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YexocnoBankmnii MaTeMaTHIeCkNii KypHai, 1. 6 (81) 1956, Ilpara.

THE SURFACE INTEGRAL

JAN MARIK, Praha.
(Received 10. X. 1955.)

In this paper fundamental properties of the (m — 1)-dimensional
integral in the m-dimensional space are studied.?)

1. Some conventions and definitions. The symbol m denotes in this
memoir a fixed integer > I.F&If A is an arbitrary set and if v,, ..., v,, are finite
real functions on A4, we say that a vector v = [v,, ..., v,,] is defined on 4 and
write v(x) = [vy(x), ..., v,,(x)] (x € 4). The functions vy, ..., v,, are called compo-
nents of the vector v. — Further, &, (» natural) is the n-dimensional Euclidean
space. (A vector is thus a mapping into £,,.) Ifbe &,,,b = [b,, ..., b,,], then the

number V}: b? will be called the norm of b and will be denoted by |b]. If v =
i=1

= [¥y, ..., U,y] 18 & vector on the set A, we put
v 9] 4 = sup lw(x)] or |jv]|, =0

according as 4 + ¢ or 4 = .

If f, i, fs, ... are finite real functions on a set 4 and if f,(x) — f(x) for each
xz e A, we say that the sequence f4, f,, ... is convergent and has the limit f. We
then write f, — f or lim f, = f. — The meaning of the symbols max (f, g),

N —> o0

fl,g < landsoon (f,g real functions on 4) is obvious. Further we write

[flla = sup [f@) or [[flla =0,

according as 4 # @ or A = @, for every real function f on 4.

The sets belonging to the smallest o-algebra ¥ that contains all closed sets of
a metrical space A, are called Borel sets (Borel subsets of A). A (real) function,
which is measurable with respect to 9B, is termed a Borel function. We say that
continuous functions are of class 0. Given any countable ordinal number
vy > 0, we say that a function f is of class ¥y, if there exist functions f,, f,, ..., the

1) The main ideas are explained also in [5].
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class of each f, being less than y, such that f, — f (definition by transfinite
induction). It is known that f is a finite Borel function, if and only if there
exists a countable ordinal number y such that f is of class y. — The meaning of
the expressions ‘“bounded vector’”’, “Borel vector’” and so on is obvious.

The words “measure’’, “measurable’’ and so on concern — whenever another
sense has not been explicitly assigned to them — the usual Lebesgue measure
in some space K,; the meaning of n will always be clear from the context. The
one-dimensional measure will be denoted by u. If A C F,, then 4 (resp. A°) is
the closure (resp. interior) of the set 4. |

Let n, ¢ be natural numbers; let f be a function on an open set ¢ C E,. We say
that f is of class C, (on @), if all derivatives of the ¢-th order (and so all deriva-
tives of the r-th order where r << q) of f are continuous on G. We say that fis of
class C_, if f is of class C, forr = 1, 2,

2. Definition. Let 4 be a bounded measurable subset of X,. Let 8, be the
family of all vectors v whose components are polynomials (in m variables) and
which fulfil the relation |jv||, < 1. Put

14| = sup fdiv v(x)dx, where veB,.

(The integral f div v(x) dx ex:&sbs for every v e 8B4, because the set 4 i is bounded

and div o(x) = > &éix) is a polynomial again. Clearly 0 <||4|| < oo. If the
i1
measure of 4 is zero, we have ||4|| = 0.)

3. Definition. Let 4 be a bounded measurable subset of E,,; let P, be the
family of all polynomials f (in m variables) such that |[f|l4 < 1. Fori =1, ...,
we put

14]]; = sup [ = Bf(x) dr, where fePa.
A
Let U, be the system of all bounded mea,sura,ble sets 4 C £, for which [|4]|; <
< o0; finally, put U = n A, .
| t=1

4. Theorem. If A is a bounded measurable subset of E,,, then

4]l < 4] < 3 4],

Proof. If feP,, put v =10,...,0,f]. Thenve B, dive = ?if , whence

0
f ga(gx) dx < ||4|); it follows that ||4]|,, < ||4||. The second inequality is obvious.

A | | g
Remark. By symmetry, 4], < ||4| for :+ = 1, ..., m. We have therefore
A e if and only if 4] < oo. |



5. Lemma. If K is compact, G open in E,, and @f K -C @G, then there exists a
function f with the following properties:

1) f s of class C, on K ,;

2) f(x) = 1 for x € K, f(x) = 0 for x non € G,

3 0< flx) < 1forxek,,

Proof. If § is a sufficiently small positive number, the relations x = [y, ...,
Tule K, y = 1Yy, ..., Y] € L, max [x; — ¥ < 0 imply ye . For te K, put

@o(t) = 0, 1if ltl =0, | (1)

@o(t) = exp ( 5 }__ t2) , it || < 4. (2)

It is known that the function ¢, is of class C on £,. There exists a (positive)
constant « such that

f“ @o(t) df = 1 - (3)
write |
P = &P . (4)
5(2t-1) o
Then the functlon O(t) = f @(7) dt has all derivatives, is non-decreasing and

fulfils the relations () = O for t <0, d(t)=1for t >1, 0 < P(t) < 1 for
e ;. Put |

W@p oo @) = @) e p@n) . (5)
Then vy is of class € on E,, and we have - |
' max [x;] < 0= p(xy, ..., Tw) >0,
max |z;] = 0= w(xy, ..., x,) =0,

)

[p(x)de = 1.
E,

For z = [x,, ..., x,] € I,, put ‘
L) = (x; — 6,2, +90) X ... X (%, — 0,2, + J).

Smce K IS compact, there ex1sts a finite set {b1, ..., b2} C K 2) such that K c
C U- L(b7). The function g(x Z w(x — bf) is then of class C,, assumes only
j=1

positive values on K and Va,nlshes outside (. There exists consequently a finite
positive constant § such that § g(x) > 1 for all ze¢ K and the function f(x) =
= @(p g(x)) has all the required %operties.

2) We write b, since b; usually denotes the 7-th coordinate of some point b.
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of
ox,,

[ < - ©)

0%y,

- ¢. Lemma. If 4 e, and if the functions f, are continuous on H,,, then

A
Proof. Let the interval I = {a, b;> X ... X (@, b,> contain the set A.

Let the sequence of polynomials ¢, g», ... converge uniformly on I to the func-

tion é—a--- 3) and let f,, f;, ... be polynomials in m — 1 variables such that the
xm

sequence fi, fs, ... converges uniformly on the set {(a;,b,> X ... X {@p_q, bp_1>
to the function f(zy, ..., Zp_1, Ap). SInce

L

of (w0, .y @y
f(xla ) xm) — }((xla "':?xm-—-la a’m) +f f : 8 ! ) dt »

we see that the sequence of polynomials
Gn(xla ©e xm) — fn(xla T .’Em___l) + f gn(xla oy Ly 15 t) d?

converges uniformly on the set I to the function f, whence

1Galla = NIflLa - (7)
On the other hand, | |
* oG, (x) , | [ #f(x) -
f o dax = fgn(a:) dx -e»f . dz . (8)

Our assertion follows immediately from (7), (8) and from the obvious relation

f_ 00n(x) <N, VAl -

ox,,
- _
, , | ov, 0oV ov,,
7. Lemma. If A e and if the functions vy, vy, .., U, 6:1:11’ 8.2:2’ ey 83;'7,; are
continuous on H,, then
Lfdiv v(x) dz| < [vll4 - |4]] ' (9)

(where v = [vy, ..., v,]).

Proof. By means of the method employed in the proof of the preceding
lemma we can find vectors ¢!, ¢2, ... whose components are polynomials, such
that [divo*(x) dx — [div v(z) dx and |jv*||; — ||v|l4;, Whence the assertion

A 4 |

easily follows.

3) See, for example, [1], p. 345, Weilerstrass’ theorem.



8. Lemma. Let B, (resp. V;) be the family of all vectors v (resp. functions f)
which are of class C,, on E,, and fulfil the relation |||y, < 1 (resp. |fllz < 1).
Then we have

|4]| = sup [divo(z)dx, where ve B, 10y
(ms}?. 14|, = sup f 3£C(Ux) dxz, where feSpl) (11)

for every bounded measurable subset A of K.,,.
Proof. Let «,¢ be real numbers, « << ||A], ¢ > 0. There exists a vector
vle B, (see definition 2) such that [div v'(x)dxr > «. Lemma 5 shows that
A

there exists a vector v? of class C'_ on FE,  which coincides with »! in some
neighbourhood of 4 and fulfils the inequality |v*(x)| < 1 + ¢ for each x¢ E,,.
Put v = ¢?2. (1 + &)-1. In virtue of the relation

1 ' X
* N [ ] 1
fdwv(x)dxm1+8fd1vv(x)dx>}1+8

A A

we get
| |4]| < sup [divo(z)dx, where ve B, . (12)
A

If ||4|] = oo, (10) is an easy consequence of (12); if [|[A]| << oo, (10) follows from
(12) and (9) (lemma 7). The proof of (11) is similar.

9. Theorem. Let A,, A, be bounded measurable subsets of E,. Then the
followwng assertions are true:
a) If the measure of (4, — A,) u (4, — A,) 18 zero, then

141l = 1l s [ A4lls = (14l - (13a)

b) If the measure of _Al — A, 18 zero, then

Ay — Ayfl S ALl + 4Ll 1[4 — Aylle < A4l + [ dalls. (13b)
c) If the measure of A, n A, 1s zero, then |

14y 0 Ayf| < AL+ 1 4all, 14y 0 Ayl < (A4l + 14l (13c)
d) If 4, c A4 then

|4, — Al“ — HA1H + HA2H ’ ”Az ""’ Al”z‘ — HAle + HAsz ' (13d)
e) If 4; o A, = 0, then

14, U Ayl = AL + 14, 14y 0 Aglls = Al + 14a (13e)
(t=1,...,m).

