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ON THE EXISTENCE AND STABILITY OF THE PERIODIC SOLUTION
OF THE SECOND KIND OF A CERTAIN MECHANICAL SYSTEM

OTTO VEJVODA, Praha
(Received September 15, 1958)

In this paper the existence and stability of the periodic solution of
the second kind of the system
&+ x=cflx, 2 0, 0 ¢,
¢ = eM(g) + et glx, &, 9, ¢, ).
is examined, f and g being 2z-periodic in ¢. The solution is desired in
the form @ = (¢, €), ¢ = w(e)t + ¢ D(t, ¢) the functions z(t, ¢) and

2aN
@(t, €) being periodic in ¢ of period T'(¢) = % (N being a positive
w(e

integer).

To investigate the stability, a general theorem on the stability of the
periodic solution of the second kind of an autonomous system has been |
derived.

The motion of a motor-driven mechanical system was lately investigated in
papers [1] and [2], assuming that the motor cannot be considered a ¢hard”
source of energy, i. e. that the influence of the mechanical system’s motion on
the motor action cannot be neglected.

In paper [1] the system
% 4 0% = — edx + ex cos ¢,
¢ = &(uo — puP) + e sin p(cos ¢ — ), (0,1)
(&, 8, %, @5 Mo» 1, @ being all positive constants and & being a “small’’ parame-
ter) and in paper [2] the system -
ME — mo sin ¢ ¢ — mg cos ¢ p? + a& +cx =0,
Ip — mosin ¢ & 4 ¢(p) = L(p) (0,2)

(¢, m, I, M, «, o being positive constants, x, m, and p being small in comparison
with I and M, q and L being continuously differentiable functions) are in-
vestigated.
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In both cases x determines the position of the mechanical system and ¢ 1s thei '
motor’s angle of rotation.

The equation (0,1) and (0,2) have been investigated in the quoted papers with
the aid of Krylov-Bogoljubov asymptotic method.

However, the existence of a solution in the form of an asymptotic series for
equations of the given kind has not yet been proved exactly and also the in-
vestigation on the stability of this solution cannot be based on any exactly
established theorem. From the practical point of view using the asymptotic
method is relatively easy, but in determining the accuracy with which the
approximate solution approaches the exact one one cannot again rely upon
any known method of estimating the error.

It has therefore been considered useful to prove the existence of the periodic
solution of the second kind in the form of convergent series in ¢ in the analytic
case and, in the nonanalytic case, to put it roughly, as a continuously differen-
tiable function of ¢ and ¢ for 0 < ¢ < ¢, (¢ > 0) and 0 = ¢ < o0 as well as to
investigate rigorously its stability. To prove the existence of the desired solution
the Coddington-Levinson method [3] will be used as a basis.

Considering the relative magnitudes of the coefficients in equations (0,1) and
(0,2), both systems are included in the following general form:

&+ x2 = e f(x, 2, 0, @, ),
¢ = SM(¢) + e g(x, &, @, (i” €),
where f and g are 2n-periodic in ¢. (M is the so-called characteristic of the
motor.) Without loss of generality one can assume » = 1.

1. The Existence of a Periodic Solution of the Second Kind

Hence, let us consider the system

Z —I-x:af(x,fi?’%‘ﬁ:s),
¢ =c¢Mp) + gz % 9, 9,¢) . (L,1)
Let f and g be 2z-periodic in ¢ (let us assume that at least one of them depends
on ¢ explicitly) and let f, g and M together with their first partial derivatives
with respect to the variables , ¢, p and ¢ be continuous in z, #, ¢, p and e for
le] = &, (g0 > 0) and for z, 2, ¢ and ¢ in some domain @, which will be more
precisely described later. Hence, through each point of G passes just one solu-
tion of the system (1,1), which is (as far as it stays in () continuous in ¢ and ¢ for
0 <t < oo and |¢|] = ¢, and depends continuously on the initial conditions.
Because of the nature of the solution of (1,1) for ¢ = 0, it will be sought in the
following form
x=u¢e), ¢p=owE)t+ecD{e), (1,2)

where the functions «(t, ¢) and @(¢, ) are of the same period 7'(¢) in ¢ (i. e. the
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solution is a periodic vector function of the second kind). Having in mind the
original physical meaning of w(e) only the case w(e) > 0 will be considered, so
that @(t) — -+ oo for t — + 0.
Let ¢(0, &) = 0; thus &(0, ¢) = 0.
Let the following variables be introduced:
ox oD

v=—a Y=
The system (1.1) can be rewritten in the form

33:—?!, Fo
y=x—c¢flx, —y, p, 0+ ¥, ¢),

T:M(w—i—s'{/)—i—sg(x, —y, @, 0 + ¥, ¢),

p=ow +c?. (1,3)

We seek such a solution of (1,3), for which the functions z(¢, &), y(¢, €),
i
Y(t, &) and D(t, &) = [W(7, ¢) dv are in ¢ of the same period 7'(e).
0

The functions 7'(¢) and w(e) are meanwhile undetermined. Let us in the first
place determine their mutual relation. Let us assume there exists a solution of
the type in question, for which z(¢),!) y(t), ¥(t) and @(t) are T'-periodic in £. Then
the functions f(z(¢), —y(t), ¢(t), o + & P(t), ¢) and g(z(t), —y(t), @), w +
+ & ¥(t), €) must also be T-periodic in ¢.

Considering that f and g are 2z-periodic in ¢, it is natural (and almost neces-
sary) to require

ot + T) — ¢(t) = 2zN . (N being a positive integer)
or, considering the assumption &(t + 7') = d(t),
w(e) T(e) = 2aN (N being a positive integer) . (1,4)
The function 7'(¢) and w(e) will be detel_'mined in the following considerations.
The values of 7'(0) = T, and (0) = w, can be easily determined according to

the natural requirement that the period 7'(¢) of the desired solution of the
system (1,3) be continuously dependent on ¢ for sufficiently small ¢.

Hence, the desired solution of the system (1,3) is to converge to the solution
of the following system

O = — 4O | PO = M(w,),
§O) = 30 PO = w,, (1,3,)
for which z(t), y(t), PO(t) and D©®(t) are periodic of period T, = gyﬂ
Wo

1) For the sake of brevity the notation of dependence on ¢ is omitted everywhere, where
no misunderstanding can arise.
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The general solution of the system (1,3,) is

xO(t) = &P cos t — yPsint, yO@) = 2P sint + ¢ cos t,

WO = PQ +t Moy),  ¢O0) = gy + oof
while

DOt) = 1P + 12 M(w,) -
The necessary and sufficient condition for ¥)(¢) to be 7'y-periodic is evidently
2nN
TO M(wo) = 'w— M(wo) =0. (1,5)
0

This is the desired condition for w,. Suppose (1,5) has at least one real positive
solution.

The remaining conditions expressing a((t), y(f) and GO() to be T
periodic can always be fulfilled. It is however necessary to distinguish be-
tween two cases:

N . e
1. wy = - (n being a positive integer). Then P = 0 and (@, @ are
arbitrary constants (the resonant case).
N . T
2. w, * - (n being a positive integer). Then Y@ = a() = y@ = 0 (the
nonresonant case).

