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YexocaoBankuii MaTeMaTHYecknii smypuad, T. 9 (84) 1959, IIpara

ON PROBABILISTIC METRICS AND NUMERICAL METRICS
WITH PROBABILITY 1

KARL MENGER, BERTHOLD SCHWEIZER, ABE SKLAR, Chicago
(Received November 11, 1958)

This note clarifies the relationship between the random metrics of
A. Spadex and probabilistic metrics.

1. Probabilistic Metrics

Traditional metrics are numerical; that is to say, the distance F(a, b) asso-
ciated with any two points a, b, is a number. A probabilistic metric, as developed
in [1, 2, 3, 4, 5, 7, 8],) is defined by associating with a, b, not a number, but
a cumulative distribution function F,,, that is, a non-decreasing function,
continuous to the left, and such that

lim

F) =0 and lim F)=1.

L—>0 &L—>00

Certain general assumptions about the numerical distances in traditional
metrics have as their counterparts simple assumptions about the distribution
functions in probabilistic metrics. For each pair of points, «, b, the following
postulates are made:

1. F,(x) = 1 for all positive  if and only if « = b.
2. F,,(0) = 0.
3. F,(x) = Fp.(x) for each x.

If F,,(x) is interpreted as the probability that the distance from @ to b less
than z, then Postulate 2 attributes the probability 0 to distances less than 0 and
thus almost certainly rules out negative distances. According to Postulate 1, it
is almost certain that the distance of each point from itself is less than any posi-
tive number. This, in conjunction with Postulate 2, makes it almost certain that
the distance of each point from itself is 0. The distance from a point to a differ-
ent point is positive with a positive probability. According to Postulate 3,

~—1) Numbers in brackets refer to the bibliography at the end of the paper.
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for any z, the probability of the distance from @ to b being less than x, and that
of the distance from b to a being less than x, are equal.

A fourth postulate concerning triples of points (which corresponds to the
traditional triangle inequality) need not be discussed here, since we will at first
confine ourselves to the consideration of a space S consisting of exactly two
points, p and gq.

By a probabilistic metric on S we mean any ordered quadruple of distribution
functions I, F,,, F,,, F,, satisfying Postulates 1—3.

A study which as yet has not been explicitly developed is that of joint
distributions of distances. For instance, the probabilistic metric on the pair S
might be based on a single 4-dimensional cumulative distribution function ¢
whose value G(u, v, x, y) might be interpreted as the probability of the follow-
ing conjunction: the distances from p to p, from ¢ to ¢, from p to ¢, and from
q to p are < u, << v, < x, and < y, respectively. In this case I, F,, F,,, and
I, would appear as the marginal distributions of G. In the papers quoted,
however, it has been implicitly assumed that the distances are independent.?)
This corresponds to the assumption

Gu, v, 2, y) = Fpp(u) . Foo(v) . Fp(x) . Fo(y) forall wu, v 29. (1)

As an application of probabilistic metrics one may, for instance, think of two
fixed points and the distribution of their distances as observed in a large num-
ber of successive measurements.?) Postulates 1—3 reflect the facts that the
distance between identical points is always found to be 0; that one never finds
the distance between distinet points to be negative, but does find an appreciable
proportion of positive distances; and that, for each > 0, among a large num-
ber of measured distances from p to ¢, the proportion of results < x is appro-
ximately equal to the proportion of results << 2 among a large number of
measured distances from ¢ to p. )

We call F, rigid at d (where d is a non-negative number) if

[Oforxgd,

F"b(x)zllfor x>d.

In any probabilistic metric, F,, and ¥, are rigid at 0. If ¥, (and hence F,,) is
also rigid, then the probabilistic metric itself will be called rigid, more specific-
ally, rigid with distance d.

Only when F,, and F,, are non-rigid can one speak of proper probabilistic
metric. For only in that case do probabilities other than 0 and 1 occur and
questions about probabilities of distances in the strict sense of the word probab-

%) This assumption of independence clearly underlies the triangle inequality as for-
mulated by A. WarLp [7], [8], where the convolution of the distributiens of the two distan-
ces is taken as the distribution of their sum.

