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YexocaoBalnknii MaTeMaTHIeCKnii :kypHaa, T. 9 (84) 1959, IIpara

BOUNDEDNESS IN UNIFORM SPACES AND
TOPOLOGICAL GROUPS

JAN HEJCMAN, Praha
(Received March 27, 1959)

In this paper the boundedness is defined for sets in arbitrary
uniform spaces and some properties of bounded sets in uniform spaces
and topological groups are studied. Then some results are aplied to
the study of groups of homomorphic mapping of locally bounded
groups.

In metric spaces bounded sets are defined in an obvious way; boundedness
is, however, not invariant even under uniformly continuous one-to-one mapp-
ings (since every metric space can be re-metrized to become bounded without
changing its uniform structure). In this paper, a definition of the boundedness
is given (see the definition 1.3) for sets in arbitrary uniform spaces which is
invariant under uniformly continuous mappings. This definition is, in general,
more restrictive than the usual one, but in normed linear spaces both defi-
nitions are equivalent. The main results of the first and the second section are
the theorems 1.12, 1.13, 1.14, 1.18, 1.19, 2.5, 2.6, 2.8. In the third section groups
of homomorphic mappings of locally bounded groups are studied and it is shown
that the boundedness can replace some stronger conditions. Nevertheless, it
is shown (example 3.8) that the theory of characters of locally bounded
groups leads to results different from those well known for locally compact
groups.

Now we are going to state some definitions and results we shall need in the
sequel.

All definitions and notations for uniform spaces are taken from [1], where
all assertions given in this introduction are proved. We recall only some
basic definitions and point out where a different terminology is used in this
paper or where a misunderstanding could arise due to the same terms used in
different sense by different authors.

If P is a set, every subset of P X P is called a relation on P. If U is a re-
lation on P, then we put U = {(x,y) e P X P; (y,x) e U}. If U = U, we
say that the relation U is symmetric. If U, V are relations on P, then Uo V
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is the set of all (z,y) e P X P such that (x,2)e U, (2,y) e V for some z ¢ P;
U is defined, for every natural », by putting U' = U, U» = U o U»L. If
U is a relation on P, A c P a subset, then U[A] is the set of all z € P such that
(x, y) e U for some y ¢ A. Instead of (U o V)[A] we write U o V[4]. It is easy
to prove the following properties of relations:
.Uo(VoW)=(UoV)o W,
2. UoV[4] = U[V[4]],
3. UIU 4,]=U U[4.],
4. beV[al<>aeV-[b].
A uniformity on a set P is a non-void family U of relations on P such that
l.zeP, Ue A= (x,2)e Y,
L UeA=>U1e N,
if U e U, there exists V e U such that VoV c U,
UeU, VT eU=>UnVed,
50 UeW, UcVcP xP=Vedl

The pair (P, UA) is called a uniform space.

Since a uniformity generates a (unique) topology, all notions defined for
topological spaces are meaningful for uniform spaces. If (P, %) is a uniform
space, we can consider open or closed relations (in the topology on P X P).
Then the family of all open (all closed, all symmetric) relations belonging to
a uniformity U is a base for U. If (P, A) is a uniform space, B c P, we denote
by Uy the relative uniformity for R.

Our definition of bounded sets will not be equivalent with the usual definit-
ion in metric spaces. To avoid a misunderstanding, we shall say that a set
A is bounded for a pseudo-metric g, if p is a bounded function on 4 x A4; if
the boundedness is meant in this sense, then the pseudo-metric (a metric)
in question will be always mentioned explicitly. We shall need the following
theorem proved in [1]:

Ll

Theorem A. Let U, (n = 0,1,2,...) be a sequence of subsets of P X P such
that Uy = P X P and for each integer n =0 we have xe P = (x,x)e U,,
Uiy, c U,. Then there exists a finite non-negative function d on P X P such
that

(a) d(x, y) + d(y, 2) = d(x, z) for each x,y,z¢ P,

() U, c{(, y); d(x, y) < 2"} c U, for each natural n.

If each U, is symmetric, there exists a pseudo-metric d satisfying the condition (b).

This theorem will be used especially in the case that (P, %) is a uniform
space and U, ¢ Y are symmetric. Then d is a uniformly continuous pseudo-
metric.

A corollary of this theorem is the assertion: A uniform space is metrizable
if and only if it is Hausdorff and its uniformity has a countable base.
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All definitions and notations for topological groups are taken from [5]. Let
us remark that in a difference with [5] we say that a set U is a neighbourhood
of an element x in a space G if xnon ¢ @ — U (U need not be open), but, as
in [5], we suppose that every topological group is a Hausdorff space. We shall
consider only commutative groups, therefore we use the additive notation.
If we consider only algebraic properties of topological groups, then a homo-
morphism is called an algebraic homomorphism etc. We say that a mapping
is homomorphic if it is algebraically homomorphic and continuous, isomorphic
if it is algebraically isomorphic and homeomorphic; a subgroup is an algebraic
subgroup which is a closed subset.

Every topological group @ is a uniform space with a base of the uniformity
consisting of all sets U" = {(z, y) e ¢ X G; x — y € U} for all neighbourhoods
U of zero. It is easy to show that U'oV' = (U + V), UA]=U + A.
Therefore all notions defined for uniform spaces are meaningful for topological
groups, and it is clear how the operations on the relations are-to be interpreted.
Let ¢ be a pseudo-metric on a topological group G. We say that p is an invariant
pseudo-metric, if o(x + 2, ¥y + 2) = o(z, y) for arbitrary elements z, y, z € G.
We say that a group G is metrizable, if there exists an invariant metric ge-
nerating the topology on G. If (@ is a metrizable (by a metric p) group, H its
subgroup, then G/H is metrizable by the metric o*(X, Y) = inf o(z, y), where
X, YeG/H. LBeX

We shall need also the notion of a complete uniform space, but only in some
theorems of the third section. We shall use the following theorems proved
in [1].

Theorem B. Let (P, A) be a uniform space, (@, B) a Hausdorff complete
uniform space, A c P; let | be a uniformly continuous mapping of A into Q.
Then there exists a unique uniformly continuous mapping f of the set A into
Q such that f, = f.

Theorem C. A uniform space is compact tf and only if it is complete and totally
bounded.

Theorem D. If G us a topological group, then there exists a complete group
G, such that G is its algebraic subgroup, G is a subspace of the uniform space
G, and G = G,. The group G, is determined uniquely to an isomorphism identical
on Q.