Before getting on to further computations let us introduce the following

notation:
x 0 0 —1 10
I B e e B v

Further we shall restrict our considerations on ¢ in the interval |¢| < ¢
(= &) (&, > 0) and such a domain G, c @ of initial conditions that all solutions
starting for t = 0 in G, lie for 0 < ¢ < T'(¢) in G.

Thus, if z, y, ¢ and ¥ attain for ¢ = 0 the values (0, ¢), %(0,¢), 0 and
¥(0, &) such that (2(0, ¢), (0, €), 0, w, + & ¥(0, ¢)) € Gy and if |¢] < ¢, it can
easily be found with the aid of the variation-of-constants method, that the
components z,y and ¥ of the general solution of (1,3) fulfil the following
integral equations:

13
u(t, &) = e u(0, &) + £fe" " U(a(s, ¢), ...) ds,
0

t (1,6a)
Y(t, &) = P(0, ¢) + {[M(w + & P(s, &) + e g(x(s, €),...]1ds,
and
o, &) = w(e)t + e D, ¢), (1,6b)
where ) ‘
D(t, e) = [P(z,¢)dr. (1,6¢)
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Conversely, every solution of these integral equations fulfils (1,5) including the
initial conditions in question.
The equations (1,6a, ¢) yield the necessary and sufficient conditions for
functions z, y, ¥ and @ to be of period 7'(¢) = Z—i\;:
T(&)
(™S — E)u(0, &) + &f MO U(a(s, &), ...)ds = 0,
0

T(e)

of [M(w(e) + & ‘I’(s, €)) + eg(x(s, €),...)]ds = 0, (1,7)

T(e) ¢
of {P(0, &) + 0f[]ll(co(rs) + e Vs, €)) + e glx(s, €),...)]ds}dt = 0.

To fulfil these equations there are the functions z(0, ¢), (0, &), ¥(0, ) and w(e)
at our disposal.

In the first place let us examine the case w, + %7 In (1,7) let ¢ — 0. In this

way we obtain the necessary conditions that (0, 0) = x,, (0, 0) = ¥,,
Y0, 0) = ¥, and w(0) = w, must fulfil: '
2”Ns 2N 2nN

(e —E)uy=0, ZTMQOO):O’ w—oylozo- (1,70)

As according to assumption M(w,) = 0 has at least one real positive
root oy, the system (1,7,) has a real solution x, = zy = 0, y, = y5 = 0,
¥, = P& = 0, w, = oF. If the Jacobian of (1,7,) with respect to z,, ¥,, ¥, and
w, is nonvanishing at the point (0, 0, 0, w{'), the sufficient conditions for the
existence of a solution of (1,7) can easily be obtained by the theorem on implicit

functions.
Thus the following theorem will be proved:

Theorem 1.1. Let
(a) fand g be 2m-periodic in the variable g;

N N and

(b) the equation M(wo) = 0 have at least one real positive root wg =+ - (

n being natural numbers);

(c) for le] < gy (8g > 0) and for x, &, ¢ and @ in the domain G of the space
(x, &, @, ¢) which is defined as the neighbourhood of the set (0, 0, w¥t, w¥) where t
2aN
g
partial derivatives of the first order with respect to the variables x, &, ¢ and ¢ be
continuous in x, &, ¢, ¢ and ¢

(d) M'(wF) % 0 (3. e. the root wg is simple).

Then there exists only one solution of (1,1) having the form (1,2), for which the
functions x*(t, ), y*(¢, €), P*(t, &) and D*(t, &) are periodic in t of period

attarns values in the interval <0, , the functions f, g, M including their
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T*(e) = —a%f—(%

w*(e) (and consequently T*(e)) is continuous for suffictently small & and
x*(t, 0) = y*(¢, 0) = P*(t, 0) = 0, w*(0) = w¥ holds.

Proof. The existence and uniqueness of the solution of (1,3) in the interval
<0, T*(e)) for sufficiently small ¢ and for initial values (x(0, ¢), (0, &), ¥(0, ¢))
having sufficiently small deviations from the values (0, 0, 0) (and of course
@(0, €) = 0) is secured by the assumption (c).

According to (b) (1,7,) is soluble. Since again according to (b) det (eTe* — E) *
+ 0, 7§ = y& = 0 holds. According to (d) M'(w*) # 0 and therefore the Jaco-

2
bian of (1,7,), which equals det (e — E). (Q—Z)ZTV) . M'(w*) is nonvanishing

0

, are continuous in t and & for any t and sufficiently small e,

at the point af = y¥ = V§ = 0, 0, = wf.

The Jacobian of (1,7) is therefore also nonvanishing at the point xj =
=y¥ = PF =& =0and w, = 0y, and according to (c) the system (1,7)
fulfils all assumptions of the theorem on implicit functions. Hence the theorem
follows easily.

. . N .

Let us now examine the resonant case, i. e. o = o For the sake of brevity

let

wF — w(e)
= 2 0 .
7(e) T o) (1,8)
then
T(e) = 2nn + (),
where
() >0 for &—>0.
With respect to
e(2:m+1)s — E = e2nn$ — E + eZ:rmS (e-tS . E)
and
e21’ﬂS — E
the first equation (1,7,) can for ¢ + 0 be rewritten as
2an+4-1v
% (e*S — E) u(0, s)g + f e@n+7-95 U(x(s, €), ...) ds = 0 . (1,9)
0

Letting ¢ — 0, we get
2an
Su() lim z + e -9)s U(x(‘”(s), - ?/(0)(3), w:)ks’ w(;)k’ 0) ds =0 ’ (1’90)

e—>0 €
0

where
2O(t) = (t,0) and yOF) = y(t, 0).
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If 2*(0, 0) = aF¥ and y*(0, 0) = y5 are components of the sought solution of
(1,7,) and Suf + 0, i. e. |aF| + |ys| + 0, then from (1,9) it is clear that for

this solution there exists lim % and consequently there exists lim ¢ : (8)
e—0 e—0

The third equation of (1,7) can be written as
T(e)
T(e) Y(0,¢) + [ (T(e) — s)[M(w(e) + € Y(s, €)) + & gla(s, €), ...)] ds = 0.

(1,10)
This equation gives for ¢ = 0

2mn¥, = 0. (1,10,)

Finally, let us investigate the second equation of (1,7). This equation is for
¢ = 0 with respect to M(wy) = 0 fulfilled identically; let it be divided by &
(¢ # 0) and let the integral be replaced by two integrals with the limits 0, T’y
and 7'¢, T'(¢). In the first integral the first term of the expression under the
integral sign be modified according to the mean-value theorem of the diffe-
rential calculus:

Mo + V) = M(w + e¥) — M(wg) = M'(a)[w — wf + ¢¥], (1,11)
where
a = oy + 9, t) o — wy +eP(te)] and |[de,t)] < 1.

Let the second integral be modified according to the mean-value theorem
of the integral calculus. Thus

T(e)
1[ [M(w(e) + ¢ P(s, €) + e g(x(s, €),...)]ds =
= (T(e) — T M(w(e) + ¢ Vo, £)) + € g(x(0, ¢), ...)], (1,12)

where o ¢ (T, T(¢)).