Proof. The assertions a) — ¢) follow easily from (10) and (11), where we
write, of course, 4 in place of m. Now suppose that 4, C AY. There exist an

——

1) A is the closure, A° is the interior of A.
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open set @ such that 4, C @, G C 4,,and (see lemma 5) a function g of class C,,

on K, which equals 1 in some neighbourhood of A4,, vanishes outside ¢ and
fulfils the relation 0 < g < 1. Let «; be real numbers, o; << ||4,, (7 = 1, 2).
In virtue of lemma 8 we can determine functions f;e9; so as to have

of . _ | B
f g;(;x) dz > «;. Put @p; = fjg (1=1,2), v =f, — 992~_,__;f2(1_..mg)° SmceGCA2

A
and since @,, @, vanish outside G, we have

oC

8()99(27) d.’L’ _ 8993(.%') dx _ 8(}99-(391; oo e xml dxm d.xl o dxm,.]_ — 0 .
E)xm ax?n 8.23m

A, Em En_1 - (14—)
Evidently
op(x) opi(x) [ ()
f . dex = 0, f oz, dr = f . dx . (15)
A, A, A,

If we put ¢ = [, — 1 — @, = yp — ¢;, we get by (14), (15)

fa(p()dx--fax dx—-——f ax dr =
[ e [ *

According to (6), the relation |p| < |p| + |p.] = |fa](1 —9) + ]fllg
implies

dp(x)
A, A,

The equality |4, — A4, = l144llm + ||43)lm follows easily from (16), (17) and
(13b). The rest of the proof may be left to the reader.

10. Lemma. Let D be the boundary of the set A ¢ W,,. Then the relation

[ 4l < i 41 (18)

0x,,
A

of

Py are continuous on k.
Xn

holds good, whenever the functions f,

s . 0
- Proof. Let ¢ be any positive number and let the functions f, "é}};i be conti-

nuous on K,,. We put & = ||f||, and K = 4 n E[z; |f(x)] > « 4 ¢]. The set K
is compact; since |f(z)] < « for xe D, we have K n D = Q) whence K C Ao,

Let G be open, K ¢ G, G ¢ A. By lemma 5, there exists a function g, of class C,,

527



on E,, which fulfils the relations go(x) = 1 for z¢ K, g,(z) = 0 for 2 none ¢
and 0 é go(x) §_ 1 for erm; PUt d1 = 1 — o> ]‘0 — fg(h fl = fgl Since @ cC A

0 0
and f, vanishes outside G, we have f ffﬂ(x) dox = J—Q@l dx = 0. (The func-

ox,, ox,,
A E,,
tion %i is obviously continuous.) As |f,(®)] = |f(®)] g,(x) < f(x)] < o + ¢ for
reAd — K, fi(x) =0 for xe K and f(x) = fo(x) + fi(a x) for all z, we have
% of (x
[ LD a0 | [P0 ) < 1y it < 5+ 0 1

Making ¢ — 0, we obtain our agsertion.

11. Lemma. Let D be the boundary of the set A ¢ U and let the functions V.
v, Cv, CV,y,

s e, be continuous on H,,. Then we have
dx,” dxy oX

?)2,#00, v

z) dz| < Jellp - [14I} - (19)

Proof. Let ¢ be a positive number. We put g = |jv||, and K = 4 n Efa;
lw(x)| = B + €], determine the function g, as in the proof of the preceding
lemma and write g, = 1 — g¢,, v° = vgy, v' = vg;. It is easy to see that
[div v°(x) dz = 0 and that [v}(z)| < B + & for every x ¢ A. Our assertion fol-
A

lows immediately from the relation |
| [div v(z) de| = |[divol(x) dz| < (B + ¢) . [|4] .
y A T |
12. Lemma. Let D be the boundary of the set A € W,,. Let the functions f,, g,
f 2y G be continuous on E, (n=1,2,...) and let the sequences {f,}, {9.}

Oy, Oy
converge unsformly on the set D to the same function. Then the limats

: 0 ) :
L = lim 327;@) de, L' = lim g;(x) dx exist and have the same finite value.
b m Nn—>20

Proof. According to (18) (lemma 10) we have

,FQ%MWI 2 < — follp - 4]l

for arbitrary indices n, p, so that the limit L exists and is finite. From the

relation
A

A
we see that I/ — L.

A\
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13. Definition. Let D be the boundary of the set 4 € A,,; let f be a conti-
nuous function on D. We put o

P,(A ) =1lm 6]‘87;(56) dx | N (20a)

0
p a]: are continuous on ¥, and lim f,(x) = f(x) uniformly
n—cwo

on D. (Such functions f, exist; because the set D is compact, there exist, in
- fact, such polynomials. The definition is correct according to lemma 12.)

where the functions f,,

If A € U, for some 7, we define similarly P,(4, f).

0
Remark. If the functions f, Bmf are continuous on #,,, then obvmusly

Pm(A,ﬂmfpﬂ o)

ox m
A

Further it is easy to see that P, (4, f) + P,,(4,9) = P, (4, -+ | g)', Whenevgr
f, g are continuous on D. | o

14. Theorem. Let D be the boundary of the set A € U,,; let T be the system of
all bounded Borel functions on D. Then there exists exactly one functional R on §
such that |

1) R(f) = P, (A, ), if f is conlinuous on D; .

2) R(f.) — R(f), if f1, 2 ... is @ bounded sequence with limit f, f,eF (n =
=1,2,...). : w

Furthermore, the funciional R has the following properties:

3) B(«f + Pg) = « R(f) + B R(g), ¢of x,pe ki, f,ge;

4) |R(f)] = Ifllp - 14llms of fe

5) R(f) = P,(4,f) = f Z{ix) dx, if the functions f, -»-é-i—f—-- are contznuous N

A
some neighbourhood of the set A.

Proof. We may obviously suppose that D # 0. Let f be continuous on the
set D; let the sequence of polynomials f,, f,, ... converge uniformly to f on D.
Lemma 10 yields

[2D aal <l N4 w=r200 e

A
evidently |/f,llo = |lfllp. Making n — oo in (21), we obtain in virtue of (20a) the
relation

1Pu(4, )] = fllp - || Al

Thus we see that the functlonal P, (A4, f) is continuous on the normed linear
space of all continuous functions f on D (with the norm |[|f|lp). It is easy to prove
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(see, for instance, [3], p. 18, §46, b)) that the functional P,(4,f) can be
expressed as a difference of two non-negative (linear) functionals. It is well-
known (see e. g. [4], p. 478—479) that each non-negative functional which is
defined on the space of all continuous functions f on a given metric space S can
be written as f f dy, where y is a Borel measure. Hence there exists a finite

o-additive funetlon 4 on the system of all Borel subsets of D such that P,,(4, f) =
= [ fdA for each continuous function f on D. This integral has of course a mean-
ing for all fe §; if we put
R(f) = [f d2
D

for each fe §§, we see that the conditions 1), 2), 3) are satisfied.

Now suppose that a functional R’ on § also fulfils the conditions 1) and 2).
The system §, of all f e §, for which E(f) = R'(f), includes all continuous func-
tions on D. Since the limit of every bounded convergent sequence f;, fs, ...,
where f, € §,, also belongs to §,, we have §, = §, R = R.

Further let the aaf be continuous on an open set G2 4. It is an
x
easy consequence of lemma 5 that there exists a function f, such that f,(x) =
: : — : 0 :
= f(x) in some neighbourhood of 4 and that the functions f,, 5 af L are continuous

on K, Followmg (20b) we have

P,.(A4, 1 mfa;ifv) dx mf aa};x) dx ,

A

which proves the relation 5).

Finally, let §, be the family of all functions f e §, for which |R(f)| < ||4||n.
of (x)

d
ox., s

If f is a polynomial such that |/f|, < 1, then R(f) = P, (4, ) mf

A
according to (18) (lemma 10) we get

BN < o - 14l = 1Al

i

whence fe §:. If 3, f,, ... is a bounded convergent sequence, where f, € §;, then,
in virtue of 2), the function lim f, also belongs to §,. We thus see that every

N—>0

function f € § such that ||f||, < 1is an element of §,, whence 4) follows at once.

Remark 1. Since the functional R(f) is an extension of P, (4, f), we can
write P, (4, f) instead of R(f) again. If a misunderstanding is impossible, we

write P (A f ) = P,(f). If A €U, for some ¢, we define similarly the functional
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Remark 2. Suppose that 4,, 4,, 4;¢ 2, and that the measure of the sets
A, 0 A4, A, — A;is zero; let D, be the boundary of 4. It is easy to prove that
the relations

P (A, v Ay, f) = P, (4, ) + P(4,, )
(I‘BSp. Pm(AB T Aza f) — Pm(AB: f) T Pm(Am f))
hold for each bounded Borel function f on D, u D, (resp. D, u D,).

15. Definition. If 4 €Y and if v = [v,, ..., v,,] is & bounded Borel vector
on the boundary of the set 4, we put

Pw) = P(A4,v) = g P, (A,v

16. Theorem. Let D be the boundary of the set A € N. Let B be the famzly of all
bounded Borel vectors on D. Then we have

a) Plaxwlt 4+ a1?) = oy P(vY) + g P(V?), tf &, g€ By, V1, 22 € ;

b) P(v?) — P(v), of v, 2, ... 18 a bounded convergent sequence of elements of B
with limat v:

c) [P@)| < lvlp - 14l if veDB;

d) P(v) = /{ div v(x) dx, if v = [vy, ..., Un], Where the functions vy, v,, ..., v,,

oV, 0V, OV,

, y ov oy —— are continuous in some neirghbourhood of A.

Proof. The relations a), b), d) follow immediately from theorem 14. In
order to prove c) we observe that (in virtue of d) and of (19) (lemma 11)) the re-

lation |P(v)| < |jvllp . ||4]] holds good for each vector v = [v,, ..., v,,], where v,
are polynomials. We have therefore
[P(v)| < [|4]] (22)

for each vector v, which is continuous on D and fulfils the relation
oo < 1. (23)

Let now y > 0 be a countable ordinal number and suppose that (22) holds for
each Borel vector v of the class < ¢ on D such that |[v]|, < 1. Now let v be a
Borel vector of the class y and let (23) be valid. There exist Borel vectors v", the
class of each »™ being < vy, such that v» —». Put f, (x) = max (1, lv™() ),
wr(x) = v*(x) . (f,(x))-1(x e D). Then the class of each vector w» is < y; more-
over, w" —-v and |w*|, <1 (n=1,2,...). Since P(w") — P(v), |P(w")| <
< ||A|l, we have |P(v)| < ||4]| again, which completes the proof of c).

19. Theorem. Let B be a o-algebra on the set D + 0.5) Let B be the family of
all bounded B-measurable vectors (with m components). Finally, let P be a finite
real functional on B such that P(u) + P(v) = P(u -+ v) for arbitrary elements
u, ve B and that P(vr) — P(v) for each bounded convergent sequence v*, v2, ...

