Czechoslovak Mathematical Journal

Josef Kral
Note on strong generalized Jacobians

Czechoslovak Mathematical Journal, Vol. 9 (1959), No. 3, 429-439

Persistent URL: http://dml.cz/dmlcz/100366

Terms of use:

© Institute of Mathematics AS CR, 1959

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100366
http://dml.cz

YexocroBankmii MaTemMaTHieckuii KypHa®, T. 9 (84) 1959, Ipara

NOTE ON STRONG GENERALIZED JACOBIANS

JOSEF KRAL, Praha
(Received June 27, 1958)

There is a question in the Banach theory of continuous plane
transformations whether the equality

[[N(@z T)dz = [[| £y(w, T)| dw
E, 9

holds whenever 7' is a sAC transformation defined in a domain
9 C E, (cf. [4], p. 419, (i)); here N and 7, are the corresponding
Banach multiplicity function and strong generalized Jacobian
respectively. It is the purpose of this paper to show that the an-
swer is negative.

We shall first briefly review certain aspects of so-called Banach theory of
continuous plane transformations, namely the notions of (strong) bounded
variation, absolute continuity and generalized Jacobian. The definition of
strong bounded variation and absolute continuity was introduced by S. Ba-
NAcH [1], the notion of strong generalized Jacobian is due to J.SCHAUDER.
For an excellent presentation of the Banach theory and its far-going genera-
lisation the reader should consult T. RApo’s monograph [4], which will be fre-
quently used as a reference in the sequel.

Throughout this paper X, is the Euclidean plane which is identified with
the set of all finite complex numbers. In studying plane transformations it is
convenient to imagine the plane is given in duplicate; the variable in the first
and the second plane will be denoted by w and z respectively. In this sense we
shall speak of the w- and z-plane. :

If # is a Lebesgue measurable set in E,, then |.#| denotes its measure. For
w e B, the same symbol |w| is used to denote the absolute value of the complex
number w; any misunderstanding is, clearly, impossible.

The term Jordan region is taken to mean the closure of the interior of
a simple closed curve. (A more explicit term “simply connected Jordan region”,
as used in [4], appears to be unnecessary for our purposes, since there are no
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Jordan regions of higher connectivity met in the sequel.) If the boundary
curve of a Jordan region RN is a simple closed polygon then R is termed
a polygonal region.

Let R be a Jordan region in the w-plane and let € be its boundary curve
which is assumed to be oriented in the counterclockwise sense. Further, let
T be a continuous mapping from R into the z-plane. If z e 7T'(¥), we put
w(z, T, R) = 0. In the contrary case u(z, T, R) is set to be equal to the topo-
logical index of the point z with respect to the closed oriented curve (= path)
T(%) — the image of ¥ under T'. (For a precise definition see [4], IV. 1.24,
11.4.34.)

To the end of this chapter 2 will stand for a bounded domain in the w-plane,
T will be a continuous mapping from 2 into the z-plane. In accordance with
[4], the set T'(2) is assumed to be bounded.

Let A(T, 2) be the set of all we 2 which are isolated points of the set
T-Y(T(w)) and let us define in & the strong local index function i w,T) as
follows.

For we 2 — S(T, 2) put 1w, T) = 0. If we J(T, Z), choose a Jordan
region R c Z such that

weR, R o THT(w)) = {w},) (1)

and put i (w, T') = w(T(w), T, N). (It is proved in [4], IV.1.75, that u(T(w),T,
R) does not depend upon the choice of R fulfilling (1), so that our definition is
consistent.)
The values taken by ¢, in & are integers and, according to the Radd counta-
bility theorem, we have
| fisw, T)| = 1

with exception of a countable set of w’s in 2.

Given a point z in the z-plane and a subset 2, in @, N(z, T, 2,) will denote
the number (possibly zero or infinite) of points of the set 7-1(z) n 2,. The
function N(z) = N(z, T, 2) is non-negative and measurable (cf. [4], IV. 2.6),
so that the integral

JIN (2)
(the Lebesgue integral of N over the whole z-plane) is available. In the case
the integral (2) is finite the transformation 7' is said to be strongly of bounded
variation (briefly: 7' is sBV) in 2 (cf. [4], IV. 4.1, IV. 2.13, IV. 2.11).