Now, the considered equation has the following form
T, *
f [1 (@) ((e) — wf + & P, s)] + glals, ©), ...) +
o
%
2 B0 o) + ¢ W(o, ) + eglato, €)= 0. (L13)
Let ¢ — 0. As in the integral the limiting process may be performed under
the integral sign (making use of M(w}) = 0 and of the fact that by (1,10,) and
the second equation (1,6a) ¥(t, ¢) — 0 for ¢ — 0 uniformly with respect to ¢)
(1,13) results in ’
T *

TEF M'(of )llm ——(—8) o5 - f (@O(s), — y9(s), wis, wf, 0)ds = 0. (1,14)

e—0
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¥
Consequently there exists lim ‘0_(‘_9)_8_90_ if M'(wg) + 0.
&0
. . . . w(E) —oF . .
In connection with previous results we know that lim ———2 exists, if

&0

le¥| + ly&| + | M'(wF)| += 0. Suppose further that this inequality is fulfilled.

I
From the existence of lim Qﬂgﬂ there follows that for sufficiently small ¢
&0
there exists a function £2(¢) (continuous at ¢ = 0) such that
o(e) = wp + & Qe) . (1,15)
Then, of course (let us introduce the notation 2(0) = Q)
. o) —of T 2an ., 2mn?
lm = = @, Mmoo =TF %= —"F %

The equations (1,9,) can be now written in more detail:

2nn
2an =3 yo — f(g cos s — y, 8in s, — &y 8in 8 — ¥y, COs 8, WS, wE, 0)sinsds =0,
w,
0
0
2nn (159({))

0 . .
— 2an =g, — f(wgcos s —yosins, — xysins — y, cos s, w's, wy, 0) cossds =0,
w,
0
0

To be able to replace the second equation of (1,7) by an equivalent condition
that would not be identically fulfilled for ¢ = 0 let us for 0 < |e| < &, |4| = 4,
(4y > 0) define the function u(4, ¢), where A and ¢ are independent variables,
by means of the relation

uld, &) == M(f + ed).
As by the mean-value theorem

lim 83 M(wF + ed) = lim L [M{wf + ed) — M(o})] =

e—0 e—0 €
=lim M'(a) A = M'(0¥) 4,
&0
(@ = oy + N, ) ed, |9] < 1)

it is possible to extend the function u(, €) continuously onto the segment
e =0, |4] = 4,. Let us keep for this extended function the same notation
u(4, €). Since for ¢ + 0

0 A,8 1 ’ ’
.%T):;M(w:+sA)s:M(w§+sA)
and for ¢ = 0
oA, 0) o,
6/1 —M(wo)’
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there exists the partial derivative % which is continuous for all 4 and ¢ in
the rectangle (— A, 4y) X (— &, &)-

Hence
LM+ e + e V(€)= 1 Q) + P, 0), )
can be written for all ¢, 0 < ¢ =< ¢,, and it can easily be found that

lim > M(wF + ¢ Q) + e PUt, ) = u(2, + P, 0), 0) = M@ 2, + ¥(t, 0)] .

e—>0&

Making use of the previous notations, the third equation of the system (1,7),
after having been divided by ¢, can be written in the form
T(e)

f [u(2(e) + (s, €), &) + g(x(s, €),...)]ds = 0. (1,16)

Letting ¢ — 0 results in essentially (1,14), only the notation being some-
what different (the use of ¥(¢, 0) = 0 is made again):

2an

2mn M (3) Qy + [ ga(s), — yOs), wis, 0f, 0)ds = 0. (1,16,)
0

The equations (1,9¢), (1,16,) and (1,10,) form a system of necessary condi-
tions which z,, y,, ¥, and 2, must fulfil in order that the functions x(t, ¢),
y(¢, €), P(t, ¢) and D(¢, €) should be T'(¢)-periodic in ¢. This system of equa-
tions allows us to derive the sufficient conditions for existence of the periodic
functions in question.

First let us write the Jacobian of (1,9y), (1,16,) and (1,10,) at the point
@y =Ty, Yo="Yo, D=2, Yo=Y =0

2nn 2an
: 2 2my
f F¥(s) cos sds, j F¥(s) cos sds + an , na?f“ , 0
0 0
0
2nn 27n .
* Qrma¥
f F¥(s)sin s ds — 27:”?“ , f F}(s) sin s ds, — nnf" , 01,
wg Wy
0 0
2an 2nn
f G¥(s) ds, f G¥(s) ds, 2n M'(wf), 0
0 0 N
0, 0, 0, 2mn
(1,17)
where v
of\* of\* . of\* . of\*
* . _ |9 9 i a
F¥ = (ax) cos s + (6x) sins, F¥ po sin s -+ s cos S,



Gf:(a—i) coss—(gg—)sms, G;“:w(—z%) s1ns—(~a%) cos s .

From the third column it is evident that as soon as this determinant is non-
vanishing, zf = y; = M’'(wg) = 0 cannot hold simultaneously.
Let the following theorem now be proved:

Theorem 1.2. Let

(a) the functions f and g be 27-periodic in @;

(b) the equation M(w,) = 0 have at least one real positive root wy = wf = En
(N and n being natural numbers);

(c) the system (1,9y) and (1,16,) have a real solution x, = xf, y, = y& and
Q, = QF;

(d) for |e| = & (g0 > 0) and for x, &, ¢ and ¢ in the domain G which is defined
as the neighbourhood of the set (xs cost — y§ sint, — af sint — yi cost, wet,
y), where t attains values in the interval <0, 2an, the functions f, g and M includ-

ing their partial derivatives with respect to x, &, ¢ and p be continuous in x, &, ¢, ¢
and &;

(e) the Jacobian of (1,9y) and (1,16,) with respect to x,, Yo and 2, at the point
Xy = Xa, Yo = Yo and Qy = OF be nonvanishing.

Then there exists for sufficiently small ¢ just one solution of (1,1) in the desired
form (1,2), for which the functions x*(i, €), y*(t, &), P*(t, £) and D*(t, ¢) are pertodic
i t of period T*(e) = —mjf(lj), where w*(e) = w§ + ¢ Q%(e), with a continuous
function Q*(¢) and they are continuous in ¢t and ¢ for all t = 0, while

x*(t, 0) = xf cost — y¥sint, y*(t, 0) = 2y sint 4 yp cost,
P, 0) = 0, Q%0) = QF.

Proof. The existence and uniqueness of the solution of (1,3) on the interval
<0, T*(e)) is secured for sufficiently small ¢ and for initial values of z, y and ¥
having sufficiently small deviations from the initial values zg, y¢ and ¥§ (of
course, ¢(0, ¢) = 0) by the assumption (d). As we have demonstrated above,

.
by assumption (e) |zg| + |y&| + |M(wf)| + 0, so that 1im9(i’)7‘_“1 exists

&0
and w(e) is therefore at the point ¢ = 0 not only continuous but also differen-
tiable and can be written in the form w(e) = wf + & 2(¢), where Q(¢) is
continuous at ¢ = 0.

So, the assumption (b) being fulfilled, the system of necessary and suffi-
cient conditions for z(f, €), y(¢, &), ¥(t, ¢) and (¢, ¢) to be periodic of period
T(e) = z%g, that the functions z(0, ), y(0, &), ¥(0, ¢) and 2(¢) must fulfil, is
given by the equations (1,7), where w(e) has been replaced by wf -+ eQ(¢). It
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remains to prove that this system has a real solution z*(0, ¢), ¥*(0, ¢€), ¥*(0, ¢)
and Q%*(e) for sufficiently small .