1. Bounded sets in uniform spaces
In this section, we define chained and bounded sets in uniform spaces and
consider their fundamental properties. In the following theorems, bounded

sets are characterised either by means of uniformly continuous pseudo-
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metrics, metrics and real functions or by their properties in spaces, where
some local conditions are fulfilled.

1.1. Definition. Let (P, ”A) be a uniform space. Let U e A, 4 c P. We say
that A is U-chained, if for each two points a ¢ 4, b ¢ A there exists a finite
sequence of points z,¢ 4, ¢=1,...,n 4+ 1 such that z, =a, z,4 =0,
(s, %j+4) € U for 2 = 1, ..., n. We say that A is chained, if it is U-chained for
every U e .

1.2. Remark. In the above definition it is sufficient to take U from some
base of the unifoimity U only, and to consider the subspace (4, U ,) instead
of (P, ). ’

It is easy to show that every connected uniform space is chained and every
compact chained space is connected. We do not prove these assertions for we
shall not need them. It will be quite sufficient for us to know that every to-
pological linear space is chained.

1.3. Definition. Let (P, %) be a uniform space. We say that a set A c P is
bounded (more precisely: bounded in (P, %)), if for every U e U there exists a
finite set K c P and a natural number n such that 4 c U"[K]; if » = 1 may
be put (for every U), then we say that 4 is totally bounded.

1.4. Remark. A) Clearly, every totally bounded set is bounded. It is well
known that every compact set is totally bounded. B) In the definition 1.3,
U may be taken from any given base of the uniformity U (instead from ).
C) Clearly, 4 c P is totally bounded in (P, ) if and only if it is totally bounded
in (4, %4). On the contrary, boundedness of a set A depends essentially on the
space (P, A); if (P, Y) o (R, UR) are uniform spaces, then 4 c R is bounded
in P whenever it is bounded in R, but it is easy to show that the converse
does not hold, in general. D) In the sequel, a set is called simply “bounded”
if it is bounded in the whole space under consideration.

1.5. Remark. In the definition 1.3 we may require K c 4.
Proof. The case 4 = 0 is clear; suppose that 4 + 0. Let U ¢ ¥ be given,

let V c U be symmetric and V2c U. Then there exist a,,...,a,e P and a
k

natural number n such that A c V*[a,, ..., ;] = U V"*[a,]. We may suppose
i=1

that V7[a,] 0 A + 0 for each 7. Choose b; e V*[a;,] 0 A. Then
Vrla] c V[(V-1)r[b,]] = V"o V"[b,] = U"[b.],

hence
AcVay,...,a)c Uby, ..., b,].

1.6. Remark. If the space P is chained, a € P is an arbitrary point, we may
put K = (a) in the definition of the boundedness.
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Proof. Let U ¢ U be given; there exist a,, ..., ¢, ¢ P and a natural number
n such that 4 ¢ U*[a,, ..., a;]. For 2 = 1, ..., k there exist natural numbers
r; such that a, ¢ U[a]. Put r = ma.x ;. Then

A c UMU"a]] = Urt'[a] .

1.7. Remark. Boundedness of sets in locally convex topological linear
spaces has been defined by J. v. Neumann in [4] and A. Kolmogorov in [2].
It is easy to prove the equivalence of Neumann’s and Kolmogorov’s de-
finitions. By means of the remark 1.6 the equivalence of our definition with
Neumann’s definition can be proved in this special case.

1.8. Theorem. A set in a normed linear space is bounded if and only if it is
bounded in the usual sense (v. e. as a metric space).

1.9. Theorem. Let A, B be (totally) bounded sets in a uniform space (P, A),
Cc A. Then the sets C, A, A U B are also (totally) bounded.

Proofs of both these theorems are easy and may be left to the reader.
Theorem 1.8 will be used especially for sets of real numbers.

1.10. Theorem. Let (P, U,), (P,, A,) be uniform spaces, let f be a uniformly
continuous mapping of Py into Py. If A c P, is (totally) bounded, so s f(4).

Proof. Let U e, be given; there exists Ve A, such that (x,y)eV =
= (f(x), f(y)) e U.If A c P,is bounded, there exists a finite set K and a natural
number 7 such that V*[K] > A. If z € f(A4), there exists y ¢ 4 such that f(y) =
As y e V*[K], there exist ¥y = yy, ..., ¥, € Py, Yp+,€ K so that (y;, Ysq) eV
for i = 1,...,n. Then (f(;), f(¥:+1)) € U and z e U"[f(K)]. Putting n = 1 we
have the proof for the total boundedness.

1.11. Theorem. Let a non-void uniform space be a cartesian product of an
arbitrary system of uniform spaces: (P, UA) = X (Py, U,). Then @ set A c P is

(totally) bounded tf and only tf its proyectwn mto every coordinate space P, is
(totally) bounded in P,.

Proof. The necessity follows immediately from theorem 1.10, because the

projection of P onto P, is a uniformly continuous mapping. We shall prove
the sufficiency. As 4 c X A4,, it is sufficient to prove the (total) boundedness

aeM

of A" =X A4,. Let U e be given; there exist «;,...,x,¢ M and U, ¢ U,

xeM
fori =1, ...,1 so that
Us{@,y)eP X P; (%4,¥s)e U, for i=1_..10.

To each 4+ =1, ..., [, there exists a finite set K, C P, and a natural number
m,, such that

Unsi[K,, ]2 Ay, -
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Put m = max m,,. Foreach « + o, (1 = 1,...,1) let K, c P, be an arbitrary
i 1

.....

set containing only one point. The set X K, = K is finite. We shall prove

xeM
the relation U™[K]> A’ for each coordinate «. This is clear, if x % ;. For
each «; we have
ULlK,1 > UpxiK, ] A,
and the boundedness is proved. If all sets A, are totally bounded, we can
choose K, such that m, = 1 may be put, and therefore m = 1.

1.12. Theorem. Let (P, U) be a uniform space. A set A c P is bounded if and
only if it is bounded for every uniformly continuous pseudo-metric defined on P.

Proof. The necessity follows from theorem 1.8 and 1.10. If we choose
@ € P and y is a uniformly continuous pseudo-metric, then y(a, x) is a uniformly
continuous mapping of P into the set of all real numbers.

We shall prove the sufficiency. Let a set 4 c P be given. Let U ¢ U be sym-
metric. We define a relation on P: x ~ y means that there exists a natural
number n such that x ¢ U"[y]. The relation ~ is reflexive, symmetric and

transitive. Therefore it defines a decomposition P = U P,. According to
aeM

theorem A there exists a uniformly continuous pseudo-metric ¢ on P such that

{(@, y);p(x,y) <1}cU.