5) In this theorem, D is an arbitrary set; we do not suppose that D C H,,.
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(v" € B) with limit v. Then there exists a B-measurable vector v on the set D and
a finite measure p on B wunth the properties

v(x)] = 1 foreach xeD, T (24)
= [v.vdpS) foreach ve®B. (25)
D

If a B-measurable vector v' and a measure p’ on B also satisfy the conditions (24)
and (25), then p' = p (¢. e. p(B) = p'(B) for each B e B) and v(x) = v'(x) almost
everywhere in D (with respect to p).

Proof. Let § be the fa,mlly of all bounded %-measurable functions. For
fed, | > 0 put
Q(f) = sup P(v), where veB, Jv|<f.7)
Suppose for a moment that Q(f) = oo for some feE, f > 0. Then there exist

1
v" € B such that jon| < f, P(v") > n (n = 1, 2, ...), whence — . P(v*) > 1. But
.o f . " : e
the relation - < P yields — Py =P —| = 0; we arrive at a contradiction

which proves that Q(f) is finite for all feF, f > 0. As Q(0) = 0, we can put

Qf) = Q(f,) — Q(f-)®)
for an arbitrary function feJF. We shall now study the properties of the
functional Q. First, suppose that fi,f,e¢F, 1 =0, f, > 0; let ¢, v* be B-
measurable vectors, |v¥| < f;(¢ = 1, 2). Then |v! + 2| < o] 4 [0 < fi - [,
whence P(v!) + P(1?) = P + ¢?) < Q(f1 + f,), consequently Q(f,) + @(f,) <
< Q(f; + f,). Suppose now that f; +f, = 1,f, =0, f,eF (2 = 1, 2); let v be

a B-measurable vector, v] < fi + fo- If we put vi = - fs , then v = v -}

i+ 1o
bt ol = ol L S =102, whence P(o) = P) + P?) <
< Q(f;) + Q(f,), consequently Q(f; + f,) = @(f,) + Q(fs). It follows that

Q(f, + f2) = Q(f) + Q(f.), whenever f,e§, f; =0, f, + f, = 1. For arbitrary
non-negative functions ]‘1, f. €& we have, therefore, Q(f,) + @(f,) + €(1) =
= Q(f1) + Q (fe + 1) = QU + . + 1) = Q(}y + f,) + @(1), so that Q(f;) +
+ Q(f2) = Q1 + 1)

Let f,, f5 be non- nega,tlve functions of § again; put ]‘_,,____. f, — fo. We get
f. < f,, whence f, = f, + g, f, = f_ -+ ¢, where g > 0. It follows that @(f) =

= Q(f,) — Q) = Q(f,) + Qg) — Qf-) — Qlg) = Q(f)) — Q(f,). If f,, /. are
arbitrary functions of §, then Q(f,) + Q(f.) = Q(f,.) — Q(f,-) + Q@(f21) —
— Q(fe-) = Qfry + foi) — QHh- + [oo) = Qs fos) — (e + f2)) =

| 6) v . v 18 the scalar product.
) |v| denotes the function |v(z)|.
°) [+ = max (f,0), f_ = max (— f, 0)
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= Q(f, + f5)- Obviously Q(f) > 0 for each [ > 0, whence Q(f1) = @(f,) for
f < fo (f, h F2€ B). Tt follows that Q() < QUF), — @) = @(— 1) = Q1))
consequently |Q(f)] < Q(|f]) for each fe 3.

Let now f,, fs, ... be a bounded convergent sequence of ®B-measurable func-
tions with limit f; put g, = |f — f.|. Suppose that the relation @(g,) — 0 does
not hold. Then there exist a sequence of integers k; < k, < ... and a positive

number ¢ such that @(g, ) > ¢ forn = 1, 2, ..., and we can determine B-mea-
surable vectors v” so as to have |v"| < g, P(") > ¢ (n=1,2,...). But
v, 92, ... is obviously a bounded sequence with limit 0, whence P(v") —

— P(0) = 0. This contradiction shows that Q(g,) — 0. As |Q(f) — Q(f.)| =

Further we put for each B¢ B

p(B) = Q(cs). *)
Then p is a finite measure and Q(f) — [f dp for each f e §. We define the
3 | |

functionals Py, ..., P,, on the family § by means of the formulae P,(f) = P([/,

L, 0]), ..., P (f) = P([O, ..., 0,f]) and put p,(B) = P,(cg) for each B¢
G=1,...,m)Iffe§and v =10,...,0,f,0,...,0], then |v| < |f|, therefore
Pi(f) P(v) < Q(|f])- Inparticular, 4- p;(B) = P,(4cp) < Q(cg) = p(B), whence
1p:(B)| = p(B) for each set Be P and each index 7. It is easy to see that the
funetlons p; are g-additive; consequently, there exist (see e. g. | 7], p. 36, theo-
rem of Radon-Nikodym) 9B-measurable functions »; such that p,(B) =

= [v,dp (Be®B, t =1, ..., m). Obviously P,(f) = [fv; dp for each fe §. If we
B y D

put
v = [V «eus Vml >
we have
P(v) = > P,(v,) => fv;- v, dp = [v.vdp
i=1 t1=1D D

for each v ¢ 8.

- We shall prove that |»(z)| = 1 almost everywhere in [.1%) For this pur-
pose put B = E[x; |v( a:)l > 1]. We define a vector v by means of the relations

v(x) = v(x) . [v(z lmlt(aceB), 'v(x)mO(xeDwB) |
Obviously ivl = Cg, whence [1.dp = Q(cp) = P(v f'v ydp = flv] dp,
B
consequently [(|v] — 1)dp < 0. As [»(x)| > 1 on B, it follows that p(B) = 0.
S\

We can therefore suppose that |v(x)| < 1 forallxe D.

For an arbitrary 98- measurable vector v such that |v] < 1 we have [v.»] <
g i?)l l’V{ < I’L’l whence P fU Y dp < f]‘p{ dp ‘30 that fl dp — Q(l)m

%) ¢y is the characteristic function of the set B.
10) With respect to the measure p.

533



= Sup P(fu < f[avl dp; it follows that f 1 — |y]) dp < 0. Since |v| < 1, we have

[v]=1
v(x)| = 1 for almost all x € 1).10) This bemg s0, we may suppose that |v(x)] = 1
for all x € D; the relations (24), (25) are then satisfied.

Finally, let a ®B-measurable vector »" and a measure p’ on the system B
also fulfil the conditions (24) and (25). If Be B, ve B, |v| < cp, then P(v) =
= fv v dp’ < flv] Y| dp” £ [ey dp” = p'(B); moreover, P(cg . v') = [cp .

D D

v dp = ch dp’ = p'(B), |cg.v' | < cg. We see that p'(B) = max P(v),

where v € B, |v ] < cp; therefore p'(B) = Q(cg) = p(B). Further [(v — ') .vdp =
| D

= f(fu — ') . dp, whence 0 = [(» — ). (v — ') dp = ]

D

D
'v(a;') — y'(x) for almost all x e D.19)

so that

18. Theorem. Let A be an arbitrary set of . Then there exist on the boun-
dary D of A a Borel measure p and a Borel vector v such that |v| = 1 and that

[divo(x)dr = [v.vdp | (26)

for each v € L 4.11)

If a Borel measure p’ and a Borel vector v' on the set D fulfil the relations |v'(x)|=
=1 for each x e D and [divo(x)dx = [v . dp’ for each ve B, then p' = p
A D

and v'(x) = v(x) almost everywhere.1®) Further, we have

p(D) = [|4]] (27)
and
P(v)12 fv v dp | (28)

for each bounded Borel vector v on the set D.

Proof. According to theorems 16 and 17 there exist a Borel vector » and a
Borel measure p on the set D such that |v| = 1 and that (28) is valid for each
bounded Borel vector » on the set D. Following 16, d) we see that (26) holds for

each v e 8 .

Now let p’ be a Borel measure and »" a Borel vector on D such that |v'| =1
and that [div v(x)dz = [v .+ dp’ foreach ve B,. If iis aninteger,1 < ¢ < m,
A D

ff-vi-dzomfogf_) dxmffowdp’ (29)
D A ‘ D ,

for each polynomial f. For f = 1 we get 0 = [», . dp’, whence [|v;| dp’ < 0.
D D

we have

1) See definition 2. N
12) See defimition 15. | L
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The relation 1 mvz 2 < > vi| yields [1.dp" < [ > |v; dp < co; we see that
i=1 i-1 - D D=
the measure p’ is finite. From (29) it follows that the equality [f.+,dp = [f .
D D

. v, dp” holds for each bounded Borel function f on the set D. We have therefore
Pw) = [v.vdp = [v.9 dp for an arbitrary bounded Borel vector on D. By
D D

theorem 17, p = p’ and »(x) = v'(x) for almost all xz € D.19)
According to 16., ¢) and (28) we have

p(D) mpf'v vdp = P@) < 4] ; (30)

since [divo(x)de = [v.vdp < [|v]. || dp < p(D) for each veB,, we get
4 D D
|4]] = sup [div v(x) dz < p(D), which together with (30) proves the relation
A

(27) and completes the proof. |

Remark 1. Tt follows from (27) and (30) that ||[4] = P(»).

Remark 2. According to the definition of the vector v we have P, (f) =
= [f ., dp. From 14., 5) we thus see that the relation

4 |

0
A D

holds for each f € P4 (see definition 3), whence ||4|l,, < [|v,,| dp. But, if we put
D
f=sgnv,, we get by 14.,4) [|v,|dp = [sgnv, .v,dp = P,(sgnv,) <
D D
< |4]l,,, so that [|A]l,, = [[vm|dp = P, (sgn »,).
D

Remark 3. The measure p and the vector » will be called the surface measure

and the normal vector of A respectively.
19. Notation. If AcE,, x=[x;,...,2,_,] e E,,_; and if 7is an integer,
1 <4 <m,let A’ bethesetof all t e £, such that [x,,...,x,_,, t, 2, ..., Xy ] € A.

20. Theorem. Let A be a bounded measurable subset of H,,. Let ¢ be a non-
negative function on E,,_, such that [¢(x) dx < oo. Suppose that for almost each
| By 1

point xel, ., there exist a non-negative integer r < @(x) and real numbers
T

a, < b, <...<a,<<b, such that the set A" 1is equivalent'3) to U (a;, b;).

j=1 |
Further, if f is a finite function on the boundary D of A, we define almost every-

where on K., _, the function

(a

"i(@) = Y, b) — f@, a) 1 (31)

i=1

~ 13) Wesay that the sets 4,, 4, are equivalent, if the measure of (4, — 4,) U (4, — 4,)
1S Zero.