Since according to the above considerations there exists for sufficiently
small ¢ the partial derivative of the first order of the function u(wi + &4, ¢)
with respect to A, there exists the Jacobian of the system (1,9), (1,10) and (1,16)
(where w(¢) = wp + e92(e) and it is by (d) continuous for sufficiently small e
and for z(0, &), (0, €), ¥(0, ¢) and £(¢) having sufficiently small deviations
from x¥, 4% Wo and Qf. As this Jacobian reduces for ¢ = 0 to the Jacobian of
(1,9), (1,10,) and (1,16,) and the latter, being 27n times the Jacobian of (1,9;)
and (1,16,), is according to (e) nonvanishing, the system (1,9), (1,10) and (1,16)
fulfils according to (d) all assumptions of the theorem on implicit functions.
Thus there exists for sufficiently small ¢ the solution of the system (1,9),
(1,10) and (1,16) continuous in ¢ which for ¢ = 0 reduces to the solution of the
system (1,9;), (1,10,) and (1,16,).

It is immediately evident that the solution of (1,9), (1,10) and (1,16) is
simultaneously the solution of (1,7). From this the theorem readily follows.

For the analytic case let us state the following theorem:

Theorem 1.3. Let the functions f, g and M fulfil esther the conditions (a)—(d) of
the theorem 1,1 or the conditions (a)—(e) of the theorem 1,2 and moreover let them be
analytic in x, &, ¢, ¢ and ¢ for (x, &, ¢, p) € G and |¢| = &, (g, > 0).

Then the corresponding solutions with the corresponding functions w(e) or (e)
(and also T'(¢)) are analytic in ¢ for all t = 0 and for sufficiently small .

Proof. According to the existence theorem the solutions of (1,1) (as well
as those of (1,3)) are for the assumptions mentioned above for sufficiently
small ¢ analytic functions of the initial conditions and of the parameter ¢,
" Further, according to the theorem on implicit functions in the analytic case the
solution of (1,7) (i. e. the initial conditions of the functions (¢, &), y(¢, €) and
Y(t, ¢) and w(e) or £2(¢)) is analytic in ¢ for sufficiently small e. With respect to
the fact that ¢(0,¢e) = 0 and @(0,¢) = 0 are fixed, and that for analytic

2naN
w(e), w(0) £ 0 T(e) = ()
assertion of the theorem follows immediately.
It could easily be proved that the functions 2*(0, ¢), y*(0, ¢), ¥*(0, €) as well
as w(e) or £(¢) could be found with the aid of recurrent formulas.

in the neighbourhood of ¢ = 0 is also analytic, the

Remark 1. The system (1,1) can be generalized in different fashions. In the
first place the case of more mechanical systems with different eigenfrequencies
%, being driven by one motor can be considered. Thus the system

xz + %3.13'1 = ¢ fi(x:i, i.’i, P, 9‘9’ 8) >
¢:6M(¢)+82g(xha‘:j>q);¢>8) (i,j:l, 2,"':77‘)
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is arrived at. This generalization brings no new aspects; it just increases the
troubles of a technical character.

On the other hand, if the characteristic M of the motor is considered to de-
pend on ¢ too, or the action of the motor to be influenced by a mechanical
system with members of order e, i. e. in (1,1) p = ¢ h(z, %, @, @, &) our problem
leads to the finding of a periodic solution in the neighbourhood of the periodic
solution of a certain nonlinear system. This problem is rather involved and it
will be examined in some future paper.

Remark 2. In paper [4] a more detailed analysis of the conditions for the
existence and stability of the solution in the desired form of (0,2) has been per-
formed. The nonautonomous system for the functions z, y, ¥ and @ has been
made use of.

Remark 3. In practice, the characteristic function of motor M is not known
quite precisely. Therefore the root of the equation M(w,) = 0 is not known

precisely either. According to preceding calculationsif wg= %7 and one seeks the

solution of the period T = %V , the first approximation of the amplitude of
oscillations of x (as well as y) has in general a nonvanishing value. On the con-
trary if of =+ %, the first approximation is equal to zero. Hence it could seem
that a minute change in the determination of the root w{ can cause a large chan-

ge in the determination of the amplitude. But it is not so. If the root ®¥ =+ %7

of the equation 3 (w,) = 0 approximates closely the root wf = % of the equation

2nN

M(w,) = 0, then the value of the determinant |eTsS — E| for 7'y = differs

oy

little from zero and the magnitude of further approximations of z, and %,
(and so of the amplitude) rapidly increases. (In addition the successive appro-
ximations converge only within small range of ¢.)

2. A Theorem on the Stability of the Periodic Solution of the Second
Kind and Some Lemmas ’

The stability of the solution which was found in the former paragraph can
easily be investigated with the aid of a modified Andronov-Vitt theorem [3], [5]
which deals with the stability of the periodic solution of a general autonomous
system. Slightly altering the proof performed in [3] we can modify this theorem
to investigate the stability of a periodic solution of the second kind of autono-
mous systems.
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Theorem 2,1. Let the system

x = f(x) (2,1)
be given. x 18 a vector with components x,, %,, ..., x, and f is a vector function with
components [, fs, - .., fn. Let p be an n-dimensional vector with some components

equal to one and with the remaining components equal to zero. Let the function f
fulfil the relation

f(x + 27p) = f(x) . (2,2)

Let (2,1) have a solution in the form
x = wtp + P(t) = (t), (2,3)
where the vector function Y(t) is periodic in t of period T = 2~7;—N (N being a na-

tural number). Let f be defined and have continuous partial derivatives of the
first order with respect to x,, x,, ..., x, in the neighbourhood V of @(t) for t = 0.

Let the equation of first variation

y = (@) y (2,4)
of the system (2,1) with respect to the solution (2,3) (which has T-periodic coeffi-
cients) have n — 1 characteristic exponents with negative real parts.

Then there exists a number n > 0 such that if a solution §(t) of (2,1) satisfies the
tnequality |[E(t)) — @(to)|| = 7 for some t, and t, there exists a number ¢ such that

(2. e. the solution <@(t) has asymptotical orbital stability and any solution which is
sufficiently near to it has an asymptotic phase).

On the contrary if at least one of the characteristic exponents of (2,4) has a posi-
tive real part, the solution @(t) is orbitally unstable.

The proof will not be performed in detail here; it will be confined to the
modifications of the cited Andronov-Vitt theorem necessary for obtaining our
thecrem.

The T'-periodicity of the coefficients of (2,4) follows from the fact that

fe (w(t - 2—’?) prdes @)): (ot p + 22Np + (1) = fi (w0t p + b(0).

It is also immediately clear that the function ¢ is 7'-periodic. Since ¢ is, as
is well-known, a solution of (2,4), at least one of its characteristic exponents
has a vanishing real part.

To perform the proof it is necessary to investigate the equations

z = f((t) 4 z) — f((t) = f (@) z + F(t, ), (2,6)

where F(¢, z) = o (||z]|) uniformly with respect to ¢.
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Without loss of generality a translation of the coordinate system can be
assumed which makes ¢(0) = 0, because a translation does not change the
nature of the components of the vector .