By means of the pseudo-metric v we shall construct another pseudometric,
defining it first on each set P,. Bach P, is U-chained. Let x, y ¢ P,. Let us
consider U-chains connecting x with ¥, i. e. finite sequences x = x;, @,, ...,
ce Xy, X4y =y such that (2, x;44)eU for 7 =1, ...,n. The number
z p(2;, x;44) will be called the length of this chain. Put ¢(z, y) = inf Z W(@;, Zi4)
i=1 i=1

where the infimum is taken over all U-chains connecting « with y. It is suffi-
cient to take the infimum only over all irreducible chains i. e. such that
(%, Z;+;) non e U for any ¢ = 1 and any j > 1. It is easy to prove that ¢ is a

finite non-negative function on U (P, x P,) and it is a pseudo-metric on each
xeM

P,. It is uniformly continuous, because it is equal to y on U.
Now we shall extend the pseudo-metric onto the whole space P. First we
define a function u on the set M. Put

M,={ceM;P, 0 4 + 0}.
If M , is finite, we put u(x) = 1 for each « € 4. If M , is infinite, there exists an
infinite sequence {x,}n—, where «,e¢ M,, o, + «, if m + n, and we put
w(e,) =mn, u(x) =1 for x e M,, & + «,. Choose v, e P, for each x e M. If
x e Py, y e Py, we put
o, y) =g, y) if a=4,
0@, y) = (@, va) + @y, v5) + plx) + w(f) if « + 8.
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It is easy to prove that p is a pseudo-metric on P. We shall prove only the
triangle inequality. Suppose that x e P,, y € P, z € P,. There are only three
possible cases:

1. x = f§ = y; then p = ¢ and all is clear,

2. o # f + y; then we have

o, 2) = @(x, v,) + @(z, v,) + ula) + u(y) < gz, v.) + @y, vp) +
4 () + w(B) + @y, vp) + @z, v,) + w(p) + uly) = olx, y) + oy, 2) ,

3. « * f = y; then v; = v, and we have

(v, ) + @y, 2) = @(vg, 2) ,
(@, v,) + (v, ¥) + plo) + 1(B) + ¢y, 2) =
= (x, vy) + @(vg, 2) + ple) + p(B)
o, y) + oy, z) = e(x, 2) .

If o(z, y) < 1, then z and y belong to the same class I_’oc and o(, ¥) = @, ¥),
therefore p is also uniformly continuous.
Now let 4 be bounded for the pseudo-metric p. Then M, must be finite and

o(x, v,) is a bounded function for x ¢ A N P,. Then a = max ( sup ¢(z, v,)) <<
xeM 2xzeAaPy

< 0. Let m > a be a natural number. Consider an element « ¢ M 4. For each
point x e A 0 P, there exists an irreducible U-chain connecting x with v,.
Therefore, there exists a sequence x = x,, @,, ..., ¥,4; = v, such that (z;, ¥;1+,) €

e U, > y(x;, x;+,) < m. As this chain is irreducible, the inequality (2, ;+;) <
i=1

<} cannot hold for two consecutive indices 7. It means that y(x;, x;+;) < 3}
holds at most for 4(n + 1) indices ¢ and therefore (x;, z;+,) = % holds at
least for }(n — 1) indices. Then the length of the chain is at least }(n — 1),
which implies n << 4m -+ 1. Therefore 4 c U +1[v,; x ¢ M ;] and the bounded-
ness of the set 4 is proved.

1.13. Theorrm. Let (P, U) be a metrizable uniform space. A set A c P is boun-
ded if and only if it is bounded for every metric generating the same uniformity
as U.

Proof. The necessity follows from theorem 1.12. The proof of the sufficiency
is the same as in the theorem 1.12, if we take p as a metric defining the same
uniformity as U; this is possible, since the unifority % has a countable base and
(P, A) is a Hausdorff topological space. Then ¢ is a uniformly continuous
metric and generates the same uniformity as v, because if o(z,y) <1 or
p(@, y) <1 then oz, y) = y(z, y).

1.14. Theorem. Let (P, ) be a uniform space. A set A c P is bounded if and
only if for every real function f uniformly continuous on P the set f(A) is a bounded
set of real numbers.
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Proof. The necessity follows from theorems 1.10, 1.8. If the set 4 c P is
not bounded, there exists, according to theorem 1.12, a uniformly continuous
pseudo-metric y on P, for which 4 is not bounded. If we choose a ¢ P, then
f(x) = p(z, @) is a uniformly continuous real function on P and f(4) is not
bounded.

1.15. Remark. Let P be a completely regular topological space. The family
of all continuous pseudo-metrics generates a uniformity on P (see [1]). The
topology generated by this uniformity coincides with the given topology.
From theorem 1.14 it follows that A c P is bounded in this uniformity if
and only if 4 is relatively pseudo-compact, i. e. every continuous real function
on P is bounded on A (see [3]).

1.16. Definition. We say that a uniform space (P, %) has a property V uni-
formly locally, if there exists U e Y such that Ulx] has the property V for
every x e P.

1.17. Lemma. Let (P, A) be a uniform space. let U € W be such that U o Ulx] is
totally bounded for each x ¢ P. Let A c P be totally bounded. Then U[A] is also
totally bounded.

Proof. There exist a,, ..., a; ¢ P so that 4 c Ula,, , @]. Then
UlA]lc Uo Ulay, ..., ] = Uo Ula,] Y ... v Uo Ulay]
and we see that U[A] is a subset of a totally bounded set.
1.18. Theorem. Let a uniform space (P, A) be uniformly locally totally bounded.

Then every set bounded in P us totally bounded.

Proof. Let U e be such that U[z] is totally bounded for each ze P.
Choose V e U so that V2c U. ThenV o V[z] is for each x also totally bounded.
According to lemma 1.17 we can prove by induction that V7[z] is totally
bounded for each natural number n. If 4 c P is bounded, there exist points

ay, ..., 0, ¢ P and a natural number m so that 4 c V™a,, ..., a,]. Since
Vmla,, ..., a;] is a union of a finite number of totally bounded sets, 4 is totally
bounded.

1.19. Theorem. Let a uniform space (P, U) be uniformly locally compact.
Then a subset of P is compact if it is closed and bounded in P. If the space (P, %)
1s uniformly locally bounded and every closed and bounded subset of P is compact,
then (P, A) vs uniformly locally compact.