3) Various other applications are mentioned in [2].
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ility arise.t) On the other hand, a rigid probabilistic metric (in which all di-
stances are almost certain) clearly plays the same role as a traditional metric in
the sense of Fréchet. Such a metric on S may be described by an ordered quad-
ruple of numbers or by a point in the 4-dimensional Cartesian space Cy, namely,
the point with coordinates

F(p, p), Flq,q), F(p, q), F(q, p)

(if F(a, b) denotes the number at which the function F,, is discontinuous), or,
in still other words, by a function /" whose domain consists of the four pairs

) (@ 2), (@D, (P9 (@, D)
and which satisfies the conditions

A. F(p,p) = F(q,q) = 0.
B. F(p,q) > 0 and F(q, p) > 0.
C. F(p,q) = F(q, p).

2. Numerieal Metries with Probability 1

A different connection between probabilistic and geometric concepts has
recently been established by A. Spa¢ex in his Note on K. Menger’s Probabilistic
Geometry [6].

We will call any real function defined on the class of all ordered pairs of
points in a space an infra-metric on the space (the prefixes semi-, pseudo-and
quasi- traditionally being used for other purposes). Instead of one probabilistic
metric, Spaéek has studied probabilities (i. e., o-additive measure functions
whose values belong to the interval [0,1]) defined on various classes of infra-
metrics, and has sought to assign probabilities to the set of infra-metrics in such
a manner that the class of all metrics has the probability 1. He calls a class of
infra-metrics on which probabilities have been assigned in this manner a
random metric.

Geometrically, in the case of a space S consisting of two points p and ¢, each
infra-metric may be described by a point in C,. Then Spagek’s problem becomes
that of setting up a probability measure = on subsets of C, in such a manner
that the set M corresponding to all metrics has the measure 1. Clearly, M is the
set of all points whose coordinates satisfy conditions A, B, C and, therefore,
are of the form (0, 0, d, d) for some d > 0. The set M is a ray issuing from (but
not including) the origin and bisecting the first quadrant in the plane of all

%) Normal distributions are ruled out by Postulate 2. Examples of possible distributions
include: normal distributions that are truncated to the left at 0 or at any number > 0;
exponential distributions; rectangular distributions; step functions with a finite or infi-
nite number of points of discontinuity, ete.
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points whose first two coordinates are 0. Every set § that is disjoint from I and
for which =(§F) is defined has the probability measure 7(F) = 0.

The relation between Spagek’s random metrics and probabilistic metrics
becomes apparent when one translates, in the standard way, his assumptions
about a probability measure, defined for certain sets of infra-metrics on S (or
subsets of (). For any four numbers u, v, x, y, define G(u, v, z, y) as the mea-
sure of the set of all infra-metrics F' such that

Fp,p) <uw, Flg,q) <v, Flp,q9) <z, Flg,p)<y;

or, in other words, let G(u, v, x, y) be the measure of the set of all points in C,
whose coordinates F(p, p), F(q, q), F(p, q), F(q, p) satisty the above inequali-
ties.

It should be noted that, conversely, given a probabilistic metric, one can,
on the basis of assumptions about the joint distribution, introduce a measure
on sets of infra-metrics. For instance, upon assuming independence, one can
define G(u, v, z, y) by formula (1). Any joint distribution function G induces
a measure on C, and hence on infra-metrics.

The set M is clearly the intersection of the sets F 4, Ty, T, of all infra-metrics
satisfying Conditions A, B, C, respectively. In order that =(IM) = 1 it is ob-
viously necessary and sufficient [6] that

A n(,) =1
B =) = 1.
C: =) = 1.

If, for each pair (a, b) belonging to (S2) and for each number x, the set of all
infra-metrics ¥ such that F(a, b) < x is denoted by F5;, then the four functions
F,, defined by

F(x) = n(F,) for each x

are the marginal distributions of G. Spagek’s Postulates A’ and B’ imply that
the marginal distributions F,, and F, satisfy®) Postulates 1 and 2. Moreover,
taken together, Spadek’s postulates imply that the entire probability is con-
centrated on the ray M. In order to see what this means we need two lemmas
which we present without proof.

Lemma 1. If a 2-dimensional joint distribution function G defined on the
xy-plane assigns the probability 1 to the line y = «, then the marginal distri-
bution functions F', and F, defined by

Fi(z) = Gz, +0), Fyy) = G(+0,y)
5) It should be noted that Condition B’ rules out distribution functions which have

a positive limit at 0+, for instance, normal distributions that are truncated to the left
at 0.
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are equal; that is to say, F,(f) = Fy(t) for all {. Furthermore, G(z,y) =
= Min (F(z), Fy(y)) for all z, y.