14) For z = [24, ..., 2] € B, We sometimes write z = [z, y], where x = [y, ..., Ty 1],
Y= 2m — The pOiIltS [523, a’j]s [, bj} lie ObViOUSly in D. - '
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Then we have ||A|l,, = 2 f ¢(x) dz, consequently A € U,,, and the relation

P(f) = ["f(z) do (32)

vs valid for each bounded Borel function } on D.
Proof. If f is a polynomial, we have

f 8f(§y, : dy B yzl(f(x’ b;) — (@, a)) mf(x)

]

A™
x

for almost all z ¢ E,,_,, so that

fgafz dz = f(f 6]((2;’” dy) dx mfm]‘(x) dx . (33)

A Em,-~1 Am Emwl_
X .

If |]fHD < 1, then ]mf(x)l < 2¢(x) almost everywhere on E,,_1, whence ||4]],, <

m———

f qo z) dx < 0. Further, let § be the family of all bounded Borel functions

on D for which (32) is valid. If f,, f,, ... € § is a bounded (|f,(x)| < C) conver-
gent sequence with limit f, we have obviously ™(f,)(x) — "/(x), |™(f.)(x)| =
< 2C ¢(x) for almost all ze E,,_,. As the function ¢ 18 summa,ble we get

f (f,)(x) dx > fmf x) dx. From the relation f’"’ (f,)(x) de = P,(f,) = P,.(f)

m 1

113 follows that P f = f ’m]‘( dz, whence f € . Since each polynomial f satisfies

(33) (and thus belongs to %), we see that § is the family of all bounded Borel
functions on D.

Remark. In an analogous manner, we can define the symbol ?f and prove
a similar theorem for ¢ = 1, ..., m — 1. Thus we can compute (A4, v) with the
help of the (m — 1)-dimensional Lebesgue integral.

From theorem 20 it follows that, for instance, every bounded convex set
belongs to Y. If, in particular, 4 is a cube with edge ¢,1.e. 4 = {a,, a, 4+ &> X
X oo X Ly, &y + &), then P, (4, f) = [(flz,a, + &) — f(x, a,)) dx, where

AO
Ay =<a,,a, +¢e> X ... X< p_y, Cp_y + €. 0bviously ||4]| £ 2m . em-1. Com-
puting P(A4, »), where v is the normal vector of 4, we see that the sign of equal-
ity holds here. -

21. Notation. If n is a natural number, we can determine a function vy as

| ) |
in the proof oflemma 5 (see (1)—(5)), choosing 0 = — Then we write p = y,.

22. Lemma. Letthe function g be summable (in the sense of Lebesgue) on K.,
Forn =1,2,...put g,(x) = fg t) w,(x — t) dt. Then each g, is of class C on E,,

and
fgﬂ ) de — fg (34)

for every measurable set A C _E',m.
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Proof. From the relations

ox; ox ;

Em

(see, for example, [2], p. 281) we see that each function g, is of class C_.

Choose any measurable set A c /,,. If the function ¢ is continuous and if
there exists a compact set K such that g vanishes outside K, we can find a com-
pact set K, such that all the functions g, vanish on £,, — K, and the sequence
d1s s, - .. converges uniformly to g on £,,, so that the relation (34) holds.

Now let g be an arbitrary summable function and let ¢ be any positive
number. There exist a compact set K and a function y, which is continuous on

E,,, vanishes on E,, — K and fulfils the relation f lg(x) z)| dx < e. Put
Yn(®) = f v(¢) vo(x — 1) df. By what has Just been proved there exists an index
1, such ‘Uh&t l [y(@) dv — f V(%) dz| < ¢ for each n > n,. Further,

| [7a(@) de — [gn(x) ) | = | [( f — g(t) palx — 1) db) da| <
ifl? )zp,nx—-—--t)dxdtm
mf[y (f‘/)nx-—"t)dx df“’jfj/ (t)]dt<e;

clearly also | fg ) dx — [y(x) dx] < e. For n> nywe have, therefore, | [g(x) dx —
A 4 ¥
— [ga(x) dz| < 3¢ and the proof is complete.
A

23. Definition. We say that the vector » and the function f are associated
on the set (¢, if G is open in E,,, v is continuous on @ and if the equality

P(K,v) = [f(x) dz

(with the Lebesgue integral on the right) holds for each cube!®) K c G.
Remark. The function f is then summable on each compact set M c G.

24. Theorem. Let the vector v and the function f be associated on the set G.
Then the relation

P4, v) = ff (35)

holds for each set A € U, where A c G.

Proof.If0 + 4 ¢ ¥, A c G, we can determine a positive number & such that
the relationsz e 4, |t — z| < 2¢ imply ¢ € G. Let H (resp. L) be the set of all f whose
distance from A is less than ¢ (resp. is not greater than 2¢). Then A c H, H c L c
c G, H is open, L compact. There exists a vector w which is continuous on %,
vanishes outside a bounded set G, ¢ @ and which coincides with v on L. If

13) I. e. a Cartesian product of m closed one- dimensional mtervals of equal finite and
poqltlve length.
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t,ze ll,,, put ¢,(2) = w,,(2 — t) (where w,, is the m-th component of w). Choose
an arbitrary natural number n and take the function v, (see notation 21). If K
is any cube, K = {a,, b,> X ... X {a,, b,,> and if we put K, = <{a,, b,> X
X oo X 1, b,, 1>, We have

f% ) Pr(K, @) dt = f‘/’n (% O] — &) — wi(l, @,,] — ¢)) dz) df =
= (J9ul0) 0002, 5] 0) ([ 0] — 1) dt) do = P,y (K, 01
where vy, is the m-th component of the vector v"(z) = [y, (f) w(z — t) d¢. Since

similar relations hold for 1, $m — 1, we see that -
fw,u,n(t P(K,w') dt = P(K, v), (36)

where wt(z) = w(z — t). Ev1denﬂy
PK, w) = P(K,, w), (37)

where K, = H{z;z = — t, { € K].

Put g(z) = f(z) for z € L, g(z) = 0 elsewhere. Then ¢ is summable on £ . If K
is a cube, K c H, and if |#| < ¢, we obviously have K, c L, whence

PK,, w) = P(K,,v) = ff(z ) dz = [g )dz = [g(z — ¢t) dz. (38)
i

Let n be an index greater than Vm . Foreachte l,,, where |t| >

wa(t) = 0. Tt follows from (36)—-—-(38) that P(K, v) f% P(K, wt) dt —
fwn Ktaw dt f’ip(t(ng-wt dZ dt:“——"“If f’('[)n Z“‘“t)dt)dzm

[t]<e |t <ce

= f d,.(z) dz, where

n(2) = [olz = 1) pa(t) dt = [g(0) yalz — 1) df

Thus we see that the vector v and the function ¢, are associated on H. But,

since the vector v" is of the class C, (in fact, of the class C_) on E,,, we have

evidently P(K,v")= [divv"(z) dzforeach cube K. This shows that [div v"(z) dz =
K K

= [g.(2) dz for each cube K c H. The functions div o», g, being continuous,
K

1t follows that g,(z) = div v"(z) for each z ¢ H, so that by 16., d)
P(A,v) = [g,(2) dz . (39)
| A

This relation holds for each n > +— Vm . Since w is uniformly continuous, we have

v® — w uniformly on E,, and so v* — v uniformly on L > 4, which yields
P(A, ?}n) —> P(A, ?)) . (40)
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Moreover, on account of lemma 22 we have
[9.(2) dz — [g(z) dz = [f(z) dz . (41)
A A A

The equality (35) follows at once from (39)—(41).

Remark 1. The reader may compare this theorem with the remark to theo-
rem 43.

Remark-2. Theorem 20 enables us to give examples of sets 4 ¢%,. We
shall prove (see theorem 33) that conversely each set of U, fulfils the con-
ditions of theorem 20. The proof is complicated and depends upon several
lemmas.

Remark 3. The relation ‘‘to be associated” between a vector and a function
is “invariant’ (see theorem 53). Let us still mention that the paragraphs
44—53 do not depend upon the paragraphs 25—43.

2b. Definition. Let G be a bounded open subset of Z;; let 9% be the system
of all components of . We order the set I as follows: If I, J ¢ M, then I < J
denotes that either u(f) > u(J) %) or u(l) = u(J)and x <y forallxel, yeJ.
(More intuitively: We order the intervals of 9% according to their length and,
if the length is equal, from the left to the right. It is easy to see that this is
indeed an ordering.) If I < J, we thus have u(l) > u(J); as the set ¢ is boun-
ded, there exist for each J € I at most a finite number of I’s such that I < J.
Now we define an infinite sequence I, I,, ... in the following way: If the set IN
has at least n elements, let I, be the n-th element of 9N in the ordering just

defined; if I has less than n elements, put I, = 9. It iseasy tosee that U I,, =

N =1

= (. We say that I,, I,, ... is the canonical sequence of G.

26. Lemma. Let Z be an arbitrary non-empty set; suppose that an open boun-
ded set G, C K, is given for each x e Z. If — o0 < a < b < o0, put

M,, = Elz; {a,b) c G,]. (42)
Let I?, IZ, ... be the canonical sequence of G; put
fo(x) =1int I;, g.,(x) =supl, (reZ, n=1,2 ..).17) (43)

Further, let 2B be a o-algebra on Z such that each set M, belongs to B. Then the
functions f,, g, are B-measurable (n = 1, 2, ...). -

Proof. First, we prove that the function ¢, is B-measurable. Let ¢ be a fixed
real number. For each d > 0 put

Co=U Mbwd,b (resp. D; = U Mb-—-d,b) ;

18) u 1s the one-dimensional Lebesgue measure (length).

7 ) ;DWQ thus have Iy = (f,(x), g,(x)), if I + 0, but f,(x) = x, g,(x) = — » for
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where b runs over all the rational numbers greater (resp. smaller) tha,n c. We
shall prove that

Elz; g,(x) > ¢] = U (C;, — D,) (d > 0 rational) . (44)
Indeed, if ¢,(x) > ¢, then u(f7) > 0. There exists an index ¢ such that
pi) = ... = ully) > w(ly ). (45)

Since ¢ — f,(®) < g4(x) — fi(x) = u(L;), we can determine a rational number d

80 as to have
max (¢ — (@), u(l; 1)) <d < u(I}). (46)

As fi(x) + d < fi(x) + p(l,) = gi(x), there exists a rational number b such
that
Lx) +d <b <g, (). o (47)

According to (47), we have b — d, b) c (f,(x), g,(x)) c G; the relation (46)
yields
d>c¢— fi(), (48)

whence b > f;(x) +d > ¢, so that xe (.