Proof. Let U ¢ U be such that U[z] is compact for each x ¢ P. Let a set
A c P be bounded and closed. According to theorem 1.18, the set 4 is totally
bounded. There exist points ay, ..., a; ¢ P such that 4 c Ula,, ..., a;]. Then
A is a closed subset of a compact set, therefore’it is compact.
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Let U ¢ A be such that U[z] is bounded for each x ¢ P. Choose V ¢ U closed
so that V c U. Then V[x] is bounded, closed and therefore it is compact for
each z.

Corollary. A subset of a uniformly locally compact Hausdorff uniform
space is compact if and only if it is bounded and closed.

The following theorem shows a case, when the boundedness in a uniform
space implies the boundedness in a subspace. We shall need it in the third
section.

1.20. Theorem. Let (P, A) be a uniform space, let (R, A,) be its subspace,
R = P. If a set A c R s bounded in P, it is also bounded in R.

Proof. Let U € Uy be given. Then exists V e ¥ suchthat U =V n (R X R).
Choose a symmetric W e U such that W3 c V. The set 4 is bounded in P, there
exists a finite set K ¢ A and a natural number n so that A ¢ W»[K], i. e.,
for any x e A, there exists a e K and a sequence x =z, ..., Z,4; = @ such
that (x;, ;4+,) € W for + =1, ..., n. Choose now for ¢+ = 2, ..., n points y, €
e Wlz,] 0 R; this is possible since B = P. Put y;, = @, ¥p+; = a. Then y,; ¢
e Wo Wo W y,4,] for i =1, ..., n, which implies (y;, ¥;+,) e V and since
all y; ¢« R, we have (y;, ¥.+,) ¢ U and 4 c U"[K]. We see that 4 is bounded
in R.

2. Bounded sets in topological groups

The theorems of the first section hold also for bounded sets in topological
groups. In this section, however, we shall try to characterize bounded sets
by invariant pseudo-metrics or metrics and homomorphic mappings into
metrizable topological groups.

2.1. Theorem. If ¢ is an invariant pseudo-metric on a group G, then the function
r(x) = o(x, 0) s

(1) fimite, non-negative and r(0) = 0,

(2) even: r(x) = r(—=z),

(3) subadditive: r(x + y) = r(z) + r(y).

If o is a metric, then also

(4) x £ 0=r(x) > 0.

On the other hand, if a function r(x) defined on a group G has properties (1), (2)
and (3), then o(x, y) = r(x — y) is an invariant pseudo-metric on the group G,
and if also (4) holds, then o 1s an tnvariant metric.

If G is a topological group, then o is continuous if and only if r s continuous
at the point zero (and then r is continuous on the whole group @).

The proof is easy and may be left to the reader.
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2.2. Definition. We say that a function » is a pseudo-norm on a topological
group G, if it has the properties (1), (2) and (3) of theorem 2.1. If (4) also holds,
we say that the function r is a norm.

We shall often construct a pseudo-norm instead of an invariant pseudo-
metric, we shall consider on a group a topology defined by a norm etc.

2.3. Theorem. Let G be a group, {U,}n-o @ sequence of subsets of the group
G such that Uy = G, 0e U,, 3U,+, c U, for each integer n = 0. Then, there
exists a finite, non-negative and subadditive function d on the group G such that
(1) U,c{z;dx) <2}c U,
for each natural number n. If each U, is symmetric, then there exists a pseudo-
norm satisfying the condition (i).

Proof (in the way used in [1]). First we define another function f on G.

Put f(x) = 2 forxe U,—, — U,, f(x) = 0 for x ¢ n U,. Now we put d(x) =

= inf Z f(z;), where the infimum is taken over all flnlte sequences &y, ..., T,,
=1 m

such that > x; = «. The function d is obviously finite, non-negative and
i=1

subadditive; if each U, is symmetric, it is a pseudo-norm. From d(z) < f(x)
we have U, c {z; d(x) < 2-7}. To complete the proof we shall show, by in-

duction, that f(zx) < 2 V 2. f(x;) whenever Z z; = x. The assertion is clear for

;—1 m i=1

m = 1. Suppose that m > 1 and z f(x;) = a. Let k be the largest integer

i=
k-1

such that z f(z;) < }a; then also z flz,) < % a (for k = m this sum is void).

T—1i=kt1
By the mductlon hypothesis f Z D =a,f( Z ) = a and obviously f(z;) < a.
—k+1
Let n be the smallest integer such that 2 < a. We may suppose that n > 2,
k—1

for the case a = 1 is evident. Then z e U,y 2pe U, 4, z x,eU,_,and
i=F41
therefore x € U, > which 1mp11es flz) < < 2-n+1 < 2q. Now if d(x) < 27", there

exist x; such that Z x; = x and Z f(z;) < 2-». Hence f(z) < 27, f(x) = 2™

andze U,_,. The proof is complete.

2.4. Remark. If in theorem 2.3 ¢ is a topological group and all U, are
symmetric neighbourhoods of zero, then the function d is a cotinuous pseudo-
norm.

Corollary. A topological group is metrizable if and only if it has a countable
complete system of neighbourhoods of zero.

2.5. Theorem. Let G be a topological group. A set A c G is bounded in G if
and only if it is bounded for every continuous invariant pseudo-metric defined on G.
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Proof. The necessity is clear. We shall prove the sufficiency by the con-
struction of a suitable continuous pseudonorm. Let a set 4 c ¢ be given. Let

U be a symmetric neighbourhood of zero in G. Put G, = U nU. Then G, is
n=1

an open subgroup. According to theorem 2.3 and 2.4, there exists such a con-
tinuous pseudo-norm d on G that

{z;d(x) <1} c U.
First we shall construct another continuous pseudo-norm on ;. For every

x e @y we put s(x) = inf > d(«,), where the infimum is taken over all finite

i=1 m
sequences @y, ..., &, such that @, ¢ U for each ¢ and ) x, = x. It is sufficient
i=1
to take the infimum only over such sequences that (x; -+ z;) ¢ U for any
1 =% J. It is easy to prove that the function d is a pseudo-norm on ,. As s(z) =
= d(x) for z € U, it is continuous at zero.
Now we shall extend the pseudo-norm s onto the whole group . We select
a single element from each coset of the subgroup G, we arrange them into a
transfinite sequence a,, @, ..., a,, ... of the type &. We may suppose that there
exists 7 < ¢ such that (e, + G,) 0 A + 0 exactly for all « <7 and a,¢ 4
for « << 7. Let G4 be the subgroup generated by the subgroup ¢/, and by the
elements a, for « < . Obviously, G, = @, Gy = G. On each group G, we
shall define by induction a pseudo-norm 7, so that r4(x) = r,(x) for arbitrary
« < f and x e @,. We shall prove only the subadditivity, other properties
will be clear. Put r;, = s. Let 2 > 1 and let pseudo-norms r, on G, be defined
forall py < A. If 2 is a limit number, then ¢, = U G, and we put 7,(x) = r,(x)

. n<i
for x e G;; the function r, is subadditive, because r, is subadditive for all

w<r Let 2=upu+ 1. If a,e@, we put r, =r,, as G, = G,. Suppose that
a, non € G,. Then every element y ¢ G, can be written in the form

(1) y=x + pa,

where x € G, p is an integer. Then we have to separate two cases
(1) pa,non e G, for any p + 0.