Lemma 2. If F, and F, are 1-dimensional distribution functions and F,(x) .
. Fy(y) = Min (F(z), Fy(y)), for all 2, y, then at least one of the functions F,
and F, is rigid. '

Applying these lemmas to Spadek’s conditions one obtains the following:
results.

Theorem 1. If in a random metric in the sense of Spadek the distances from p to q
and from q to p are independent, then the corresponding probabilistic metric is
rigid.

It follows that in such a random metric, for some number d > 0, =(F) = 1
or 0 for any measurable set § according as § does or does not include the point
(0, 0, d, d). Thus in the case of independent distances, a Spaéek random metric
concentrates the entire probability in one single point of C,.

Parenthetically, we mention that, if ¥, is continuous and distances are
independent, then not only is #(F;) < 1, but =(Fc) = 0.

In a space containing more than two points, Theorem 1 of course applies to
each pair of points.

Now, in a traditional metric on a space containing more than two points it is
postulated that each triple p, ¢, r satisfies the triangle inequalities,

D. F(p,q) + F(g,r) = F(r,p), F(g,7)+ F(r,p) = F(p,q),
F(r,p) + F(p,q) = F(q, 1) .

Correspondingly, in a random metric on a space containing more than two
points, Spatek postulates the condition
D'. n(%b) = 1>

where §, is the set of all infra-metrics F satisfying D. From Theorem 1 or
readily obtains

Theorem 2. If wn a random metric, the distances from a to b and from b to a are
independent, for any two points a, b, then the resulting probabilistic metric is rigid
and corresponds to a traditional metric in the sense of Fréchet.

Coming back to a pair of points p, ¢ and omitting the assumption that the
two distances are independent, from the lemmas we infer the following:

Theorem 3. T'o each random metric there corresponds a probabilistic metric in
which the distances from p to q and from q to p are either independent and rigid or
non-rigid and completely dependent.®) If a correlation exists it is 1.

8) Observe that in both cases the distances are actually completely dependent. For, in
the rigid case, the distance form p to ¢ determines the distance from g to p and vice versa.
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In a probabilistic metric corresponding to a random metric on a spacc of
more than two points, the distances, say, from p to ¢ and from p to » may or
may not be independent. According to Theorems 2 and 3 it is sufficient to con-
sider the case where, for each pair a, b, the distances from @ to b and from b to a
are completely dependent. If in this case, one further assumes that the lengths
of the three sides of the triangle pgr are independent, then, in the presence of

"Conditions A’, B, ¢V, imposing Condition D’ entails further severe restrictions
on the distribution functions I,,, ¥,, F,,. For instance:

1. Each of the three functions attains the value 1 for some finite argument.
2. At most one of the three functions has a point of increase?) at 0.
3. If 0 is a point of increase of one function, then the other two are rigid.

4. The sum of the largest points of increase of the three functions is not
greater than twice the sum of their smallest points of increase.

As an example, consider a probabilistic triangle that is equilateral (i. e., for
which F,,, I, = F,,) and for which the distribution functions are one and the
same cumulative rectangular distribution, increasing from d, to d,. Spadek’s
conditions imply that d, < 2d,,.

3. Conclusions

The results of the preceding section show that probability measures on
classes of infra-metrics in which the class of all metrics has probability 1 are
extremely restrictive. In particular, in the case of independent distances, they
rule out all proper probabilistic metrics. Indeed, as far as independent distances
are concerned, in the last analysis, Spadek’s random metrics simply reduce to
traditional metrics, described in a round-about fashion.

In view of some remarks in Spacek’s paper it must be strongly emphasized
that the fact that the conditions for probabilistic metrics, as developed in the
series of papers 1. c.,!) are insufficient to ensure Spatek’s conditions for a random
metric, is by no means a weakness or a defect of these conditions. For even
stronger conditions would be insufficient, as long as they admit proper prob-
abilistic metrics with independent or not completely dependent distances, which
in view of their possible applications to physics and psychometrics [1, 2],
should certainly be admitted.