Assume for a moment that x e D,;. Then there exists a number b, < ¢ such
that <b, — d, b,> c G,. Let (b, — d, b;> be contained in the component I, of
G ,. From the relation ,u(I ») > d it follows that n < q (see (45), (46)). Because

! > fi(x) for each { ¢ U I;, we get

b, — d > f1(x) . (49)

But the relations (48), (49) yield the inequality b, > ¢; we arrive at a contradic-
tion which proves that x none D, so that xe C; — D,.

If, conversely, ze C; — D, for some d > 0, then obviously u(/,) > d, and,
further, g¢,(x) > ¢. For if not, we could take a rational b such that f,(x) +
+d < b < ¢g,(x) and we would obtain (b — d, b> c @,, where b < g,(x) < ¢,
which is impossible, since x non e D,;. This completes the proof of the formula
(44); the function ¢, is therefore B-measurable.

Now we shall consider the function f,. Obviously

EHlz; f(x) < 0] =UM,, (a,brational, a < D).

1t follows that
Elx; fi(x) < 0]e®B . (50)

Let ¢ be a fixed real number again. For each d > 0 put
Ag=U M, ;.4 (resp. By = U Mb,b+d),

where b runs over all the rational numbers greater (resp. smaller) than c.
We shall prove the relation *

E[(L’, ¢ é fl(x) < OO] = U (Ad — Bd) (d > 0 ra,tional) . (51)
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Indeed, suppose that ¢ < f1(%) < <o and

pIy) = o= uly) > w(ly,,) - (52)
There exists a rational d such that
plly1) <d < uI?). (563)

If we select a rational b from (fi(x), g,(x) — d), then (b, b + d> C (f1(), g,(x)) C
c G,, whence (as b > f,(x) > ¢) follows x ¢ A,. Now suppose that the number b,
has the property that {(b,, b, + d> c G,. Let (b, b; + d)> be contained in the
component I, of @,. Since u(I;;) > d, we have n < ¢, whence b; = f,(x) and so
b, > c¢. This proves that x none By, so that xe 4; — B,.

Conversely, let xe¢ A; — B, for some d > 0. Admit that f,(r) < c¢. Since
obviously u(f,) > d, there exists a rational number b, such that fi(x) < b, <
< min (¢, g,(x) — d). We get b, <c¢, fi(x) <by, b, +d <gi(x), whence
x e B; — contradiction. It follows that f;(x) > ¢; obviously fy(x) < co. This
proves the relation (51); according to (50) and (51), f, is B-measurable.

Finally, let N, , (@ < b) be the set of all x such that {a, b> c I7. Evidently

A Nao = Elx; fy(x) < a] n E[x; g,(x) > ble B. For each zeZ put Gl U 17

(=0, — I7). If M;, = Elx;{a,b) c (], we have M., mMameab for
all @, b (& < b). If we apply our results to the system of sets G, (x ¢ Z), we see
that the functions f,, g, are B-measurable too. In an analogous way we can
prove that the functions f;, g3, ... are B-measurable.

27. Lemma. Let Z be an arbitrary non-empty set. For each x e Z let G, be a
bounded open subset of L, which has only a finmite number of components. If
Fo=(a;, b)) u...u (a,b,) (@, << b < a, < by < ... < @, < b, rinteger > 0),
pul f(x) = a;, g,(x) = b; for iéfr f(:r) 00, ¢;(x )m — © for i > r. Let B
be a c-algebra on Z which contains all sets M, , (see (42)). Then all functions
Ins G, are B-measurable.

Proof. For each ce B, we have H[x; [,(x) <c¢] = U M, ,, where a,b are
rational, @ < b <e¢, and Ez; — 0 < ¢y(x) <c]=U M, s — M, ), where
X, 3,y are rational, x < f <y < ¢; obviously E[ac; g1(%) = — 0] = H[x;
fi(x) = o0]. We see that the functions f;, g, are B-measurable. Considering the
sets G = @, — (a,, b,) we prove that the functions f,, g, are B-measurable, and
SO on, |
28, Lemma. Let A be a bounded Borel subset of E,,. If xe K, |, let G,8) be
a subset of B, which s defined as follows: The number t belongs to G, if and only if
there exists a neighbourhood U of t such that u(U — A}') = 0 (see notation 19).
Then every set G, is open, M, , = E[x; {a, b) c G,] s a Borel subset of E m—1
whenever a < b, and the functions f1, 91, f2> Gss - .., Which are defined by (43), are
Borel functions on H,,_,.

18) If necessary, we write Gy = G4.
19) @, is, of course, the greatest open set with this property.
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Proof. The set G, is obviously open for each x € £, _;. From the separability
of G, 1t follows that u(G, — A;) = 0.1%) Let a,be £,, a < b. We have (a, b)
c G,, if and only if (4, 0 (@, b)) =b —a. If weput B= A4 n E[[x, ..., 2,,];
a < x, <b], we obtain 4" n (a, ) = B,'. As u(B) is a Borel function of =z,

Mg, = Hlx; (@, ) c G,] = Elx; p(B))) = b — a] (54)

GO

and, consequently, also M,, =Um , (@ <b) is a Borel subset of #,, _,

a— —s b+ —
- n=1 n’ n

Our assertion follows immediately from lemma 26.

29. Lemma. Let f be a bounded non-negative Borel function on E,, and let B be

a Borel subsel of E,,_;. Let ¢ be a positive number. If the relation [f(x,t)df > &
0

holds for each x € B, then there exists a positive Borel function vy on the set B such

y(x)

that ff x,t) dt = ¢ for each x ¢ B.

Proof. Let S be the set of all [z, y], where xe¢ K,,_,, y > 0, ff(x t) di < e.
For each x ¢ B there exists a finite positive number b such that ST = (0, b);
put b = yp(x). Obviously T)ﬁ)(ac, t) dt = ¢. We have now to prove that v is a Borel
function. For each ye £ Olet A be the set of all z ¢ E,,_, such that [z, y]e S. As:
Fx,y) = f f(x, t) dt is a Borel function, S is a Borel set; ,S is therefore a Borel
subset of E'm,,_,, . We prove that for an arbitrary ce £,

Elx; p(x) > ¢] =B n (U ,S), (55)
where ¥y fu,ns over all rational numbers > c¢. Indeed, if y(x) > ¢, we can select.

a positive rational ye (c, p(x)) and have [f(x,?)dt < e, whence [z, y]e S,
;

xe ,S. Conversely, if xe B n ,S, where ¥ > ¢, then [z, y] e S, whence p(x) >
> y > ¢. From (55) we see that v is a Borel function.

30. Lemma. Suppose that A e W,, and that | is a bounded Borel function on K,,.
Y
Forxekl, |, yell, put F(x,y) = [f(x,t)dt. Then
0

= Aff(z) dz . (56)

Proof. If f is continuous, (56) follows easily from (20b). Let § be the family
of all bounded Borel functions f on #,, for which (56) holds good. If f,, f,, ..
(f, € §) is a bounded convergent sequence with limit f, then the function f evid-
ently also belongs to §, so that §§ is the family of all bounded Borel functions

on K.
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31. Lemma. Let A (resp. Z) be a Borel subset of K,, (resp. K,,—,) and let f, g be
finite Borel functions on Z. Suppose that f(x) < g(x), u(42 n (f(z), g(x))) > 0 for
each x e Z and that u((g(x), g(x) + &) — A7) > 0 for each x e Z and each ¢ > 0.
We define the function @ on E,, by means of the relations

~ Ay o (f(x), 9)) : ,

D(x, y) = 0 elsewhere,

Then P, (D) equals the (m — 1)-dimensional measure of Z.

Proof. There exists a number ¢ such that the relation [z, ylc¢ A (xe F,,_,,
ye ll)) implies y > c. Considering, if necessary, the set K[|z, y]; [z, y + ¢c]e A]
instead of A, we can suppose that y > 0 for each point [z, y] e 4. Since u(A." n
N (f(x), g(x))) > 0, we then have g(x) > 0 for all x ¢ Z. Now we define the func-
tion h on K, writing

hiz,y) =1, if zeZ, y>gx), [z,ylnoned,
and
h(x,y) = 0 elsewhere .

Let n be a natural number. By lemma, 29 there exists a Borel function v, on Z
Yu()

such that [ h(x,t) dt = -%/—- As h(z, t) = 0 for t < g(x), we have y,(x) > g(x),

0

V') 1
u((g(@), ya(x)) — A7) = (f hiz, 1) dt = —.
g(x)

Further, put

y(x) = pldy o (), 9(x))) (xeZ).
We define a sequence f;, f3, ... of functions on £,, in the following way:
IfxeZ, [x,y]e 4, fx) <y < g(x), put

: 1\
fn(x: y) = Inin (n: ;}@T) )

if xe Z, [z, y] none 4, g(x) <y < yu(x), put
ful®, y) = — min (n* y(x), n) ;

in the remaining cases put f,(#, ¥) = 0. Further write

T, Y) = ff z, t) (567)
Then, for each x¢ Z, -
g(x) | ) 1 .
[ folz, t) dt = y(x) . min |7, @y = T (n y(), 1),
f(x) 4
Yn(T) 1 . . N
'""'” f fn(xg t) dt — ""?":b" min (nz y(x)a n) = Inn (n '}/(SU), 1) ’
g(x) |
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vn(®)

whence [ f.(x, ) d¢ = 0. Let = be a fixed element of Z. For y < f(x) and y =
f(z)

= () we have F,(x, y) = 0; in the interval {f(2), g(x)) the function F,(z, y)

of the variable y 18 non-decreasing and F,(z, 9(x)) = min (n y(x), 1); in the
interval {g(z), v,(x)> F,(x, y) is non-increasing. Obviously
)] <n 0O F,)<1(n=1,2,...;2¢K,).
Finally, we define a function f, on ¥,, by means of the relations
1

folz, ?/) = mp it xeZ, f(x) <y <glx), [x,y]e A,

fo(x, y) = 0 elsewhere.