Then the expression (i) is unique.

(2) There exists a smallest integer m > 1 such that ma, ¢ G,. Then the
expression (i) is unique, if also 0 =< p << m holds. Now we consider two possi-
bilities for A:

a) A < o (i. e. Ais a natural number); we put in the case (1): r\(x + pa,) =
= r,(x) + |p| . A. Proof of the subadditivity: .

(@ + 2 4 (P2 + P2) “p) = r,u(xl +x) + Py +pal A S
= 7u®) + ru(®s) + pil - A+ |pe] A=
= n(x; + p1ay) + 7A@, - Do) -
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in the case (2): ry(x + pa,) = 7,(x) + max (4, r,,('maﬂ)) for 0 < p<m,

TA(x) = 7,(®) .
Proof of the subadditivity:
If 0 < p, <m, 0<p, <<m, then

Ay 4 2y Py + P2) @) = 7@ + @) 4 7u(ma,) + max (2, 7, (ma,) <

= 7,(21) + 7u(2) + 2 max (4, r(ma,)) = (2 4 P1a,) 4 ra(zy + paay) .
If 0 <p, <m, p, =0, then

r(x, + x, pla’/t) = r,(x, + x;) 4 max (4, ?ﬂ(maﬂ)) <

= 1) + 1) + max (A, r,(ma,) = ra@, + piay) + () -

b) 2> w; we put
in the case (1): ry(x + pa,) = r(x) + |pl,
in the case (2): r\(x + pa,) = r,(x) + max (1, 7,(ma,)) for 0 < p < m

() = r,(x) .
The subadditivity can be proved in the same way as for a), but we put 1 in-
. stead of A (everywhere except indices). It is evident that ry(x) = r,(x) for
x e @,. Put r = ry. Then r is a pseudonorm on the whole group G. As r(x) =
= s(x) on @, and @, is an open subgroup, it is also continuous at zero.

Now let the function 7 be bounded on the set A. We shall show that 7 is
finite. If not, then a, ¢ A for each 4 << w. Let [ be such a natural number
that r(z) =1 for x ¢ A. If a,non ¢ G, for some yu < w, then according to the
definition of pseudo-norms 7, for I <» < w we have r(a,) > . It is not
possible and therefore a, € @, for all n < w. Let 4, << 4, < ... be the sequence
of all natural numbers for which G,\iﬂ * G,\y_. Then we have G+ = G,
and obviously G; = @, +, for some k. From the expression (i) it follows by
induction that each element z ¢ &, can be written in the form

k
(ii) 2=y +'le,a,\i ,
S

where y € G, and p; are integers. If necessary, let us bound the numbers p; so
that the expression (ii) is unique (see the cases (1), (2)). Then
k-1

") =1y + 2, piay) +rputa) = ... = 1(9) +j§=:lf(pﬂu) ~

If ze A, then r(z) =1 and r(p,a,) =1 for each j. From the definition of
7,+1 for p = 2; in both cases (1), (2) it follows that for each j we have only a
finite number of possibilities for the numbers p;. As a, € A for all natural n,
then there exist two indices n,, n, such that

k k
Wy = Y1+ 2 Pia, s n, = Yo + 2 Pitiy,
j=1 i=1 @&
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where y, ¢ Gy, ¥, € G, (with the same integers p;)- Then a, — a,, G, and
a,, with @, belong to the same coset. This contradiction proves that 7 is finite.

The function r is bounded on each set 4 0 (G, + @;). Then

a=max ( sup s(x— ay)) << 0.
A<z acsAn(GﬁLaA)

Let m > a be a mnatural number, 2 << 7. Then for each xe¢ 4 0 (G, + a,)

there exist @, ..., 2, ¢ U such that > @, = & — a,, > d(z;) <m and (x, +
i=1 =1

-+ x;)non € U for any ¢ + j. Therefore there exists at most one indice 7 such

m

that d(z;) <1 and then m > > d(z,) = 3(n — 1). It implies 7 < 2m + 1.
i=1

We have A c (2m + 1) U + {a,; 2 < 7} and the set 4 is bounded.

2.6. Theorem. Let G be a metrizable topological group. A set A c @ is bounded
if and only tf it ts bounded for every tnvariant metric defining the same topology
on G.

Proof. The necessity is clear. To prove the sufficiency we construct a sui-
table continuous norm in the same way as in the proof of theorem 2.5. We can
take as U, in theorem 2.3 a countable complete system of symmetric neigh-
bourhoods of zero and then we get a function d, which is a norm. It is clear
that the norm defines a topology which coincides with the given topology.
If d(x) << 1 or 7(x) << 1, then d(x) = s(x) = r(x) and we see that all topologies
are equivalent.

2.7. Lemma. Let p be a continuous pseudo-norm on a topological group G.
Then there exists a metrizable group H and a homomorphic mapping of G onto
H such that r(f(x)) = p(x) is @ norm on the group H defining the topology on H,

Proof. Put G, = {x ¢ @; p(x) = 0}. Obviously G, is an algebraic subgroup
(even a subgroup). Put H = G/G,. For X ¢ H let 7(X) = p(z), where z ¢ X.
The definition is independent on z, for if y € X, then p(x) < p(y) + p(x — y) =
== p(y) and in the same way we get p(y) = p(x). The function r is a pseudo-
norm on H and even a norm, as it is equal to zero only on G, and it defines a
topology on H. If € @, we put f(xz) = X, where X is such a coset of G, that
x € X. The mapping f has all properties required.

Let us remark that the mapping f constructed in the proof need not be
the natural mapping of a group onto its factor group. We may take as G the
additive group of real numbers with the discrete topology and put p(z) = |2|.

2.8. Theorem. Let G be a topological group. A set A c G is bounded if and only
of the following assertion is true: If H is a metrizable group and f a homomorphic
mapping of G into H, then f(A) is bounded for the metric of the group H.

Proof. The necessity is clear, we shall prove the sufficiency. Suppose that
A is not bounded. Then there exists a continuous pseudo-norm p such that
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it is not a bounded function on 4. We shall take f and H according to lemma
2.7. Then f(A) is not bounded for the metric of the group H.