Let us assume to the end of chap. I that 7" is sBV in 2. If S(w) denotes
a square (i. e. a Cartesian product of two closed one-dimensional intervals
of equal positive length) of centre w, then there exists a finite derivative

|T(8°w))|
1S(w)]

7ﬁ.‘) A° is the interior of the set .# C E,.
() We write S°(w) instead of (S(w))°.

D(w, T') = lim [S(w)] -0 ()
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for almost every we 2 (cf. [4], IV. 2.32). The function D (which is defined
almost everywhere in 2) is integrable over 2 and, as proved in [4], IV. 2.33,

IV. 2.34, the inequality
[[D=[N @
2

is valid.
Let us define for almost every we 2 the strong generalized Jacobian
F(w, T) as follows:
Fw, T)= 1w, T).Dw,T)

(cf. [4], TV. 3.21). The function Z,is measurable and the inequality | #,| =< D
is satisfied almost everywhere in 2.

It is proved in [4], IV. 2.45, that in (3) the sign of equality holds if and only
if the implication

(M C D, | M| = 0) = |T(A)| =0 (4)

is valid (cf. also IV. 2.42). The transformation 7' is said to be strongly absolutely
continuous (briefly: 7' is sAC) in 2, if it is sBV in 2 and if the implication (4)
is fulfilled (cf. [4], IV. 4.1, IV. 2.42, IV. 2.39).

In [4], p. 419, section (i), T. Radé raised a problem whether the equality

[[1Fd=[IN (%)
2

is valid whenever 7' is sAC in 2. It will be shown the answer is negative.
Denoting by #,(7, 2) the set of all we #(T, 2) with i,(w, T) =0 we
have the following assertion (contained implicitly in [5], IV. 5. 3):
If T is sAC in 2, the equality (5) appears to be equivalent to any of the following
conditions (6), (7):
\T(S£(T, 2))] = 0, (6)

| £ o(w, T)| = D(w, T) for almost every we 9. (7)

Proof. The implication (7) = (5) is obvious. (Note that the sign of equality
holds in (3).) Suppose now the equality (5) is true. Then [ [| 7, = [[D and,
17 G

since | #, = D almost everywhere in 2, we have (7). From (7) we obtain
D(w, T) = 0 for almost every we S, = S (T, Z). Hence it follows in view
of the inequality '
[ID = |T(5)

(which is an easy consequence of the theorem IV. 2.50 in [4], where ® is taken
to mean the characteristic function of the set %, so that [ [o(z, ®) = |T(.#,)])
the relation (6).

We have so (7) <= (5) = (6). The remaining implication (6) =- (7) being
a consequence of IV. 3.23 in [4], our assertion is proved.

However,. it is not a priori clear that the conditions (6), (7) need not be ful-
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filled automatically whenever 7T is sAC in 2. In chapter II an example
(example 1) will be given of a sAC transformation 7' not fulfilling (5) (and,
consequently, neither (6) nor (7)).

As proved in [4], IV. 3.23, the implication (6) =- (7) is valid provided 7 is
sBV in 2. It will be shown by an example (example 2) that (7) is possible
with |T(F(T, 2))] > 0 for a sBV transformation 7. (In the second case
T is not sAC in 2 as it follows from the assertion stated above.)

11

In this chapter the examples mentioned in chap. I are given. The example
1 is constructed in sections 2,1—2,3, the example 2 is given in 2,4.

2,1. Put 2, = — 1 =w,, 2, = — ¢ = w, (¢ is the imaginary unity), z; =
= 1= w;, 2, =1 = w, and denote by ¥ and R the polygonal region in the
z- and the w-plane bounded by the polygon z,2,2;242, and w,w,ww,w, respecti-
vely. Let & be the segment z,2, and choose a number ¢ with

0<e<|R|. (8)

Then there exists a one-one continuous mapping V of % onto a set V(&) =
=% c N 2) such that

Vize) = wy, Viz) = wy, € —{wywic R, €] >R —e.
Proof. See [3] and Fig. 1.