As far as (2,6) is investigated the coordinate system can be rotated (z — z) in
such a way (¢(t) is the solution after the rotation) that besides ¢@(0) = 0 also
@(0) = 2p (2 + 0) holds. It is evident namely that the rotation changes neither
the periodicity of the coefficients and the characteristic exponents of the line-
arised system (2,6) (i. e. of the system (2,4)) nor the smallness of the vector
F(¢, z) and these are the qualities that the proof which is made use of is
based on.

For the transformed coordinates Z we can by [3] suppose as proved the exis-
tence of a (n — 1)-dimensional surface S, such that all the solutions which start
on it at ¢ = 0 converge to ¢(t) for ¢ — co. Having rotated back (z — z) we get
a surface S, having the same quality with respect to the solution ¢(¢). The
vector ¢(0) intersects the surface S, at a nonvanishing angle since ¢(0) has this
quality with respect to S,.

Denoting the equation of the surface S, in the space z 2 in the space z, again
Zo(x) = Sy(x) holds.

As the solution ¢ does not return back on the surface X, after the time inter-
val T, the sequence of surfaces Xy (k =1, 2, ...) passing through the points
2aNkp (k= 1,2, ...) (i. e. the points corresponding to ¢t = k7') and such that
all the solutions starting from 2 converge to ¢,(t) = ¢(t + £T') must be con-
structed in this case. We easily get these surfaces by translating 2, in the direct-
ion of the vector p through 2zNk.

Since it is easy to verify that

f(@r + 2) — f(er) = fle + 2) — f(9),

we get according to (2,6) for all ¢, in the space z the same surface S,. Hence,
with respect to x = z + ¢, and to ¢,(0) = 2aNkp, there follows that the
equations of the surfaces X\ are

Zu(x) = Zy(x — 2aNkp) = 0.
The solution ¢ () intersects the surfaces X because of the periodicity of (i)(t) at
the same angle as the surface X,.

By the relation (2,2) and by the assumed form of solution (2,3) there follows
that on a certain neighbourhood M of the solution ¢(f): [|x — @(t)|| = o,¢ = 0
a common Lipschitz constant L exists, so that for two solutions §™(¢) and §(2)(t)
of (2,1) lying in the set M for which

[ED(E) — EA(E)| = 6,
[EO@) — B2 < 8¢ — 1)
holds for ¢ = .
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Thus, if for some solution E(t) of (2,1) J&(t;) — @(f,)}} = » holds for some ¢,
and t,, while k7' < t, < (k -+ 1) T (k being a natural number), [§(t — &, + #;) —
— ¢(t)]| remains for t, =t =< ¢, 4 7 uniformly small with respect to ¢,.
For sufficiently small #, §(f — #, + #,) intersects the surface X, for some ¢,
ty =t <t, + T. Then the solution §(t) = §(t — t, + t, - ¢) has §(0) on 2, ,
and consequently &(f) — @,.(t) — 0 holds.

Therefore E(t — ty + &, -t + (k + 1) T) — ¢(t) — 0 for t — oo and it is
sufficient to set ¢ = ¢, —{, — ¢ — (k 4 1) 7" in order to prove the first state-
ment of theorem 2,1.

To prove the statement about instability, which is almost obvious, would be
rather lengthy and for this reason this proof will not be performed here.

Let us now prove some lemmas of an algebraic character.

Lemma 2,1. Let us consider the expression

R= o' — ¢%2 + 2 cos T(e) + ¢ Cy(e)) + 0%(2 + 4 cos T(e) + & Oyfe)) —
— 0(2 + 2cos T'(e) + & Cye)) + 1 + e Cye), (2,7)
where T'(e) and Cy(e) (1 = 1, 2, 3, 4) are continuous functions of & in the neigh-
bourhood of ¢ = 0 and T(0) + 2mv, v being an inieger.

Then R can for sufficiently small ¢ be written as the product of two quadratic
expressions

R = [p? — 2¢(cos T'(e) + & Py(e)) + 1 + & @1(e)][0* — 20(1 + & Py(e)) +
+ 1+ e Qye)], (2,8)

where P; and Q, are continuous functions.

Proof. Performing the multiplication in (2,8) and equating the coefficients
at like powers g we get after some manipulation the following system for P; and
Q: (i =1,2):
2P, + 2P, = C,
Q, + @, + 4P, + 4 cos T'(e) P, + 4¢P, P, =C,,
2P, + 2P, + 2Q, + 2 cos T'(¢) @, + &(P1Qs + Py@y) = C;,
Q1 + @ + @@, = C4. (2,9)
For ¢ = 0 the system (2,9) reduces to a linear system for P,;(0) and @,(0) the
. Jacobian of which equals to — 16(1 — cos 7'(0))? and is by the assumption
T(0) + 2av (v being an integer) nonvanishing. The system (2,9) fulfils thus all
assumptions of the theorem on implicit functions and so our above statement is
proved.

Lemma 2,2. Let us consider the algebraic equation
0* — 2(cos T'(e) + e Pe)) + 1 +eQ(e) =0, (2,10)
where T'(e), P(e) and Q(e) are, for sufficiently small e, continuous functions of &

and T(0) =% 27v (v being an integer).
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Then, (2,10) has for sufficiently small ¢ # 0 of the opposite (the same) sign as
Q(0) both roots in absolute values less (more) than one.

Proof. The roots of (2,13) are given by the formula

010 = 08 T(e) + ¢ P(e) + |/(cos T(e) + ¢ P(e) — L — & Q(e) .
Since for sufficiently small ¢ cos T'(¢) & 1 the expression under the square-
root sign is for sufficiently small & negative.

Then [g,,] = /1 + e @Q(e) and [g1] <1 or [og,/ > 1 if Q) <0 or
e @(e) > 0. With respect to Q(¢) being a continuous function, the statement of
the lemma is evident.

Lemma 2,3. Let us consider the algebraic equation
92_29(1+8P(8)+1+8Q(8):O’ (2711)

where P(e) and Q(¢) are continuous functions in the neighbourhood of ¢ = 0. Let
one of its roots equal one.

Then, for sufficiently small ¢ =+ 0 of the opposite (the same) sign as P(0) the re-
marning root is in absolute value less (more) than one.

Proof. As ¢ = lis aroot of (2,11),

1—2(1 + & P(e)) + 1 46 Qe) = e(— 2P(e) + Q) = 0 (2,12)
holds.
The roots of (2,12) are consequently:

o0=1, 0=1+42eP(e).

Hence the statement follows immediately in consequence of P(¢) being con-
tinuous.

Lemma 2,4. Let us consider the expression
S == 0% + 0% Py(c) + 0e2 Py(e) + €3 Py(e), (2,13)

where P (&) are continuous functions in the neighbourhood of ¢ = 0.
Then (2,16) can be written in the following form

3
S=T](oc —eaxie), (2,14)
i=1
where «(e) are (tn general complex) functions continuous in the neighbourhood of
e=0.

Proof. Equating like powers of ¢ in (2,13) and (2,14) we get after having
divided by appropriate powers of ¢ the following system of equations for «,(e):

oy oy g = — Py, g oo - Xy = Py,
Kqgg = — Py . (2,15)

The functions «, are evidently for every constant ¢ the roots of the algebraic
equation
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7+ Py(e) T + Pyle) T + Py(e) = 0.