2.9. Definition. Let V be a property of subsets of a topological group G,
which is invariant under uniform isomorphisms. We say that the group G has
locally the property V, if there exists a neighbourhood of zero which has the
property V.

2.10. Remark. If a group has locally a property V, then it also has this
property uniformly locally. Therefore theorems 1.18 and 1.19 hold for topologic-
al groups without the word ‘“uniformly”’. But they can be proved more simply
by means of the following theorem.

2.11. Theorem. Let G be a topological group, let A c G, Bc G be (totally)
bounded resp. compact. Then A + B is also (totally) bounded resp. compact.

Proof. It is easy to show that the addition of two elements is a uniformly
continuous mapping of G X ¢ into @, the set 4 X Bc @ X @G is (totally)
bounded resp. compact and so is its image in G.

Corrolary. Let G be a locally bounded topological group, let 4 c G be a
bounded set. Then there exists an open bounded set V c G such that Ac V.

3. Homomorphic mappings of locally bounded groups

In this section we shall examine some properties of the group of homo-
morphic mappings of a group into another. We shall often consider only locally
bounded groups (they include locally compact groups as well as normed linear
spaces); theorems proved for homomorphic mappings hold also for linear
mapping of (real) topological linear spaces, because every homomorphic
mapping of a topological linear space is also linear. Unfortunately local bound-
edness has also some disadvantages. There are examples of normed linear
spaces containing a group which is not locally bounded in itself; therefore
local boundedness of groups is not hereditary. Nevertheless, every factor
group of a locally bounded group is locally bounded. Let us remark that if
we replace the supposition of the normability of a linear space by the local
boundedness, we do not get for locally convex topological linear spaces any
new results since it is well known (cf. [2]) that locally bounded locally convex
topological spaces are exactly those, the topology of which is generated by
a norm.

Now we shall give the definition and some theorems concerning groups of
homomorphic mappings.

3.1. Definition. Let @, H be topological groups. We shall denote by [¢' — H]
the group of all homomorphic mappings of & into H, in which the operation
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of addition is introduced in the natural way and the topology is given so that
a complete neighbourhood system of zero in [ — H] is the family of all sets

WA, V) ={felG —H]; [(A)cV}

where 4 are arbitrary bounded sets in ¢ and V are arbitrary neighbourhoods
of zero in H.

3.2. Remark. It is easy to prove that [G - H] is really a topological group.
It is obviously sufficient to take as A only closed bounded sets. If @ is locally
compact, then the bounded and closed sets are exactly the compact sets and
we may take as A all compact sets, which is the same as in the theory of
characters in [5]. If the group @ is locally bounded, it is sufficient to take as 4
bounded open sets or bounded neighbourhoods of zero (according to the
corrolary of theorem 2.11).

3.3. Theorem. Let G be a locally bounded group, let R be a metrizable (by a
wmetric o) group. Let. U be a bounded netghbourhood of zero in G. If f, g € [ — H],
we put py(f, 9) = sup a(f(x), g(x)) . Then g is a continuous invariant pseudo-metric

on [G@ —R].If G is also U-chained, then oy is a metric defining the same topology
as definition 3.1.

Proof. The number gy(f, g) is finite, as f(U), f(V) are bounded sets. The
other properties of an invariant pseudo-metric are clear. Let us denote for
each a > 0

Vo={xeR;o(x,0) <a}, S,={fe[G—R]; ou(f,0) <a}.
The continuity follows from the relation w(U, Va) c 8, which holds for each
a > 0.
Let G be U-chained, f + 0. Then there exists « + 0 such that f(x) # 0.

Let o(f(a), 0) = 0 for all @ e U. There exist a, ..., a, ¢ U such that > a, = «
ahd i=1

a(f(x), 0) = G(_Zlf(ai ) = Z (f(a), 0) = 0.

It is a contradiction with o(f(x), 0) > 0. Therefore g is a metric. Let W(4, V)
be given, where A c @ is bounded and ¢ > 0. Then there exists n such that
nU 2 A and then

WA, V)o WnU,V,)> WU, V) > 8Se

which proves our theorem.

3.4. Theorem. Let G, G, H be topological groups; suppose that G or G, s locally
bounded, H is complete, G c G, G = G,. Then [G — H] and [G, — H] are
isomorphic.

Proof. From the fundamental properties of the bounded sets and from
theorem 1.20 it follows that both groups ¢ and @, are locally bounded at the
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same time. We shall define a correspondence ¢ between the groups [G — H]
and [G, — H]. If fe[G, — H], we put ¢(f) = fc € [ — H]. Obviously ¢ is
an algebraic homomorphism and it is one-to-one (as f is continuous and
G = @,). If g € [@ — H], then according to theorem B of the introduction the
mapping g can be extended uniquely and uniformly continuously onto @G,.
Let us denote by f this extended mapping. The set of those (z, y) ¢ G; X G,
for which f(x) + f(y) — f(x + y) &= 0 is open and if it is not void, it has a
non-void intersection with G X @, but it is not possible. Therefore f is a homo-
morphism of G, into H and ¢(f) = f¢ = g. We see that ¢ is an algebraic iso-
morphism of [G; — H] onto [G — H].

Now we shall show that ¢ is a homeomorphic mapping. Let W(A4, V) be a
neighbourhood of zero in [¢' — H]. Then W(A4, V) is a neighbourhood of zero
in [G;, — H] as 4 is also bounded in @,. On the other hand let W(4, V) be a
neighbourhood of zero in [G; — H], where A4 is bounded and open in G,.
Then according to theorem 1.20 4 n G is bounded in @. Choose in H a neigh-
bourhood V, of zero such that ¥, c V. Then if f(4 n G)c V,, then f(4)c
c f(A n G)c V,cV and therefore W(4 0 G,V,) c W(4, V).

3.5. Theorem. Let G be a locally bounded, H a complete group. Then [G — H]
s complete.

Proof. Let {f,}..p be a Cauchy net, [, e [G — H]. Let z ¢ G; then {f,(*)}a.p
is a Cauchy net in H, therefore it is convergent. We may write f,(z) 2~ f(z),
where f is a mapping of @ into H. It is easy to prove that f is an algebraic
homomorphism. Let us prove its continuity at zero. Let U be a bounded
neighbourhood of zero in the group @, V a neighbourhood of zero in the group
H. Let V, be such a neighbourhood of zero that 3V, c V. The net {f,}..p is
Cauchy, then there exists y e D such that (f; — f,)(U) c V; for each f = v,
o = y and therefore fy(x) — f,(x) € V, for each x e U. Then for each x ¢ U we
have f4(x) — f(x) and f(z) — f (x) eV, c 2V,. Let U, c U be such a neigh-
bourhood of zero in G that f,(U,) c V,. Then

f(U) c(f — fy)(Ul) + fy(Ul) c2V, +V,cV.
We have proved that f is continuous. In the way of the proof we proved that
f—f.e WU, V) for « = y which proves that f, —f in the topology of the
group [G — H].