Even without the results of the preceding section, from general consider-
ations it is evident that Spadek’s concept of a random metric is too restrictive.
For, while randomizing numerical metrics, he nevertheless places his main
emphasis on those cases in which their occurrence will be certain — this despite

_—;)_—'i"he distribution function F,, is said to have a point of increase at ¢ if Fyp(c — &) <
< Fup(c + ¢) for each ¢ > 0.
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the fact that in the large realm of infra-metrics which he admits for comparison,
the occurrence of a metric is an extremely unlikely event.

On the other hand, Spatek’s ideas do lead to some interesting questions.
Instead of concentrating, in the space of infra-metrics, the entire probability on
metrics, we would suggest distributing the probability over a wider class of
functions, which one might call near-metrics. For example, in the case of S,
instead. of concentrating the entire probability on the previously defined ray I,
one might distribute the probability over a neighborhood of M, say a tube
about M. A systematic study of such probability distributions, from the geo-
metric point of view, would be a most useful outgrowth of Spadek’s paper.
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Pesome

O BEPOATHOCTHBIX METPURAX 1 YNCJEHIBIX
METPUHAX C BEPOATHOCTDBIO 1

K. MEHTEP, B. NIBEMIIEP, 9. CRJIAP(K. Menger, B. Schweizer, A. Sklar), Chicago
(ITocrynmio B pepaximuo 11/X1 1958)

Paccmarpupaiorest BeposATHOCTHBIC MCTPHUKM, KOTOPBIE ObLIM BBCIEHBI M VIC-
cacnoBausl B cratbsax [1]—[5], [7], [8], u ciryvailnble MCTPUKM, BBEICHHBIC
B cratbe A. [llmauera [6]. YraseiBaercs, 9ro BesAKas cIydailHasE METPUKA
MHJYIUPYeT ecTeCTBEHHBIM 00Pa30M BEPOSATHOCTHYIO MeTpUKY. Beposrnocrias
MeTpPHUKA Ha3bIBACTCS RECTKOIL VISl TOUYEK P, ¢ eClId PACCTOSIHIE OT P 0 ¢ UMeeT
onpeJielieHHOEe 3HAYEHNE ¢ BePOATHOCTHIO 1; BEpOATHOCTHAS METPUKA, yKECTKAA
I BCeX P, ¢ HA3BIBAETCA JKECTKOI; TaKkask BEPOSTHOCTHAS MCTPUKA sIBISETCHA,
O CYHIecTBY, OOBIYHOM YICJICHHOH METPUKOIL.
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HokassBalores cilelyloniue pes3yibTaTh:

Teopema 1. Ecau das cayuaiinoii mempuru (8 cmvicae A. lllnavera) paccmos-
nus om p 0o q u om ¢ 0o p HE3AGUCUMBL, MO COOMBLTNCIMEYIOULAL 6EPOAMHOCTNHAL
Mmempuka seasemes wcecmroii (0as p, q).

Teopema 2. Lcau 0as cayuaiinod mempuru npu awobux a, b paccmosnue om
a 0o b uomb do a nesasucumvl, mo UHOYYUPOBAHHASL €10 6POATNHOCTRHASL MNP U~
Ka 96Asemes Hcecmrkoli u daem o06vuHOC MEMPUUCCKOE MPOCMPAHCMEO 8 CMUICAE
Dpewe.

Teopema 3. Bcakoii cayuaiinoii mempuke cO0MECMCMBYEM 6ePOSMHOCINHAL
MEMPUka, ¢ Komopoil paccmosius om p 0o g u om q 0o p uau mesasucumvt (Mak
MO MEMPUKQ HCeCmEQ Oas P, q) Uau noanocmbvio sasucumvl. Ecau cywecmeyem
UL KOpeasyuornulil kKodPguyuenm, mo on pagen 1.

B cBsizu ¢ aruMu Teopemamu, 00CYKIAIOTCA COOTHOMEHMA MCHK/TY MOHATHAMMI
BEPOATHOCTHOM M ciryyaitnoil (B cmsicite A. Illmavexka) meTpuru u orpanmue-
HMs, BHITEKAIONIME M3 HAJOKEHHBIX B €0 OLpe/leleHuH YCJIOBUI. Y Ka3bIBAIOTCH
HEKOTOPBIe BO3MOKHBIE MOJM(UKAIIN CIYyYalHOM METPHUKM.
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