According to the well-known theorem on the continuous dependence of the
roots of the algebraic equation on its coefficients and, in consequence of P;(¢)
being continuous, the functions o,(¢) are for sufficiently small ¢ continuous
functions of e. '

3. The Stability of the Found Solution

We are now able to proceed to the investigation of the stability of the found
solution of (1,3). Suppose the assumptions of theorem 1,1, 1,2 respectively, to be
fulfilled so that such a solution really exists.

Let the system (1,1) be replaced by an equivalent system

T=—y,

?.]:x"“"ff(x, —Y @9, €),

y=e M(y) + e g(x, —y, @, v, €),

P=9. (3,1)
This system has consequently the solution

= w*e)t +e Pt e), y=ow*e) +eP*te), (3,2)

where x*(¢, €), y*(t, ¢), P*(t, &) and P*(¢, ¢) are periodic functions of period
2aN

Ko — 7
T*(e) = % (e)

tions of the theorem 2,1, while n = 4 and the role of the vector p is played in

the space (z, y, @, v) by the vector (0, 0, 1, 0).

Denoting u,, u,, us and u, the variations of the variables z, y, v and ¢, the

‘equation of first variation of (3,1) with respect to the solution (3,2) is given by

. The system (3,1) and its solution (3,2) fulfil evidently all assump-

Uy = — Uy,
thy = Uy + e[Au; + Bu, + Cuy + Duy],
Uy = emug + e2[Bu, + Fu, + Guy 4 Hu,],

1)/4 = Ug, (373)
where
s *
A——-A(t,e):-(:—i) , B=B(t,e)=(%) ,
C = Ct, ¢) — —(%) . D =D e) = —(%) ,
E— Bt ) — (_Z%)* . F—TF(e) = (%)* ,
* s

@ = G(t, &) = (g%) , H:H(t,e)z(g—g) ,

m = m(t, &) = M'* = M'(w*(e) + ¢ P*(, ¢)) . (3,4)
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The asterisks at partial derivatives denote that z, v,y and ¢ have been
substituted according to (3,2), so that all these functions are 7*(e)-periodic
functions of the time.

Our task consists now in determining three characteristic exponents of (3,3)
with such an accuracy that the sign of their real parts — at least for sufficiently
small ¢ — be fixed (the fourth characteristic exponent has, as we know, a va-
nishing real part).

Since the characteristic exponents of (3,3) are for ¢ = 0 41, 0, 0, we must
find more accurate values of all the three characteristic exponents in question.
To this end we shall make use of the method of § 10, Chapter III, MALKIN’S
Monograph [6]. This method consists in investigating the equation

D(e) = det (U(T*(e), ¢) — ¢E) = 0, (3,5)
where U(¢, ¢) is a matrix solution of (3,3) with U(0, ¢) = E, the zero points of
which being characteristic roots g, related to characteristic exponents 4, by

1
Ak = T*—(s) lg Or (k = 1, 27 3) 4) . (3:6)

Thus if the three characteristic exponents are to have a nonvanishing real part,
the absolute values of the three characteristic roots must be different from one.

Let the stability of the found solution in the nonresonant case be investigated
in the first place so that the solution from the theorem 1,1 is inserted into (3,2)
and (3,4).

The matrix solution of (3,3) can be writteh as

Ut, &) = V(t) + e W(t, ¢), (3,7)
while V and W fulfil the following differential equations and initial conditions:
V=AV, V(0)=E,

W= (A+eB)W + BY, W0, =0,

S0 0—1 00
a=for o= o) (o)

where

0 0 0 0
A B ¢C D
B =B(, &) = E eF m + eG eH
() 0 0

It can easily be verified that

e’ 0 cost — sin ¢ . (10
t) = tS — . , 12} — ,
V(o) ( 0 e") > € (sm t cost € il

t
W(t, &) = [e=9AB(s, e)[e™ + & W(s, £)] ds,,
0
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t 12

W(t, 0) = fe("s)‘ B(s, 0) A ds = f (QIE)S) ng)) ds,

0
cos(t—s)—sin(t—s))(o O)(coss~sins) sm_(mo 0)
sin ({ —s)  cos (t —s)) \4y By) \sins  coss|’ “\e 0]’
(3,8)
where 4,, B,, m, respectively, are notations for the functions A(s, 0), B(s, 0),
m(s, 0) respectively and the terms having no significance for further calcula-
tions are indicated by dots.

Let (3,8) be inserted into (3,5). Since for ¢ = 0 the characteristic roots of
2a N

*
@y
1, 1, the equation (3,5) fulfils all assumptions of the lemma 2,1 so that (3,5) can

be written in the form mentioned in lemma 2,1. In consequence we can write

D(e) = [0* — 2¢(cos T'() + & Py(e)) + 1 + & Qu(e)] .
[0* — 20(1 + & Py(e)) + 1 + & Qy(e)] = 0, (3,5")

where as it is easy to find

A(s) = (

(3,5) are in this case cos 7§ + sin T'F (T{,|= = + 2mv, » being an integer),

T,*
2P,(0) = f [— 4osin T§ + By cos TE ds =
0

T, *

_ f D [(j_i)* sin 7% (;;i) cos T;“] ds,

Q1(0)=f30d3=f(§£)*ds,
T %

2P,(0) = Qu(0) = [ myds = T M'(w}) . (3,9)

It is evident that for sufficiently small ¢ only the second quadratic expression
can have the root ¢ = 1 and thus

— 2Py(e) + Qy(e) = 0. (3,10)
Making use of the lemmas 2,2 and 2,3 and the theorem 2,1 the following
theorem follows immediately from (3,5) and (3,9):

Theorem 3,1. Let the assumptions of the theorem 1,1 be fulfilled. Then the
periodic solution of the second kind, the existence of which follows from this theorem,
has asymptotic orbital stability, if for sufficiently small ¢ + 0

T,*

£
signa.f(g—;) ds <0, signe. M'(wf) <0, (3,11)
]
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holds, and it is orbitally unstable, if any of the inequalities (3,11) holds with the
opposite sign.

To investigate the stability of the resonant case lemma 2,1 obviously can-
not be made use of because the determinant of the system (2,9) is vanish-
ing for Ty = 2zn.

To simplify further calculations let the time be transformed:

n

) = w*(e) yt. (3,12)
(This transformation does not influence the investigation of stability for suffi-
ciently small ¢ or to put it more accurately as long as ¢ zﬁv Q%) > — 1))

Simultaneously, wherever convenient

W e) = e 0¥(e) (3,13)
will be put.
Finally let the following notation be introduced
Q*(e N ’
O =220 ) = e 00 = ) (] + e PR B, ),

A(ﬁ, g) = — »(e) (%)* , B(9,¢) = ’V(g)( ) 9, &) = — 1}(8) (af)* ,

ox
D, &) = — »(e) (ST;)* E(9, &) = (e) ( ) R, ¢) = () (89) ,
G(9, &) = »(¢) (Z(p) , H(9, &) = »(e) ( )

The asterisks by the partial derivatives denote that for z, ¥ and @ and ¥in
¢ and vy the solution from the theorem 1,2 has been inserted, in which the
transformation of time (3,12) had been performed.

The system (3,3) can be now replaced by an equivalent system (' denotes the
derivation with respect to 9):

uy = — uy + elu,,

Uy = Uy — eluy + e[A(9, €) uy + B(D, &) uy + C(D, &) uy + D(I, €) uy],

uy = em(9, &) uy + 2[E(9, ) uy + F (9, &) uy + G(9, &) us + H(9, &) ug] ,

uy = ug — elug , (3,14)
the right sides of which are 2an-periodic in 9.