3.6. Remark. It is possible to prove also other theorems as for example:
the theorem on the associate homomorphism, theorems on the groups of homo-
morphic mappings of a factor group and of a direct sum of groups. They can
be proved in the same way as in [5], it is sufficient to replace the compactness
by the boundedness.

3.7. Remark. It is natural to ask whether the local boundedness of two
groups G, H implies the local boundedness of [G — H]. But here we do not
get an analogous result. We shall give an example of a locally bounded group,
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the character group -of which is not locally bounded. Let us remark that a
character of a group is every homomorphic mapping into the group K, where
K is the factor group of the additive group of real numbers by the subgroup
of integers. We shall use the following assertion proved in [5]: All characters
of the group K are given by oy (x) = kx, where k is an arbitrary integer (for
different k different characters).

3.8. Example of locally bounded group, the character group of which is
not locally bounded.

Let R be the additive group of real numbers (with the usual metric). For
each natural n we denote by K, the factor group of R by the subgroup generated
by the element n. Let x, be the natural homomorphism of B onto K,. The
group K, is metrizable as a factor group of a metrizable group. Let us denote
by o, the metric on K, generated by the metric on R. Evidently K, = K,
K, is isomorphic with K for each n; put ¢ = ¢,. If % is a natural number,
x € K,, then there exists exactly one a ¢ R such that 0 < a < n and x,(a¢) = z;
we put @ = ¢, (). Let us denote by v, an isomorphism of K, onto K, defined:

if # € K, then p,(x) = », ((&7(;%—)) We know all characters of the group K (see

3.7). Therefore the characters of the group K, are exactly all «{, defined
() = ky,(x), where k is an arbitrary integer (for different % different

characters). Let us remark that o(y,,(x), 0 :lan xz,0) for each ze K,
¥ n

and o(ky, 0) = |k| . o(y, 0) for each y ¢ K and integers k such that |k| . o(y, 0) <
< 1
= 3

Let G be a set of all bounded (in the usual sense) doublesequences {¢,, »}m -1,
where a,, , € K,. We define the addition on G: if ¢ = {@m,ntmn=1>0 ={Om n}m n=1s
thena + b = {@y, + by )i ne1. We define an invariant metric on G: o(a, b) =
= SUP (W, 0> Di »). It is easy to show that G is a topological group, metrizable

by the metric 0. The group @ is chained and locally bounded, because
{a € G; o(a, 0) < ne} = n{a e G; o(a, 0) < &} for any ¢ > 0 and natural n.

Let X = [G' — K] be the character group of the group @. Obviously U =
= {a € G; o(a, 0) < 1} is a bounded neighbourhood of zero in ¢ and according
to theorem 3.3

(B, y) = sup o(f(x), y(x)) (B, y e X)

is an invariant metric, which generates the topology on X. For arbitrary
natural numbers m,n let L, ,c G be the subgroup of all elements y =
== {Up o} 5 q=1> for which , , = 0if (p, ¢) + (m, n). Obviously L, , isisomorphic
with K, for each m, n. If we put o™ (x) = o{(2,,,) for x e G, then «{™ ¢ X
for each natural m, n and each integer k. Then
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(™ 0) = SUP a(x{mm(x), 0) = sup o (kh(;) 0) = min (%, g%) .

|z|<?

It is clear that a{™™ + (™™ for (m, n) * (m',n').

1
Now suppose that 4 = {ﬂ e X;7(8,0) < —}, where » ~. 1 is a natural number,

is bounded. Let V — {ﬁ e X;7(8, 0) < ; } Then

1
a1y

2n

and analogously (™ ¢ V <« |k < " . Obviously o™ non ¢ V for any k + 0,
r

but of™" e A for all m. We shall show that if 8 ¢ V, then p(L,, ) = (0). Suppose
that there exists « ¢ L, , such that f(x) # 0; f as a character aplied only on
L,,, must have a form p(x) = k v, (¥m,), Where k + 0 is an integer. Then

1
7(f,0) = sup o(B(®), 0) =(x™", 0) = 5= -
zeUoLy, , =7

This implies fnon eV and we have a contradiction. We have an infinite
sequence of characters {x{™"}%_,. If we add to any «{"™" an arbitrary finite
number of characters from V, we do not get another cha,ra,cter from this se-
quence, for the characters from V are equal to zero on L,, , for all m. Therefore
A4 is not bounded in X and X is not locally bounded.

3.9. Remark. The preceding example shows that the theory of characters
of locally bounded groups cannot be developed quite analogously as for
locally compact groups. The question arises whether the local boundedness
of the character group of a locally bounded group can be deduced from some
suitable stronger assumption. If a group G is locally totally bounded, we
embed it (see theorem D of the introduction) into a complete group @, = @,
which is then locally compact (see theorem C). According to theorem 3.4 the
groups [¢' — K], [(;, — K] are isomorphic and as it is proved in [5], [G; — K] is
locally compact.

It is clear if we know that the character group of a locally bounded group
is locally totally bounded, then it is locally compact, because it is complete
(see theorem 3.5). The local total boundedness is really quite a strong sup-
position, which does not include all usual cases. It would be interesting to
find some weaker condition for the local boundedness of the character group.
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Peszome

OI'PAHNMYEHNHOCTD B PABHOMEPHBIX ITPOCTPAHCTBAX
N TOIIOJIOTMYECKUX TI'PVITITAX

. fIH TENUMAH (Jan Hejecman), Ilpara
(HocTymmiro B pegaxnuio 27/111 1959 r.)