For ze A we evidently have 0 < f,(z) < f,(2) = ..., fa(2) = f,(2), Whence
ffn(z) dz ﬁffo(z) dz — | 1. y(x) dr = measure of Z . (58)

By (56) (lemma 30) and (57)
= [f.(2)dz (n=1,2,..)). (59)

Similar reasonings show that for z € Z, f ) < y < g(x) we have

ffn dt—e»ffox o ar — AE U@L YD gy

y ()
f{x) ' f(x)
Choose any ¥y > g(x) and put 6 = u((g(x), y) — A™). By assumption, § > 0; if
1 1
n > = then u((g(x), y.(x)) — 4A™) = — < 0, whence y,(r) <y, F.(x,y) =

= 0 = D(z, y). We see that F,(z) — D(z) for all z; as 0 < F, < 1, it follows

gt

that P, (F,) — P,(D). By (59) and (58) we get P, (F,) = ffn dz — measure

of Z, which completes the proof.

32. Lemma. Let A be a Borel subsetof E,,, Ae¥,,. For each x ¢ B, _, let G, be
the open subset of K, which was defined in lemma 28. (See also footnote?)). Let
@(x) be the number of components of Q. (If G, has infinitely mcmy components, we
put, of course, p(x) = o0.) Then ¢ s a Borel function and f @(x) dr < oo.

7!11

Proof. We define the functions f;, 94, fs, 92, ... on the space ,,_, by (43)
and put Z,, = K[z; f,(x) < oo]. We then choose a natural number n and write
f=+"%.,9=¢, Z =7, in lemma 31. (See lemma 28.) The corresponding func-
tion @ = @, has the following properties: @, (x, f,.(x)) = 0, D,(x, 9,(x)) = 1,
D, (x, y) is a linear function of y for f,(x) < vy < g¢,(x), if xe Z,; D,(z) vanishes
for the remaining 2. If ¢, is the characteristic function of Z,, then by the pre-
ceding lemma

P,(D,) = f c,(x) du.
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Now put ¥(z) = > ®,(2). Since for each z there is at most one non-zero mem-

ber in the series, we have 0 < ¥ < 1, and consequently
2P (@) = Po(¥) = Al

Further we see that x ¢ Z,,, if and only if (¢, has at least n components, whence

miﬁm @) dz =3 [ o) dr = 3 Po(0,) < |4, which com-
7 =1

— ml

pletes‘ the proof :

33. Theorem. Given a set A ¢ U,,, there exists a Borel subset K of K, _, with
the following properties:

1) KE,_, — K has measure zero.

2) For each x e K there exist a (unique ) non-negative integer r and real numbers

a, <b <...<a,<b, (60)
such that A} is equivalent'3) to U (a;, b;). If we put r = ¢(x), then ¢ is a Borel
i=1 | |
function on K and
2Ef px) de = ||4],, . (61)
3) Let A_ (resp. A, resp. A,) be the set of all 2 = [z, ..., 2,,]e E,, such that
=210 2m_q] e K and 2z, € {a;,...,a,} (resp.z, e {by,...,b,}, resp. z, e

€ U (aj, b;) ), where a;, b; correspond to x. Then A_, A,, A, are Borel sets.

j=1

Proof. First, let 4 be a Borel set and let ¢(x) be the number of components
of G (see lemma 28, footnote 18)). By lemma 32, ¢ is a summable Borel func-
tion; consequently, K, = K[z; p(x) << o] is a Borel set and E,,_, — K, has
measure zero. ‘

Let C be a bounded open convex set such that A c C; put B = C — 4. On
account of (13b) (theorem 9) the set B also belongs to 2,,. Let K5 be the set
of all x ¢ E,,_; such that G, has only a finite number of components; put

Kh=K,n0 Ky, G, =G 0G (xckE,_,).
For each ze¢ K, we can write
Gm — (0‘1! IBI) U ((Xz) ﬁz) Uo... U (063, ﬁs) ’ (62)3
where o, < f; Sy < P, < .. Z g < B, (s > 0), and put
pi(@) = o, ¢@)=p; for j=s,
pa(x) = O, qy(x) — — oo for 7> S

(xe K,). As @ 0 G = 0, we have {a, b c G, if and only if either {a, b> c G
or {a,b>c G. By lemma 28, Elx; (a,b) C G = M,,, Elx;{a,b>cG] =
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— M?, are Borel subsets of E__.; it follows that E[z; {a, b)> c G,] = M, .

U MB » 18 a Borel set too (@ << b). According to lemma 27, p;, q; are Borel
functions.

If Am = ¢, then @1 = ¢, B» = C™; since C'is open and convex, we have G, =
= (B = C™ and the number s in (62) does not exceed 1. If 4™ =+ ¢, put 0 =
= sup (A)m, ¢ = inf (A)m, Om = (y,8). As AcC, we get v <= 0 < 0;
evidently (y, ¢) U (o, ) ¢ Bm, whence (y,:) u (6,0) CGBC @, &, <y, 0 = P,
The obvious relations G4 c A7, G c B», Amu Bm = (Om imply G,C
C {y, 6>, whence y < a;, i, < 6. We see that oy =9y, B, =6, (x1. 1)U

U (o, /33) C B and that s > 1.

Put N, = H[x; — 0 < ¢(x) < py(x) < ©]. We shall prove that NN, has
measure zero. If ¢;(x) <t < y < py(x), then neither (£, y) c G nor (¢, y) C G,;
we have thus

w((t, y) — A7) > 0 - (63)

and, since (t, y) c C,
w((t,y) n A7) > 0. (64)
We choose an arbitrary natural number » and define functions @,, ..., @, on

E,, as follows: We select firstly a point x ¢ N,, an integer j (1 <7 < n) and put

n -+ 1 ’

= q,(x) + () — 1).

then for a < y < b put

w47 n (a, y))
P Y) = A o (a, b))

for other points [z, y] write @;(x, y) = 0. According to (63), (64) and lemma 31,
P,.(®;) equals the measure of N,; since 0 < > @, < 1, weget P,,(>D;) < [[A[m,
i=1 j-1

whence

n . (measure of N;) = > P, (D;) < |4}, .
j—1

As n was an arbitrary natural number, the measure of N, is zero.

By similar reasoning we see that the measure of the set N, = K[x; — o0 <
< q,(x) < ps(x) << 0] is zero; and so on. Put K = K, — U N,. Kis obviously
j=1

a Borel set, the measure of its complement is zero and we have g, = «,, ...
» By = «,for each z € K; evidently (x4, ;) C GB, (x,, 8,) C G4, ..., («,, B,) C GE.
s — 1 ]

If s > 0, then s is odd, so that r == 5

is an integer > 0. If we put

r = 0 for s = 0, we see that in both cases 4™ is equivalent to U ()5 Pas)
J=1

(x e K) and in (60) we can write a; = &y, b, = ,823
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As p;, q; are Borel functions, 4,, 4 -, 4, are Borel sets. The function ¥ =
=c¢, —C_, Wherec, (resp. c¢_) is the cha,mcteristic function of 4, (resp. 4_),

obviously fulfils the relation mF(x)?2°) = 2r = 2¢(x) fOI' each x ¢ K. From (32)
and 14., 4) we see that 2 f (p ) do = f’mF(x) dx = P, (F) <||4|,,- Since (by

theorem 20) ||4]],, < 2 f (p(.):’ dz, we h&Vb 2 | ¢(x)dx = ||4],- The theorem

rml

is thus proved for Borel sets A e U,,.
A
Now let 4 be an arbitrary set of ,. There exists a Borel set 4 which is

equivalent to A. Then ||4|,, = Hﬁ“m (see (13a)); the sets zéfg", Am™ are equi-
valent for almost all x € #,,_,. Hence there exists a Borel set N with measure

zero such that the sets 4™, A m are equivalent for all xe £,,_; — N; moreover,
we can find a set IA{ which fulfils the conditions of our theorem, if we write ﬁ in
place of A. Putting K = K—N , we see that the proof is complete.

34. Theorem. If A e U, there exists a Borel set B c D, which has measuré zero

and fulfils the condition p(B) = p(D) (D us the boundary and p is the surface
measure of 4 ).

Proof. Let K, A_, A_ be the sets from theorem 33. Then B,, = A, v A4 _
obviously a Borel set of measure zero. If f is a bounded Borel function on D

such that f(z) = 0 for all ze B,,, ve have ™f(x)?’) = 0 for each x e K, whence
P, (f) = fmf( ) dz = 0. If we analogously define the sets B, ..., B,,_;, we see
E,,

that we ca,n put B = U B;.

i=1

35. Theorem. Let A, B be bounded measurable sets. Then
max (|4 U B, |4 n Bl |4 — BJ) < |4]| + |IB]. (65)

Proof. This relation holds of course, if ||[4] + ||B|| = c. We may therefore
suppose that A, Be A. We shall prove only that

14 ~ Bl < 14]] + 1Bl ; (66)

the proof for |4 u B||and |4 — B||is similar. Let K, A_, 4,, A, (resp. r, a;, b;)
be the sets (resp. numbers) from theorem 33; in an analogous manner, taking
only B instead of 4, we form sets L, B_, B,, B, and numbers s, c¢;, d;. Put
C=A4AnB, M=K n L; we can obv1ously suppose that K = L = M. For

each x e M the set C7 is equivalent to a set U (5, B;), wherex; < ;< ... <
§=1

< ;< B; (¢t integer > 0). Now we define in an evident way the sets U, C_;
we get

= (A, n (B, uBy)u(Byn(d,udy)),
O__ — (A,__ M (B,__h U BO)) U (B___ M (A__, U AO)) y

20) See (31).

547



so that C,, C_ are Borel sets and

C,cd,vB,, C_cdAd_uvb_,
| C,nA_=C_nA,. =C, nb_=C_nB, =90.
The set (4.)7 (resp. (B.)7, resp. (C,)7) has r (resp. s, resp. {) elements; from

L

(CHTc (A )™ v (BL)y we see that ¢ < r + s. By theorem 33, the functions

¢(x) = r, p(x) = s are summable; on account of theorem 20 we get C'e A,,. By
similar reasonings, Ce¥,, ..., Ce,,_;, whence Ce .