2,2. Let us keep the notation introduced in previous section. Let T, and T,
be the polygonal region (= triangle) of boundary z,z,242, and z,2.242, resp.
Let R, be the Jordan region bounded by the simple closed curve which is
union of wy,w,, €, w,w,. Further, let R, be the Jordan region bounded by the
simple closed curve which is the union of €, w,w,, wyw,. Put Py = &L — {2224},
€y = € — {w,, w,}. We have then

TuTL,=2, LnT=9, V=FJuu S, 9)
RuRK=R, KoK, =%, R=RIUR v %,. (10)
The mapping V (defined in & as yet) possesses an extension to a homeo-
morphism between & and R such that V(z) = z for every z of the boundary

of ¥.3) Moreover, the extended homeomorphism can be so chosen that the
following relations (11)—(13) be fulfilled.

V(zk) = ERIc (k = 1’ 2) ) : ‘.(11)
N Y, || =0)= V() =0, (12)
(M CRY, | M =0)= VM) =0. (13)

?) V is a mapping from the z-plane into the w-plane.
3) Here, for simplicity, no distinction is made between the points in the z- and the
w-plane having the same coordinates.
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Proof. The relations (9) are obvious. The proof of the relations (10) may be
left to the reader (cf. [2], theorems 11.7 and 11.8, pp. 118, 119).

Put V(z) = z for every point z lying on segments z,2,, 2,2;. In this way we
obtain a homeomorphism between the boundaries of &, and R,. According to
the assertion 3,6 in chapter ITI, this homeomorphism can be extended to such
a homeomorphism V between T, and R, that the implication (12) be satisfied.
Similarly defining V as the identity mapping on z,z,, 252,, we see that the ho-
meomorphism between the boundaries of Z,, R, obtained in this way possesses
an extension to a homeomorphism between T, R, satisfying the implication
(13). In view of (9), (10), this procedure yields a one-one continuous mapping
V of € onto R having all the required properties.

2,3. Let Z be the mapping of T onto itself defined as follows:
Zx +1y) = —x + 1y .

Clearly, Z is a homeomorphism of ¥ onto itself leaving all the points of & un-
changed. Further, Z(T,) = T,, Z(T,) = Xy, 271 = Z.

Let us now define the mapping 7" of the Jordan region R into itself as follows:
weR — Ry, = Tw) =w,
we Ry = T(w) = V(Z(V-w))) .
We are now going to prove the following assertions:

(i) 7T is a continuous mapping of R onto R,, leaving all the points of RN, un-
changed. If restricted to Ry, T yields a homeomorphism of R, onto R,. Further
we have the implications :

zeR)=> Nz, T,R) =2, NeT,R)=DNeET,R)=1,2?
ze€y=> Nz T,R°) =1, N T, %) =DNeT,R) =0,
Z€E2~(§Rg U %0)$N(Z,T,gto)ZN(Z,T,S‘({)ZN(Z,T, mg)ZO'
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Proof. For w e € we have V-"'(w) ¢ & 80 that V(Z(V-1(w))) = V(V-Y(w)) =
= w. We see that all the points of ¥ u (R — R,) = R, (see (10)) remain un-
changed under 7'. Further it is easy to see that 7' carries %, homeomorphically
onto R,. Since R;, R, are closed sets and the mapping 7' is continuous in every
of them, it is continuous in R, v R, = R. For 2 ¢ RS we have T-1z) n RO =
= {z V(Z(V@))}, V(ZV-Y2)) e Re; z€ €, implies T-1(z) 0 R° = {z} and
for ze By — (R) v €,) we have T-1(z) n R = ¢,

(ii) ¢y(w, T) = 0 for every we %, [t(w, T)| = 1 for every we R° — %,
Proof. It is immediately seen from (i) that (7', R%) = RO. Let w, be any
point of €, and put z, = T'(w,). We have then z, = w,, T-1(z,) 0 R = {w,}.
Let & be a closed circular disc of center wy, & c R0. According to the definition
of the function i,, we have the equality ¢ (wy, T') = u(z,, T, &). Suppose, if
possible, that
g T, §) 4 0. (14)

Then there exists a circular disc &; of center z, such that
zie & = u, T, 8) = p(z,, T, &) (15)
(cf. [4], IV. 1.25, (a), (¢)). By (i) we have T(8) c R,, so that (&) n Rs = 0.
Hence it follows by [4], IV. 1.25 (e), the implication
2o e Ry = u(ze, T, &) = 0. (16)

Since % is contained in the boundary of R,, we have & n R? + 0. Choose an
arbitrary point z;, e £ n Rs. In view of (16) we obtain the equality
W20, T, &) = 0, which contradicts (15). Therefore (14) is impossible and
t(wy, T) = 0.

