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ON THE PRINCIPAL FREQUENCY OF A CONVEX MEMBRANE
AND RELATED PROBLEMS

E. MAKAI, Budapest
(Received October 8, 1957)

An upper bound of the principal frequency of a convex membrane is
established. Neglecting a factor depending only on purely physical
quantities it contains only the area and perimeter of the membrane.

1. In his book Patterns of Plausible Inference') G. POLYA presents many nu-
merical data about membranes of diverse shapes, giving the length L of their
perimeters, their areas 4 and the pitches A of their principal tones (principal
frequency of their vibrations if the boundary is fixed, or the minimum of the

quotient

[[[(Va)* do] [ [u? do]* (1)
b D

where % may be any continuous function with piecewise continuous first deriv-
ates vanishing on the boundary B of D, that is on the boundary of the mem-
brane). From these data it is possible to calculate the quantity ¢ defined by the
equation 4 = ¢ . L/A and it is found that in every instance quoted there ¢ is
a number between 1 and about 1.3. Other data show that if ¢ is an arbitrarily
little positive quantity ¢ may be as high as /2 — e. (In the case if a very elon-
gated rectangle.)
Now we will prove the following

Theorem 1. Let D be a convex plane domain of area A, perimeter L. Then the
square root of the least eigenvalue A2 of the differential equation Aw -+ Ju = 0 (A is
the two dimensional Laplace operator, # vanishing on the boundary of D) or in
other words the minimum A of the quotient (1) (v continuous, its first derivatives
piecewise continuous in the interior of D, » vanishing on the boundary) satisfies
the inequality A < |/3LJA.

This statement will be proved if we can find a function u satisfying the con-
ditions of the variational problem, for which the expression (1) is not greater

1) Princeton University Press 1954, pp. 9 and 11.
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than 1/ §L/A. It will be seen that such a function is the point function d(P) which
is the distance of the point P from that point of the boundary B which is
nearest to P:
d(P) = min PQ .
QeB

2. Clearly it is enough to prove the statement for the case when the boundary
is a polygon.?) The sides of the polygon (and their length) will be denoted by
@y, g, ..., @,. This polygon can be divided into domains D,, D,, ..., D, where
the interior of D, consists of the set of those points of D which are nearer to the
side @, then to any point of any other side of the polygon. D, is included in the
triangular domain bounded by the side @, and the two bisectors of the angles
formed by a, and the two adjacent sides.

The function d(P) vanishes on the boundary, it is continuous and its first
derivatives are continuous in the interior of the domains D;, so it is an ad-
missible function from the point of view of the variational problem. Moreover
in the interior of D,, (Vd)? = 1 and so [ [(Vd)>do = A.

The integral [ [p, d*do too has asimple meaning. It represents the axial
moment of inertia of the domain D, with respect to the side a; of the polygon.

Imagine now the domain D being cut up along the lines separating the sub-
domains D,. Let these domains be rearranged so, that the sides a, lie on a com-
mon straight line /. (See fig. 1). After the rearrangement the domain D; will be
called D;. We imagine that the domains D; are all on one side of the line [ and
the ,,bases‘ a; cover a coherent piece of length L on the line I. It is clear that
the domains D; are not overlapping.

The integral [ [, d* do may now be interpreted as the sum of the axial mo-
ments of inertia of the domains D, with respect to [. This is certainly greater
than the axial moment of inertia of a rectangle of base L, area 4 with respect to

its side L:
3
f f d*do > 4 i—z .
N D

%) Cf. CouraNT-HI1LBERT: Methoden der math. Physik vol. 1, second ed., pp. 365—366.
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We conclude that
Az < [fD(Vd)2 dg < 4 — 3 £ : 3)
= [[pdedo 43 '

3. G.P6Lya and G. SzEGO*) gave another upper estimate of /4. According to

this

A = PB,(24)7 (2)
when the domain is star-shaped with respect to some interior point a. Here
j = 2.40... is the first positive root of the Bessel function Jy(x) and the
quantity B, is equal to [gh' ds. In this formula % denotes the length of the
perpendicular drawn from @ to the tangent at a variable point of B where ds
is the line element and the integral is extended over the whole boundary B
of D.