Let v = [v, ..., v,,] be the normal vector of the set C. Put 4, = A uA_
By,=B,uB_,0,=C_vu (C_ and define the functions f, g on £, as follows
f(2) = v,,(2) for ze (Ap— Bp) n Cp, f(z) = 0 elsewhere; g(z) = ,,(2) for z € Bp 0 Cp,
g(z) = 0 elsewhere. For z ¢ ', we have eitherze A, — Bp, f(z) = »,,(2), g(z) = 0,
or z € By, f(z) = 0, ¢g(z) = »,(2); in both cases |

| vm(2) = f(z) + 9(2) . (67)
If 2ze A, —C,=4,—Cporz2eC, —A4, =C,—A4p, then f(z) = 0. For
each x ¢ li,,_, we have therefore |

Z f(xvy)“:: Z f(x:?j),

ye(Ay)) ve(Cy)y

By similar reasoning,

whence (see (67))
S t 7

3@ b) + Tl d) = S Bi) + gl ) = Yvmla B)

i=1 i=1 | i1

analogously

7 S t

Zf(x’ ;) + Zg(.:b, ¢;) = Z”m(ma & 5)
) j=1 i=1 i=1
We have therefore

T

Z(f(x3 b) T f(ﬂ?, a’a’)) Z(g(xa d) T g(xs ca’)) — Z(V .CL', i) —V (.’E, (x:}')) . (68)

- mfl

NOW we write [ = v,, § = w, and define in an obvious way the functions
Vi «vos V1> Wiy ooey Wip_1- Thus we have defined two Borel vectors v — [vg, ...
V], w = [wy, ..., w,]. Since either v,(z) = 0 or v,(z) = »,(2), we see that |v| ;
< |v| < 1, whence P4, v) < ||4]); analogously P(B, w) < ||B]|. According to
(68), theorem 20 implies

pP,.4,v,) + P, (B, w,) =P, (A4 nB,v,).
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Similar equalities hold for 1, ..., m — 1; it follows that
|4 n Bl = P4 n B,v) = P(4,v) + P(B,w) < 4] + ||BIl,
which completes the proof. |

36. Lemma. Suppose that A, B,, ..., B,e W and that B, n B; = 0 for
1 <1 <)< n Then

Sl o B < 4] Vi + S

Proof. By theorem 35, 4 n B;e Y for j = 1,...,n; let v/ be the normal
vector of A n B;. Given an index j (1 < j < n), we can attach vectors v, w?
to the sets 4, B, in the same way as we attached vectors v, w to the sets 4, B
in the proof of theorem 35. We consider the m-th component »,, of the vector

v = va? and the sets A4,, (By)y, ---> (Bn)o, defined as in theorem 33, 3). If

(a'; y) + 0, then 7 is a boundary point of (4,)™ and an interior point of some
— naturally exactly one — set ((B;)), so that v,(x, y) = vi,(x, y) = »i (x, ¥).
It follows that |v,(x, %) < 1; by similar reasonings, |v,(z,y) < 1 for j =
= 1,...,m — 1, whence ] é V;ﬁ The rest of the proof is the same as in the
preceding case. '

Remark. If the sets B, are open and if v,,(z) = v,(2) + 0, then for other
indices ¢+ we have either v,(z) = 0 or v,(z) = #(z), whence |v(z)| < 1 and con-
sequently

54 0 Byl <1141+ 318, 69)

The same relation holds of course, if e. g. the boundaries of B; have measure
Zero.

37. Theorem. Let A,, A,, ... be measurable subsets of K, and let the set
A = Uy A, be bounded. Then
n=1

14l < 2 |4l 5 - (70)
=1
if, moreover, A, c A, C ..., then
4] < Tim inf |4, (1)
Proof. First suppose that 4, ¢ 4, C ... If ve B ,,21) we have |jv|l4, < 1 and

therefore f div v(z) dz < ||[4,]] for n = l 2, ... Making n — oo, we obta,m
f div v(x) de < lim inf|{4,]|, whence (7 1) ea,sﬂy follows.

ﬂ—-~>-00

21) See definition 2.
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Returning to the general case put B, = 4, u ... u 4,,. By theorem 35 (and
by induction), B, < 4], whence, according to (71), [|4]| = IUB,|| <
n=1

< lim inf | B,|| < Z“AsH

N —0

38. Definition. Suppose that the sets A4, 4,, 4,, ... fulfil the following
conditions: |

1) Ae,;
2) A, e, A, c A° for n =1, 2, ...;
3) the relation P(4,, v) — P(4, v) holds for each continuous vector v on 4.

Then we write A, & A.

39. Theorem. If A, 5 A and if the Lebesque integral f f(x) dx (finite or
infinite ) exists, then

lim ff = [f(z) dz . (72)

n—o0 Ay A

Proof. If we put v(x) =[O0, ..., 0,z ] for each x = [x,, ..., x,,] € £, then
the relation P(B, v) = measure of B holds for every set Be 2. According to
38., 3) we thus obtain measure of 4, — measure of 4, from which the assertion
easily follows.

40. Theorem. Suppose that A, 5 A. Let the vector v be continuous on A ; let
v and the function f be associated on A°. Then

P(4,v) = lim [f(z)dz; - (73)

n—>oo A,

if, moreover, the Lebesque integral [f(x) da exists, we have
‘ A
P(A,v) = ff(x) dr . | (74)

Proof. In virtue of theorem 24 we have P(4,, v) = ff x) dxforn =1, 2,

whence (73) follows at once. The relation (74) is an 1mmed1ate consequence of
(73) and (72).

41. Definition. If 0 = D c K, and if ¢ > 0, let Q(D, ¢) be the set of all
points x ¢ £,,, whose distance from D is less than ¢; if D = ¢, put Q(D, &) = ¢.
Let 0N be the system of all bounded sets 4 C E,, which have the following pro-
measure :f Q(D, ) of the
variable ¢ is bounded in (0, 1). The boundary of each set 4 € M obviously has
measure 0.

perty: If D is the boundary of A, then the function
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42. Theorem. N c .
Proof. Let D be the boundary of the set 4 € . Foreach x ¢ £,,_; put f,(x) =

n
of (4 ). We shall prove that the relation

20(x) < lim inf » . f,(x) (75)

fl—00

= u((G,)™), where G, = 2|D, -}--), let @(x) denote the number of components

holds for each x e H,,_,. This is obvious if ¢(x) = 0. If now ¢(x) > 0 (this in-
cludes the case @(x) = o0), choose a natural number n, < ¢(z). There exist
numbers a; < @, < ... << a,, such that the points [, a,] belong to the boundary

of A and so to D also. If % < ak+12—~ Y% =1,.., n,— 1), then no two of

n

: 1 1 . 0 1
the intervals (aj — a; + -,;;) have common points and (G,,)"* > U (a,j -
j=—1

2

1
a; + —-7-;1,-); hence f.(x) = n,. — M fo(x) = 2n,, from which (75) follows at

once.
Since A4 ¢ N, there exists a finite constant C such that n . (measure of G,)) < C

and therefore [ n.f,(z) de < C holds for each n, whence
E

m—1

[ liminfn . f,@x)dx < C. (76)
Em——l
On account of (75), (76) and of theorem 20 we get A ¢ U,,; obviously also 4 ¢

e, ..., 4eU,, so that 4 e Y. The relation 4 ¢ Y follows from the fact that
D has measure zero.

43. Theorem. Given a set A ¢ N, there exist A, such that A, 5 A.

Proof. Let & be a fixed positive number, & < 1. Let & be the system of all
cubes {(mh, (ny + 1) A> X ... X {n,h, (0, + 1) k>, where n,, ..., n, are in-
tegers; let &, (resp. &,) be the system of all K ¢ & such that K C A9 (resp.
K n D + ¢, where D is the boundary of 4). If we put L= &,, M = U K,,
we evidently have 4 c L v M. Write &, = {K,, ..., K;}. Since K¢ n K9 =

— 0 (i +4) and UK? c D, h|m), we get
=1

s . hm < measure of (D, hllm).

On account of the fact that 4 belongs to 9, there exists a finite constant C
such that measure of Q(D, 8) < C6 for each de (0, Vm), whence

Since ||K;|| = 2mh™~1 (j = 1, ..., 8), we obtain
Z“Kﬁ'” = 2msh™-1 < 20m? = C,. (77)
i=1
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It follows from 14., remark 2, that the relation
P(4,v) = P(L,v) + SP(4 n K, v) (78)
J=4

holds for every continuous vector v on 4; by (69) (remark to lemma 36) and (77)
we get

S 0 K 141 + S < 141+ 0, (79)

If B ¢ Y and if v is a constant vector, then evidently P(B,v)= 0. Therefore, if
v is a continuous vector on the boundary D, of B and if |v(x) — v(y)] < # for
arbitrary points z, y € D, the relation |P(B, v)| < ||B|| 7 is valid. Now let v be
a continuous vector on A. If we put w = sup |[v(r) — v(y)|, where x, ye A4,
1z — y| < hlfm, weget |[P(A 0 K;,v)| L o||ld n Kjfjforj=1,...,s. From (78)
and (79) then follows the relation

P(4, ) — P(L,0)] < SIP(A 0 K,y 0)| < 034 0 Kj| S od] + ).

L . 1
Since v is uniformly continuous, we have v — O for & — 0 4. If we put h = —

and write A, =L (n=1,2,...), we see that P(4,,v) - P(4,v) and so
4, £ A.

Remark. Let v be a continuous vector on 4, where 4 ¢ N; let v and the
function f be associated on A°. Theorems 39, 40, 42 and 43 show that P(4,v)is
then, in a certain sense, a ‘“mean value”’ of the integral [f(x) dx.

A | |

44. Definition. If v, ..., v™ -1 are vectors (on a given set), then the outer
product of v1, ..., v™-1 is such a vector w, that for each v the scalar product
v . w 18 equal to the determinant with rows 21, ..., v™ -1 v. (For instance, the
m-th component of w is the determinant

?J}, ’ /U’}’nml )
............. :
o, L, U,

and so on.)

We say that a vector » on an open set G c K, is solenoidal, if there exist
functions ¢, ..., ¢,,_; of the class C; on G such that v is the outer product of
the vectors grad ¢,, ..., grad ¢,,_;.

45. Lemma. Let ¢,, ..., ¢,_, be functions of the class C, on an open set
G c E,; let v be the outer product of the wvectors grad ¢, ..., grad @,,_;. Then
div v(z) = 0 for each x e G. |

- Proof. Let M be the matrix with rows grad ¢4, ..., grad ¢, _,; omitting the
r-th column of M, we get a matrix which we call M,. If T', is the determinant of
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oT . ) | |
M., we have "é}{;_ =T+ ... 4+7,, 2+7T, i1+ ... +7T,,, where T, is

the determinant

a2 o9, 0P 0P, I 09y
ox, 0x, °~ ox, 7 Ox,,’ ox,,, ' ox,
3297m-1 qum-:l 899_71@—-1 a‘;i‘p'mml a(Pm-—-1
ox, 0x, = Ox, > 7 ox,, Ox,, = ox,

01 472 Po.  9p o9,
ox, = O0x,, ¢x, 0 Ox,.,  ox,
T ,
OPm—1 0Py —1 _8299m--1 OPm—1 OPrm—1
ox, ~ 7 ox,_, ox,0x, ox,., = ox,

so that T',; = (— 1)"-2.T',,. Similarly it can be shown that 7',, = (— 1)r-s-1,
. T,, for arbitrary indices r, s, where r > s.