Let now the following notation be introduced

0 I' 00 0000
A—TI'B C D 0000
0 0-I0 0000

while the matrices A, § and T have the same meaning as before.
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The matrix solution U(#, &) with U(0, ¢) = E of (3,14) can be written in the
form

U, &) = V(F) + ¢ W(D, ¢) + 2 Z(I, ¢), (3,16)
where V, W and Z fulfil the following differential equations and initial condi-
tions:

V. = AV, V() =E,
W' = AW 4 B(d,¢) YV, W(0,¢) =0,
Z = (A +eB(W,¢) +e2C(0¢e)Z + (B(F,e) + e C(Pe) W+ C(9,¢e) V,

Z(0,¢) = 0. (3,17)
There holds:
V(@) =",

»
W, &) = [ 94 B(s, &) e ds,

9
Z(9, &) = [e® M e(B(s, &) + e C(s, £)) Z(s, &) + (B(s, &) + & C(s, ) W(s, &) +
0
+ C(s, €) €*] ds . (3,18)
Vi Wig Wi, 2;; and 2P denoting the elements of matrices V(27n), W(27mn, ¢),
W(2nn, 0), Z(27n, ¢) and Z(27n, 0) it can easily be verified that
Vi = Vgp = Vg3 = Vyy = 1, 0,3 = 2an and all remaining v;; = 0,
0l = 0l = ) = wf} = vl = uf = 0. (3,19)
Let us now insert into (3,5) U according to (3,16) and put 7' = 2an. Let
o — 1 = o. With the aid of a more detailed calculation we can easily find that
the biquadratic equation for ¢ has the following form:
ot — 0% e[w) + wi + wi + Pye)] + |
+ 02 e[ 2mnzfy) + wiwhy) — ww) 4+ (W + wid) wi + Pyle)] +
+ 0 & — 2an(whdzl) — wilel) + wiRe) — wide)) + widwu) + Pyle)] +
+etQ(e) =0, (3,20)
where P,(¢) (+ = 1, 2, 3) and Q(¢) are continuous functions of ¢ in the neigh-
bourhood of ¢ = 0 and P;(0) = 0. Since, as we know, (3,20) must have for

" sufficiently small ¢ one root equal to zero, @(¢) = 0 holds for sufficiently
small e.

Let us now take notice of the fact, that if p = 1 4 ¢ where o = &(a(e) +
+ 4 b(e)) and a(e) and b(e) are real continuous functions in the neighbourhood
of ¢ = 0, then evidently for sufficiently small ¢ # 0 |o| < 1 (|| > 1), if and
only if a(0) sign (¢) < 0 (a(0) sign ¢ > 0). Since according to lemma 2,4 the

3

expression in (3,20) can be written in the form o H(o‘ — & xy(€)), the condition
t=1 .
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for the three characteristic roots g, for small ¢ + 0 to have their absolute values
less than one is equivalent to the condition that the three roots ¢ «,(¢) have for
small ¢ + 0 negative real parts. Analogously the condition for at least one
characteristic root to have for small ¢ # 0 its absolute value more than one is
equivalent to the condition that at least one root ex;(¢) of (3,20) have for small
¢ % 0 a positive real part.

Making use of the Hurwitz criterion it is easy to see that the conditions for
the equation (3,20) to have for sufficiently small ¢ & 0, apart from the va-
nishing root, three roots with negative real parts are following:

(sign &) (W + wly) + w§)) < 0, '

(sign &) {[wf) + w + w®][2mm2) + wQuw) — wQu® + W + w) wP] —
[ 2w — w2 + w2 — wQ2Q) + w(0>w(202)w§%)]} <0,

(sign &) [— 2mn(w§zy — w2y 4 w28 — w2 + wQwRw] < 0.

Hence inserting for () and 2{) from (3,18) and (3,13) and performing some
arithmetical operations yields the theorem.

Theorem 3,2. Let the assumptions of the theorem 1,2 be fulfilled. Then the
periodic solution of the second kind, the existence of which follows from this
theorem, has asymptotic orbital stability, if for sufficiently small ¢ & 0

2nn

0 > (sign ¢) [f (%)* dt + 27n M'(w(’}‘)] s
0 > (sign &) {M’(w(‘)") [(2nnfo + —12— f (Z—I;)* dt\)2 — i(f [(%) sin 2¢ +
-+ ( f) cos Zt] dt)2 — i (f [(%)* cos 2t — (2—2)* sin Zt] dt) -+

2an 2nn 2nn

(f (“Ioé)*dt)z}_of (g{i)*d‘ of (2—1)* at — (3,21)

2an

89*, ag* ] B
—f( ) costdtf[—-(%) smt+(5a~}) cos t | dt
0
2nn

* *
- f ( ) smtdtf [(3“;) cost + (%‘%) sin t]dt} ,
. , 2an ag *
> (sign &) {— 2nn [27m M'(wf) f (%) dt —

N
()

_|_
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holds and is orbitally unstable if any of the inequalities (3,21) holds with the oppo-
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site sign.
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Pesome

O CVHIECTBOBAHUM 1 YCTONYUBOCTU
HNEPNOANYECHOIO PEIIEHNA 2-I'0O POIOA
ONPEIEJEHHON MEXAHUYECKOI CUCTEMBI

OTTO BEMBOJIA (Otto Vejvoda), IIpara

(IToctynuito B pemaxnuio 15/I1X 1958 r.)

B pabore uccnenyercss mBusxenme ci1abo HeJIMHEHHOIO OCHMIATOpA, BO30Y-
JKJAeMOT0 MOTOPOM, KOTOPBI HEMOIKEM CYUTATh TBEPBIM HCTOYHIMKOM DHEPTHUH,
TAK 9TO HeJb3sd IpeHeGpeub OOPaTHBIM BO3JEHCTBHEM JBHIKEHUA OCIMIATOPA
Ha xoxt moropa. (MccinemoBanme yacTHEIX caydaeB oM. [1], [2] u [4]).
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ITepsriit naparpag paboTEl IOCBAIIEH MCCIETOBAHMIO CYINECTBOBAHUS pemie-
Hudg cucrems (1,1) B Buse (1,2), rie pynrmun z, & = — y, @ u @ = ¥ apasores

2aN
NIepuOANIecKUMU QYHKIUAMHU ¢ TiepuogoM —— (N — HaTypallbHOE YUCJI0).
w
HoxasaHsl caexyoIie TPA TeOpeMBbl:

Teopema 1,1. /Tycmv
(a) fu g — 2m-nepuoduueckue Pyrnkyuu no nepemenHoOMy @;
(b) ypasnenue M(w,) = 0 useem no kpaiineii mepe 00UH NOAOHCUMEALHDIL

N
Kopens wy =+ P (n — HamypaavHoe wucao);

Oaa |e| < & (g > 0) u 0ua x, %, ¢ u @ usz obaacmu G npocmpancmsa
o \& @
(x z, ¢, ), onpe@e/bennou kak okpecmmocmv muoxcecmea (0, 0, w*t, o),
N
> pynryuun f, gu M,

9
DABHO KAK UL WACTHbLC npouseoanbze nepe0eo NOPAOKQ No NepeMeHtum T, &, ¢ U P

HENpepuigHyL 6 T, T, ¢, P U &,

(d) M'(w¥) + o.