The inequality (2) seems to be a sharper estimate than that of Theorem 1.
However in special cases Theorem 1 may be refined so that it yields estimates
hardly differing from that of formula (2). So if D is a convex polygon into
which a circle can be inscribed in the elementary sense and « is the centre of the
inscribed circle, g is its radius, then from (2)

L It I® L
A =<9 =1 — - 1.20 — .
= 7V2@A 7V2QLA 71/4A2 =120

On the other hand in this example the expression (1) can be computed expli-
citly if we put w = d(P). For now each of the domains D, is a triangle and

szdma:z:}@ai.g—z:m%.
D;

g HplVipPds 6 6L (1.22L)2, (3)

From this

= [fude ot 4 AT

4. The function d(P) may be used also for calculating a lower estimate of the
torsional rigidity P of a prism with cross section D. We use the term torsional
rigidity in accordance with Pélya and Szeg6®) namely that P is the maximum of

3) In exactly the sams way one may prove the three dimensional analogy of this
theorem:

Theorem 2. The least eigenvalue A2 of the differential equation Au -+ Ju = 0 (A is the
three dimensional Laplace operator, w vanishing on the surface S of a convex body of

1
volume V), or the minimum of ([[[p(Vu)2 dV/[[[pu? AV)? (u continuous, its first deriva-
tives piecewise continuous in the interior of V, w vanishing on the surface) satisfies the
inequality A < |/38/V.
1) POLya-SzEGO: Isoperimetric inequalities in Mathematical Physics, Princeton Uni-
versity Press, 1951, pp. 14—15 and 91—94.
5) Pdlya-Szego, 1. c. p. 87.
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4({)fu dcr)ﬁ{)f(Vu)2 do (4)

where u is subjected to the same conditions as in (1).

Now in the case treated above [ [,d(P) do is greater than the momentum of
a rectangle with base L, area 4, with respect to its side L:

[ famio=a i
D

Theorem 3. T'he torsional rigidity of a prism with convex cross section s not
less than A3|L2, where L is the length of the perimeter and A is the area of the cross
section.

and from this follows

5. It is easy to obtain a rough lover estimate for the principal frequency A
) L . . £
of a convex membrane in the form A4 > yp A with the help of Pélya-Szégo’s

inclusion lemma.®) This lemma states that about any convex domain D of
area 4 one can circumscribe a rectangle R with sides a, b having an area 4,
such that 4, < 24. Now if L; is the perimeter and /A, the principal fre-
quency belonging to R, then it is well known that Az =< A. On the other hand
PP - L
A, = —2 b2 2a—1p-1) — R
R nVa - > 2(a~107Y) 1

R

furthermore Ly > L 7) and so for any convex domain

L 1 L

A=Ag>R=_ .=

R Ag 2 A
Pesowme

OB OCHOBHOW YACTOTE KOJIEBAHUII BBITYKJION
MEMBPAHDBI I O POOCTBEHHBIX 3AHAYAX

9. MAKAH (E. Makai), Bygauemr
(IMocrynuio B pepakiuio 8/X 1957 r.)

Pacemorpum  ¢ymrnuwonan (1), onpemesieHHBII Ha MHOKecTBe (yHKImIT
u(P), HenpepHIBHBIX B BLIIYKJIOI IIIOCKOM obiactu D, uMeomux TaM KyCOIHO-
HenpepLIBHBIE YacTHBIe NPOM3BOAHBIC IIEPBOTO HOPANKA W NPUHIMAIOIHUX Ha

$)POLYA-SzEGO, L. c. p. 109.

7) See e. g. Roucuk-CoMmBEROUSSE: Traité de Géométrie, 7% ed. vol. 1, p. 26, Gauthier-
Villars, Paris, 1900.
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rpannte B obiacrm snauenme mHyunb. llompsyscs Gynrnmeir u(P) = min PQ),
Q€B

aBTOpP NOKA3BIBAET TEOPeMY:

Munumym A gynryuonana (1) nme npesvruaem GesuduNLbl ]/gL/A, 20e A —
naowadv obaacmu D, B — dauna ee epanuyv. Ecau D — mnozoyzonrvnuk, 6 K0-
MOPULIL  MONCHO GRUCAIMY OKPYMCHOCING, MO MY OYECHEY MONCHO YAYUULUMb
(nepasercmeo (3)).

AHAJIOTMYHO JIOKA3BIBACTCH, 4TO (YHKIMOHAJ, 00pasyomuil IpaByIo YacTh
(4), me mpmHmMaer 3HadeHuil, Membmux A3/L2. Otrciopa ciegyioT orpamm-
9eHMs [JIA T. HA3. OCHOBHOI wactorThl /A mMemOpaHbl, HaTsHYyTOH Ha D, m mis
T. Ha3. JKECTKOCTU Npu KpydeHun P crepykHs nmomepednoro cedennst D.
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