Noting that 7' is biunique in every domain R], R, we see that |i,(w, T)| = 1
for any we R} U Ry = R° — &, (cf. [4], IV. 4.52). ”

(iili) D(w, T) = 1 for almost every w € €,.

Proof. Denote by S(w) the square of center w. According to the theorem
(10.2) in [6], p. 129, we have a set & c €, with |4, — €| = 0 such that
[S°(w) 0 €,

IS(w)]
Since 7' appears to be the identity mapping in %, c R,, we have T(S°(w)) >

T(S° 0 7
> T(Sw) 0 €o) = Sw) 0 Gy, | l(g?( f;;)]))l - 18 (K;)(;)'%l

Hence it follows by (17) the inequality D(w, T') = 1 for almost every w e %
(and, consequently, for almost every we %,).

(iiif) T'he transformation T is sAC in RO.

we®, [Sw)]|->0)= ~1. () (17)

for any we%,.
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Proof. As it follows from (i), 7' is sBV in R°. Therefore it is sufficient to
verify the implication
(MR, | M =0)= |T(M) =0.
Let # c R° be any set with |#| = 0 and put A* = # — R,, so that
M* C Ry, | A*| = 0. According to (13) we obtain |V-1(.#*)] = 0 and the set
N = Z(V-YA*)) is immediately seen to satisfy the relations

N, | ¥ =0.

Hence it follows by (12) |V(A")| = |T(.#*)| = 0. Since R, remains unchanged
under 7', we have |T(A# n R)| = |4 n R, =0 and the set T(A#)=
=T(M o0 R,) v T(MA*) is of measure zero.

Conclusion of example 1. As proved in (iiii), 7' is sAC in 2 = R°. By
(ii), (iii) we obtain ST, 2) = T(SF(T, 2)) = €,,3) D(w, T) + £ (w,T) for
almost every w e %,. Since |%,| > |R| — & > 0 (see 2,1), we see that neither
(6) nor (7) are valid. Moreover, given ¢ > 0, the transformation 7' can be so
chosen that the measure of the set of all we @ with D(w, T') = | #(w, T)|
does not exceed &.

Clearly, T is also sAC in R and in RY, so that we have by (i)

0
Hence it follows in view of (ii)
[1Fd=[[D+ [[D=2%.
2 R,° Ra°
Since R c R — &, we have |R]| < |R| — |%| < ¢, so that [[| £, < 2. On
9

the other hand, (i) implies [[N(z, T, 2) = 2|R}| + |%,| > |R| — &. Since
¢ was an arbitrary number with (8), we can conclude:
To any » > 0 it is possible to find a sAC transformation 7' in 2 that the

inequality [[17 4w, T)| < [ [N, T, 2)
9

be satisfied.

2,4. We shall now give the example 2 (cf. chap. 1.). Let us keep the notation
introduced in 2,1—2,2 and let V be the homeomorphism of & onto R as descri-
bed in 2,2. Further, let Z be the mapping of ¥ onto itself defined in 2,3.

Let us define the mapping 7'* of T into R as follows: T*(z) = V(z) if z € L,
T*(z) = V(Z(2)) if ze € — T,. We have then the following assertions (i*), (ii*).

(i*) T* is a continuous mapping of the Jordan region T onto the Jordan region
R, which is biunique in every set T, T, itself. Further we have the implications

well, — (R} 0 6,) = N(w, T* ) = 0,4)

4) T'* is a mapping from the z-plane into the w-plane. Therefore the meaning of sym-
bols w, z is interchanged if compared with chap. I.
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we €y => Nw, T*,3%) =1,
we R = N(w, T%, %) = 2.

(ii*) i4(z, T*) = O for ze Ly, |i(z, T*)| = 1 for 2e T° — &,

The proofs are similar to those given in 2,3 and are omitted.

Conclusion of example 2. It follows directly from (i*) that 7'* is s BV
in T = 2,. By (ii*) we obtain J(T*, D) = Sy, | Iz, T*)| = |is(z, T*)| .
. D(z, T*) = D(z, T*) for almost every ze 2, — <, (and, consequently, for
almost every z € 2,); on the other hand, we have |T*(7((T*, 2,))| = |%,| > 0.

I

It is the purpose of this chapter to prove the assertion 3,6 which has been
used in chap. II, section 2,2.