Ilycrs (P, A) paBuomepHoe mpocrpanctBo.l) MuoskecrBo A ¢ P Hasosem
orpanndenusiM B (P, U), ecnu k modomy U e A cymecrByer KOHEYHOE MHO-
mectBo K ¢ P w narypanbHoe 9ucio n tak, uro 4 ¢ U[K]. Ecan mst Kammoro
U € A MouO 110710380TH 7 = 1, TC MHOKeCTBO A HA30BEM BIOJIHE OrPAHIYEH-
ueM B (P, U). Hame onpefiesienne orpaHuYeHHOr0 MHOKECTBA B PABHOMEPHOM
TPOCTPAHCTBE HOBO, B TO BPeMsi KaK IOHATHE BIIOJHE OTPAHWYEHHOTO MHO-
sKecTBa mMeeT oOBYHBIL cMbici. Ilycrs ¢ — TceBmomerpnia Ha MHOKectBe P.
Crasxem, uro A c P orpaHmyeHa 110 OTHOIIEGHUIO K @, CCJIM @ OTPAHMYEHA Ha
A X A4 B oGpiaHOM cMBIcae. [ToHATHE OrpaHMYEHHOrO MHOMKECTBA B paBHOMEp-
HOM TIPOCTPAHCTBE, 00PABOBAHHOM METPUKOIl 9, OTIIMYAETCH OT NOHATHUA OIpa-
HUYEHHOTO0 MHOKecTBa IO OTHOmeHMIO K Mmerpuke o. Onmawo, ecim P upen-
cTaBisieT co0O HOPMHPOBAHHOE JIMHEHHOe IPOCTPAHCTBO, TO 00a HOHATHS
OTrpaHMYEHHOT0 MHO;KecTBa coBHajawTr. Ecau f paBHOMepHo HempepsIBHOC
orobpaskenue paBHOMepHOro npocrpancrsa (P, U;) B paBHOMepHOE IpOCTpaH-
c¢tBo (Py, U,) m ecim 4 c P, orpammueno B (P, A;), To f(4) orpanmyeno
B (P,, U,). MuoskecTBo Oyner OrpaHWYeHHBIM B JIEKAPTOBOM IPOM3BEEHNW
X (P,, U,) Torna u TOIBKO TOTMA, €CIIH ero IMpoeknust B P, Gyaer A KaIoro
o € M orparuvyeHHEIM MHO;KecTBOM B (P,, U,).

Teopema 1.12, 1.13, 1.14. IIycms (P, Y) — pasmomeproe npomepancmeo,
nycms A c P. Cuedyiowue ymeep mcdenus skeuUEANCHINHIL:

(1) A oepanuueno ¢ (P, A).

(2) A oeparuuero no omuowenuio k 41000 pasHoMepHO HenpepusHoll nceedo-
Mempure.

(3) Raocdas pasnomepro nenpepuisnas deiicmeuemavras gynryus na (P, A)

oepanuena na A.

1) B cMmbicie ompefeseHUsA, BBEIXHHOTO B [1].
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Mpl ckasem, uto paBHoMepHoe mpoctpanctso (P, U) obmanaer paBHoMepHO
JI0KaIBHO cBoitcTBOM V, ecau cyuntectsyer U ¢ U rax, uro Ulz] umeer cBoiicTBO
V mna wamgoro x e P.

Teopema 1.18. Ilycmwv npocmpancmeo (P, W) pasnomepno aokanvro enosie
oepanuneno. Tozda awboe oepanuuennoe ¢ (P, W) mroncecmeo agasemes enoane
02D AHUMCHHBLM.

Teopema 1.19. Ilycmv (P, A) pasnomepro aokaavrmo komnarmmuo. Ecau
A c P oepanuveno u 3amrmnymo, mo A romnarmno. Ecau (P, U) — paswo-
MEPHO A0KAAbHO 02DabuUdeH0e NPOCMPAHCIMGEO U €CAU KaNcdoe e20 3aMEHYMOoe
o2panuternoe nodmnodncecmeo Komnarmmuo, mo (P, ) pasnomepro aokarvro
KOMRAKMHO.

[TopMuOKECTBO TOIONIOTNYECKOH KOMMYTATHBHON Ipylnsl G HazoBeM orpa-
HOYCHHBIM, CGCJIM OHA SIBJISIETCS OTPAHMYEHHBIM MHOKECTBOM B PaBHOMCPHON
cTpyKrype rpynust G.

Teopema 2.5, 2.6. Ilycmv G — KommymamusHas mMonoL02uUYeCKas 2pynnda.
Mmuoacecmeo A c P oepanuyeno ¢ G moeda u moavko moz2da, ecau OHO 02paAHU-
4eHO NO omHoOWerUI0 K 410600 unsapuanmmuoii ncesdomempure epynnu G. Ecau
G — mempusyemas epynna, mo A ¢ P oepanuueno ¢ G- mozda u moavko mozda,
eCAU OHO 02PAHUYCHO MO OMHOWEHUI0 K A1000( UHEADUAHMHOL Mempuke, onpe-
deastowelt. monoaozuio epynnust G.

Teopema 2.8. ITycmv @ — rommymamusnas monosozuveckas epynna. Mio-
acecmeo A ¢ G oepanuverno ¢ G moeda u moavko moeda, ecau CnPasedsuso cie-
dyrougee ymeep wcdenue: Ecau f — eomomopgroe omobpancenue G ¢ mempusye-
myio epynny H, mo f(A) oepanuuerno no omuoweruio k mempure epynnut Q.

ITycrs G u H — tononornyeckue KoMmyratuBesie rpynust. Ilycrs [ — H] —
rpynmoa BeeX roMmoMop@HBIX orobpaskenuit G B K ¢ Tomosormei, npmdem mom-
HOH CHCTEeMON OKPeCTHOCTEIl HYIIA ABIAIOTCA BCe MHOJKECTBA BHJA

W(4,V) ={felG —H] (4)c T},

rie A — orpanmdyenHoe B G MHOkecTBO, V oKkpecTHOCTS HYJst B H.

CnenuanpHbiM BBIGOPOM rpynnsl H MOKHO IOJIYYUTH T'PYIIB XapaKTepos,
TaK ke, Kak u B [5]. BeiBogmrea psap cBoiictB rpynnsl [GF — H] u mokasaHo,
YTO JIOKAJbHAsA OTPAHHYEHHOCTh MOKET 3aMEHUTHh HEKOTOpHle (oJlee CHIIBHBIE
yeaosus. IIpumep 3.8 moxassiBaer, OJJHAKO, UTO TEOPUSA XaPaKTePOB JOKAILHO
OTPaHWYEHHBIX TPYNI He HPUBOIUT K pe3yJbTaTaM, aHAJOTHYHLIM Pe3yiIbTa-
TaM, MOJIYYEHHHIM JJIA JIOKAJIBHO KOMIIAKTHBIX TPYNI; 3ech TOCTPOEHA JIO-
KaJIPHO OrpaHMYeHHAs IPYyINa, rPyNIla XapaKTepoB KOTOPOM He ABIAETCA JI0-
KaJIbHO OTPaHHYeHHOMH.
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