7) Cf. footnote 2).
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