In fact, the procedure used by M. H. A. NEwmAN [2] for the proof of the
theorem 17.1, p. 169, applies also in our case and therefore we shall restrict
ourselves only to several remarks. g

&

3,1. Let P;, P, be polygonal regions of boundaries %,, %, resp. The mapping
T of the polygon %, onto the polygon %, is said to be quasilinear (= q.l.),
if there exists a subdivision of ¥, into a finite number of non-overlapping?®)

segments such that 7' is linear®) in every of them. Similarly, the mapping

T of P, onto P, is termed q. L. if it is possible to subdivide ¥, into a finite
number of non-overlapping”) triangles, 7' being linear in every of them. A q. L.
mapping which appears simultaneously to be a homeomorphism is termed
. a quasilinear homeomorphism (briefly: q. 1. homeomorphism). If 7" is a q. 1.
homeomorphism of %, onto %, (of P, onto P,), then 7-1 is a q. 1. homeo-
morphism of €, onto %, (of P, onto P;). Further, let P; be a polygonal region
of boundary €, and let V be a q. 1. homeomorphism of &, onto % (of P, onto
Ps). Then V(T') is a q. I. homeomorphism of &, onto €; (of P, onto Pj).

3,2. Let Q be a rectangle (i. e. a Cartesian product of two closed one-di-
mensional intervals of positive length) and let 7' be a q. 1. homeomorphism
of the boundary of £ onto itself. Then 7' possesses an extension to a q. L
homeomorphism of £ onto itself.

Proof. (Cf. [2], theorem 6.1, p. 146.) Let &%, ..., &,, be the subdivision of
the boundary of £ into non-overlapping segments, 7' being linear in every

5) The segments ¢, ..., &, are said to be non-overlapping, if &;, &, have at most
end-points in common whenever ¢ =+ k.

6) The mapping 7' is termed linear in # C E,, if there exist (finite complex) con-
stants a, b, ¢ such that T'(« + i) = au + bv + ¢ for any w + v e A

7) The triangles &,, ..., ¥,, are said to be non-overlapping if T, 0'¥,° = 0 whenever
© % k.
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&;. Let w, be the center of Q and denote by ¥, (k =1, ..., m) the triangle
obtained as a convex envelope of w, and #,. For every k extend 7' to a linear
mapping of T, into  such that T (w,) = w,. It is immediately seen that this
procedure yields a q. 1. homeomorphism of £ onto itself.

3,3. Let % be a polygonal region of boundary % and suppose that there exists
a q. . homeomorphism of Y onto a rectangle £.%) Then every q. 1. homeo-
morphism of € onto the boundary of O possesses an extension to a q. 1. homeo-
morphism of P onto Q.

Proof. (Cf. [2], p. 146, corollary.) Let 7', be a q. 1. homeomorphism of ¥ onto
9 and let 7', be any q. 1. homeomorphism of % onto the boundary of £. Then
T,(T1") appears to be a q. 1. homeomorphism of the boundary of 9 onto itself.
According to 3.2, the mapping T'»(7';7") can be extended to a g.1. homeomor-
phism 7 of 9 onto itself. The transformation 7'(7,) is then the required
extension of 7T',.

3,4. Let us keep the notatien introduced in 3,3. Suppose that all the segments
of the polygon % are parallel to the coordinate axes. Then there exists a q. 1.
homeomorphism of Y onto Q.

Proof. The procedure used in [2] for the proof of the theorem 6.2, pp. 146 to
148, applies in our case; every homeomorphism which is met in the course of
the proof is only to be chosen as a q. I. homeomorphism.

3,6. Let &, £ be a Jordan region and a square resp. and let 7' be homeo-
morphism of the boundary of £ onto the boundary of &. Then 7' can be exten-
ded to a homeomorphism of  onto & that the following implications be
satisfied: .

(AR, |N=0)=|TN) =0,

(M@, | M| =0)= T M) =0.