Toeda cywecmeyem o0no u moavko o0no pewenue cucmemst (1,1) suda (1,2),
Oas kKomopoeo gynryuu x*(¢, €), y*(¢, €), P*(¢, €) u O*(¢, &) nepuoduunst no

npuuem t npunuMaem 3HAYEHUS U3 UHMEPEaLa <0,

t ¢ nepuodom

N
) ; KDOME MO020, OHU HenpepuisHul no t u & Oas eécex t u 0as

docmamouno mawniz &; w*(e) nenpepvigna das docmamourno marwx ¢ u 2*(¢, 0) =
= y*(t, 0) = W*(t, 0) = 0, 0*(0) = w;.

Teopema 1,2. ITycmo .

(a) pyrryuu f u g 2m-nepuoduunsl no nepemenHoll @;

(b) ypasnenue M(wy) = 0 umeem no rpaiineic mepe 00un OelicmeumenvHyiil

N
noA0 HCUMENLHILIL KOpeHb wy = — (n — HAMYPaLbHOE YUCAO);
n

(¢). cucmema ypaswenuii (1,9,) w (1,18) umeem Odelicmsumenvroe pewserue
* ok *,
Zo, Yo U 2F;

(d) 0an |e] = e (89 > 0) u Ous x, &, ¢ u ¢ us obaacmu @, onpedesennoi
KAk OKEPeCmHOCIb MHOMCECMEA

(xF cost —ygEsint, —afsint—yFcost, owit, o),

20e t npunumaem snavenus uz uwmepsasa 0, 2an), dyuryuu f, g u M, a
maxssce u ux wacmuvie NPOU3EOOHLLE NEPE0E0 NOPAOKA NO T, T ¢ U P HENDEPLIGHIL
6x, T, @, Que;

(e) onpedeaumens Arobu cucmemu ypasuenuii (1,9) u (1,16,) omuocumeavto
Ty, Yo U 2, He paser ¢ mouke (T, Y, QF) nywo.
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To2da dasn docmamourno marnx & cywecmeyem 00HO U MOALKO O00HO pewerue
cucmemst (1,1) euda (1,2), dan romopoeo Pynkyuu x*(t, €), y*(¢, €), P*(t, ¢)
2aN *
—, 20e w*¥(e) = wy +
w*(e)! ( ) 0
+ eQ*(e), npuuem Pynryus %(e) nenpeprisna; rkpome moeo, smu PGYHKEYUU
nenpepuignsl 0as 6cex t U JOCMAMOYHO MAAVE €, NPULEM

u D*(¢, &) nepuoduunnt no t c¢ nepuodom T*(e) =

x*(t, 0) = ag cost — yasint, yi(t,0) = —agsint —yy cost,
PR 0) =0, 02%0) = QF.

Teopema 1,3. ITycmv gynryuu f, g u M ydosaemeopsiom ycaosusm (a)—(d)
meopemvt (1,1) uau ycaosusm (a)—(e) meopemut (1,2) u nycmo onu anasumurmsl
nox, &, @, pucdi(z, % @ @) eCGule = e

Toeda coomsemcmeyowue pewenus, pagHo KAk W coomeememeyuue Gynkyzun
w(e) uau Q(e) (u, credosamenvio, marnce 1'(e)) anarumuynst 0an ecex t u 0as
docmamouno Marix &.

Bo Bropom naparpade poxassiBaeTcs B IepPBYIO ouepeib CICLYIOUIas MOMHU-
¢uramusa teopembl AnjipoHoBa-Burra:

Teopema 2,1. ITycmov 3adana cucmema (2,1), 2de x u f npedcmasasiom cobotl
n-mepuwle sekmopui. Ilycmv P — n-mepublii 6eKmop, Hekomopuie U3 cocmas-
ASIOWUL KOMOPOo2o pasiul edunuye, a ocmasvrvie nyaio. Hycmy dynkyus f yoo-
eaemeopaem coomrowenuio (2,2).

ITycmy (2,1) umeem pewernue suda (2,3), ede éexmopnas Ppynrkyus P(t) ne-

2aN
puoduuna no t ¢ nepuodonm T = —— (N — namyparvHoe wucio).
w

ITycmy ¢pynkyus f onpedesena u umeem Henpepvisrble wacmHvle NPOU3E00-

Hole nepeoeo nopadka no x 6 okpecmuocmu V gyrnkyuu @(t) das t = 0.

ITycmy ypasnenus ¢ sapuayuax (2,4) umeiom m — 1 xaparmepucmuueckuz
nokazameneil ¢ ompuyamesdbHoll JelicmeumenbHoil 1acmyio.

‘Tozda cywecmsyem wucao n > 0 makoe, wmo ydosiemeopaem AU NPOU3EOLb-
noe pewenue §(t) cucmemn (2,1) nepasencmey |[&(t,) — @(&,)|| = n 048 nekomo-
pux ty u t;, mo cywecmsyem wUCAO ¢ MAK, UMO UMEET MECMO COOMHOUEHUE
(2,5) (m. e. pewenue AsagemMCci ACUMNMOMULECKU OPOUMAALHO YCMOUUUBHLM

umecm acumnmomuveckyro @Gasy.).

Haobopom, ecau no kpaiineii mepe 00un xapakmepucmuueckui NoKa3amend
cucmemvt (2,4) umeem nosoHCUMeAbHYIO OelicMEUMEALHYI0 HACNL, MO Peulerue
@(t) opbumanvro Heycmoiuuso.

ITpr momomu 5TOH TeopeMbl MPOM3BOXUTCA B TpeTheM maparpade mccirefo-
BaHMe YCTOMYMBOCTH pelIeHWi, HAHTEHHBIX B IepBoM maparpade, u JORa3bl-
BAIOTCA CJIEMYIONINe TeOPeMbl:
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Teopema 3,1. IIycmv swnoanenvt ycaosus meopemvr 1,1. Toeda pewenue,
Cywecmeosanue KOmopoeo 2apanmuposano smot meopemoli, 644emes acumMnino-
muuecku opoumanbio Yycmoiuguim, ecaw oas docmamouno mawix € + 0 cnpa-
sedausv Hepagencmea (3,11); ecau ce 6 HEKOMOPOM U3 IMUT HEPAGEHCING UMEE
Mecmo  o6pammublili 3HAK HEePAGEHCMEA, MO YNOMAHYMOE peuleniie AGAICINCS
0poUMANBHO HEYCTNOTIUUGHLM.

Teopema 3,2. Ilycmv ewnoanenvt ycaosus meopemvr 1,2. To2d0a pewenue,
cyugecmeosanue KOmopo2o eapaHmuposaHo Mol Meopemoil, A6AAemces acumnmo-
muvecku opoumanvio ycmolinusolm, ecau Oas docmamourno mansvixr € + 0 cnpa-
cedaueol mepasencmea (3,21); ecau owce ¢ mekomopom us3 omuz HepaseHncme
umeem mecmo 00pamHulll 3HAK HePaseHcmea, Mo YNOMAHYMOE peuwernue A6Ast-
emcs opOuUMasbHo Heycmouuesl.m.

415



		webmaster@dml.cz
	2020-07-02T18:22:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