Proof. It is sufficient to modify a little the proof of the theorem 17.1 in
[2], pp. 169—173. (Let us point out that our terminology and notation does
not quite agree with that used in [2]; especially, the meaning of the term
“Jordan region” is different.) Let us subdivide 09 into a countable system of
squares £;, Q,, ... as described in the proof quoted above, p. 169 (cf. fig. 64,
p. 170). The squares are numbered in conformity with fig. 64 1. ¢. The sub-
division of Q0 is imitated in &° so as to obtain a countable system of polygonal
regions P,;, Ps, ... as described in the proof just quoted, where. f is changed
for T'. The polygonal regions are numbered so that ¥, corresponds to £, (cf.
p-172,1. c.). For every k (k = 1, 2, ...) let us choose a homeomorphism 7", = T
of 9, onto P, that all the conditions in 1. c., p. 172, be satisfied; moreover, let
T be quasilinear in 2. Such a q. 1. homeomorphism exists in view of 3,4, 3,3,

8) It can be proved that such a q. 1. homeomorphism always exists. However, the
following assertion 3.4 will be sufficient for our purposes.
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since the boundary polygon of ¥, consists of segments parallel to the coordinate
axes. It is proved in 1. c. that the mapping 7' of Q° onto &° obtained in this
way yields an extension of the prescribed homeomorphism between the boun-
daries of £, © to a homeomorphism of £ onto &.

Let now /4" be any subset in Q°, |4#7| = 0. Since 7' is quasilinear in every
square L, we have

) gémm n Q) =0.

As the inverse mapping T'-1 appears to be q. L. in every ¥, we have similarly
for any A c &°

] = 0 = |T) = 51Tt 0 )] = 0.

3,6. Let &,, &, be Jordan regions and let V be a homeomorphism of the boun-
dary of &, onto the boundary of S,. Then V possesses an extension to a homeo-
morphism between &,, S, satisfying the implications

N, | N =0)= V() =0,

(M C S| M =0)= [V-YM)| =0.
Proof. By 3,5 there exists such a homeomorphism 7'; of &, onto a square

9, (+ = 1, 2) that the implications
W &) = |TAN)| =0,

(M CQf | M =0)= |T; (M) =0
are valid. The mapping 7',(V (71 ') carries the boundary of Q; homeomorphic-
ally onto the boundary of Q,. In view of 3,5, the mapping 7,(V(T1")) (con-

sidered in the boundary of £;) can be extended to a homeomorphism U of
9, onto £, such that

(MR, | M =0)= |UM)| =0,
(M C Q| M| =0)= U M) =0.

The homeomorphism V = 75 *(U(T,)) is easily seen to possess all the required
properties.
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Peswome

3AMETHA R CUJIbHBIM OBOBHIEHHBIM AKOBUAHAM

MNOCE® KPAJI (Josef Krél), lIpara
(ITocTynmiio B pepaxipmo 27/VI 1958)

Mycrs Z-orpaunmyenHas o6racTh HA MIIOCKOCTH 1 1" — OrpaHMYeHHOE CHIIBHO
abCcomoTHO HenpepsBHOE oTobpaskeHme obinactn £ B mrocKocTs. OGo3HAUMM
cumBosiom N(z, T') wmmpmrarpumcy bBamaxa u cumsonom Z(w, T') cuiabHblil
0600mennsIl aKkoOuan, coorsercrByomue orobpaskenmio 7'. (Ompenerenue
9TUX HoHATHI umeercs B [4].) B [4], ctp. 419, apr. (i) mocraBieHm Bompoc
0 CIPaBeIIMBOCTH COOTHOIIECHUS

-f@ﬂfs(w: T)|dw=£fN(z, T)dz. *)

IokassiBaercsi, 4T0 HEOOXOJMMBIM W JOCTATOYHBIM YCJIOBHEM IA CIpa-
BelmiuBocTH paBeHcTBa (*) ABIAerca TpeboBaHme, 4YTOOB 00pa3 MHOKECTBA
BCEX TOYEK, B KOTOPHIX JIOKAJBHEI MHMeKe oToOpaskennsa 7' paBeH HYIIO, OBLI
MHOJKECTBOM MEpHL HYJIb (OCTATOYHOCTH STOr0 YCJIOBHS JOKazaHa B [4]).

ITpuBomuTca mnpuMep, MOKA3BIBAIOMMI, YTO UIA KaKIOTO % > 0 MOJKHO
IOCTPOUTH TaKOe CHILHO abCOJIOTHO HEIpephBHOE OTOOpaskeHHe OTKPBITOrO
KBajipata £ B cebs, YTOOBI MMeJI0 MECTO HepaBeHCTBO

éflfs(w, )| dw < x [ [N, T) dz.
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