IfweputT,, = 0(r =1, ..., m), we obtain, finally,

divey = Z(‘“‘"‘ 1)m+z_.______, _.._.Z — 1)m+i ZT“,_.....
1=1
>.(— Lym+t. Ty + 2 — L)m+i Ty mZ(“‘“ Dt Ty 4 D (— 1)mei Ty =

1<J i>J i<<J i< g

= 2[(— [m+i o (= md (= 1= Ty = 0,

1<<J

since [...] = 0 for all 4, 9.

46. Lemma. Suppose that A e W and that f is a function of class C, on @,
where G is open, G O A. Let @, ..., @, _, be functions of class C, on G and let v be
the outer product of the vectors grad ¢, ..., grad ¢,, _,. Then

P(A, fv) = f v(x) . grad f(x) dx . (80)

- Proof. By lemma 45 we have div v = 0; our assertion therefore follows
immediately from the obvious relation div (fv) = fdive + v . grad f.

47. Lemma. Let f be a function of class C, on the open set G c E,,; let K be
compact, K c G. Then there exist functions f,, f5, ... of class C, on E,, such that

lim f,(x) = f(x), lim Oful) _ @) (¢ =1,...,m)

uniformly on K.

Proof. There exists a function g of class C, on E,, which coincides with f in
some neighbourhood of K (and vanishes outside a bounded set). Put

fg Yyl —t)dt (m=1,2,...),
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where y, are the functions from notation 21. Since the relations

0y 0x, 024

m Em

Plu(®) fg(t) Pyn(@ — ) df, ete.

2 2
ox? ox?

m

hold for n = 1, 2, ... and for all x ¢ E,,, we see that the sequence f,, {5, ... has
the required properties.

48. Theorem. Let f be a function of class C, on the open set G c E,,; let v be
a solenotdal vector on G. Then

P(A, fv) = fv ) . grad f(x) dz (81)

for each set A e A, where A c @.

Proof. Let v be the outer product of the vectors grad ¢, ..., grad ¢, _1,
where @; are functions of class C, on G.If Ae, A c G, there exist (in virtue
of lemma 47) functions @, ..., ¢, (n =1, 2, ...) of class C_ on E,, whose
derivatives of the first order converge uniformly on the set A to the correspond-
ing derivatives of ¢, ..., ¢,,_;. The components of the vectors v*, where v" is
the outer product of grad o\, ..., grad ¢’ ,, therefore converge uniformly on
A to the components of ». By lemma, 46 we have P(A4, fo") = [ v (x) . grad f(x) . dx

forn = 1, 2, ...; making n — oo, we obtain (81).

49. Definitions. If M is a matrix with elements a;;, let M’ be the matrix
with elements b;;, = a,;. If we consider vectors as columns, the scalar product
of the vectors v, w can be written as the matrix product v' . w = w’ . ».

2

If M is a square matrix, let adj M be the matrix with elements b;;, where b,
is the algebraic complement of a,; in the matrix M. We have thus M . adj M =
= J . det M, where J is the unit matrix and det M is the determinant of M.

By the norm of the matrix M with elements a,;, we understand the quantity
M| = ]/}ja,gk. If the product M. N has a meaning, we have

M .N| < |M]|.|N]|. (82)

If N is a vector, |N| coincides with the usual norm.

Let ¢ be a mapping of the open set G c E,, into E,,. We say that ¢ is reqular,
if p(x) = [@1(x), ..., pn(x)], where ¢; are functions of class C, (on the set G), and
if the functional determinant of ¢ is distinet from zero in all points x ¢ G. By
the functional matrix of ¢ we understand the matrix with rows grad ¢, ...,

grad g@,,.
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50. Theorem. Let ¢ be a one-to-one regular mapping of the open set G c K
into H,,; let M be the functional matriz of . Suppose that Ae W, A c G. Then
p(A) € U and for every bounded Borel vector w on the boundary of ¢(A) we have

P(p(4), w) = P(4,v), (83)
where
v(x) = adj M(x) . w(p(x)) . sgn det M (x) . ~ (84)

Proof. We shall suppose firstly that w = [w, ..., w,,] € B4,2") Let !, ..., s™
be the columns of the matrix adj M . sgn det M. The vectors s’ are solenoidal;
for example, s' is the outer product of the vectors grad ((— 1)™* ! . sgn det M .
. ,), grad ¢, ..., grad ¢,, (¢, are the components of ¢; since det M(x) + 0 for
every xe(, sgndet M 1s constant in some neighbourhood of each point

x € G). Further, v = >'s'f;, where f,(x) = w,(¢(x)). Theorem 48 gives P(4, v) =
=1

Z (A4, f;8°) = 2 fsi(ac) .grad f,(x) de. Since (grad f,(x)) = (grad w;(y)) .

2 x), where y = 99( x), we have
si(x) . grad f;(x) = (grad f,(x)) . si(x) = (grad w;(y))’ . M(x) . si(x) .

The components of s¢ are algebraic complements of the elements from the ¢-th
row of M, multiplied by sgn det M. Consequently, M . s* is a column with
elements O, ..., 0, |det M|, 0, ..., 0. We thus have

, ow,;
si(x) . grad f,(a) — 5

ZSZ ) . grad f;(x) = div w(y) . |det M(z)| (where y = ¢(x)),

. |det M(x)|,

so that
P(4,v) = [(S5i(2) . grad f,(z)) do =

A i=1

= fdlvw . |det M(x)| dx = [ div w(y) dy (85)

p(4)
(see, for instance, [2], p. 219, theorem 103). There exists a finite constant 2 such
that |adj M(x)| < Q2 for each x € 4. As |w(p(x))| < 1, we get (see (82)) |v(z)| <
< ladj M(x)| . |w(p(x))| < 2, consequently [divw(y)dy = P(4,v) < ||4].

o(A4)

. Q, which implies ||p(4)]] < ||4]||. £ and so p(4)e Y.

From (85) we see that (83) holds for each vector whose components are poly-
nomials. The completion of the proof is simple

Remark. Since sgn det M(x) . adj M(x) = |det M(x)| . M~ x) (where M1
1s the inverse matrix), the relation (84) can a,lso be written as »(x) = |det M (aé)[ :
. M~x) . w(y) or

w(y) = |det M(x)|~1. M(z).v(z). (86)
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Thus, if we ‘‘transform’ the set A4 by means of the mapping ¢, we must ‘‘trans-
form” the vector v with the help of the formula (86).

bl. Theorem. If ¢ is a regular mapping of the open set G c E,,, then p(A)e U

for each A e U, where 4 c G.
Proof. Toeach xeG there exists a cube K = K(x) (xe K°) such that ¢ is a one-
to-one mapping in some neighbourhood of K.If Ae W, A c G, then there exist

points x,, ..., x, such that 4 c UK (x;). From theorems 35 and 50 we deduce
'tha,t An K(x)el, (4 o K( )) e for j=1,...,9, and, finally, ¢(4) =
= U(P(A n K(x;)) € AU.

52 Theorem. Let ¢ be a one-to-one reqular mapping of the open set G C K,
(into B,,). Put N = (sgn det M . adj M) (so that N’ = |det M| . M-1), where M
is the functional matriz of ¢. Suppose that A € Y, A C G; let D (resp. p, resp. v) be
the boundary (resp. the surface measure, resp. the normal vector) of A. Put n =

— N . v, My) = n(x) (where y = ¢@(x)), y = T—%—-— and
p(B) = [ |n|dp (87)

¢~ Y(B)
for each Borel subset B of ¢(D). Then 2/5 (resp. 1/;) 18 the surface measure (resp. the

normal vector) of ¢(4).
Proof. It follows easily from (87) that the relation

ffdpwffdp, where () = f(g(x)) . ()], (88)

g D)
holds good for each bounded Borel function f on (;v(D) Let w be a bounded
7t(x) N(x).v(x)

I

Borel vector on ¢(D) and let » be defined by (86). As »(y)

@) @)
A A 1% ’. N ,.M ). ""1.
wo have 2(7) . 5(0) — () . w(y) — P F@) IS(:& ):det M)t v(@)
e y(sfg) (‘ ?;Sx , and consequently, on account of (88) and (83),4
7T )]

[w. vd;p-—--'fv vdp = P(4, v) = P(p(4), w) .

(D)

By theorem 17, » and p are the normal vector and the surface measure of

p(4).
53. Theorem. Let ¢ be a one-to-one regular mapping of the open set G C E,,.
Let the vector v and the function f be associated on G let M be the functional matrix

of ¢. For each y € G — p(G) put
R 1€ peoy M(x) . o) B

s : A . A
Then v and f are associated on G.
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Proof. Let K be a cube, Kc G’ put K = ¢p-Y(K ) According to theorem 50
we have K € Y and it follows from theorem 24 that

P(K, v) mef(a:) dzx . (89)

The functional determinant 7' of the mapping v = ¢~! fulfils the relation
T(p(x)) . det M(x) = 1, so that

[1(@) dz = [{w(®)) - |T(W)] dy = [H(y) dy . (90)

From theorem 50 (and relation (86)) we see that P(K, v) = P( K v ); relations
A
{89), (90) show therefore that P(K ) = [{(y) dy, which completes the proof.

K
Remark. The reader may compare this paper with [6].
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PeswomMme

I[IOBEPXHOCTHBII MHTEI'PAJI

AH MAPHUHK (Jan Marik), IIpara.
(IToctynuano B pepaxknuoo 10/X 1955 r.)

Ilyers m — mHarypaapHOe 4mciio; nycTh H,, — m-MepHOe eBRINIO0BO IIPO-
crpaHceTBO. na Besaroro orpaHﬂqeﬂﬂoro n3Mepumoro MHO;KecrBa A C K, mo-

oM |4 = sup Z da; rae vy, ..., ¥, — MHOTCOYICHEL TaKHe, 9TO

Z vi(x < 1 s Bcex z € 4. ITycres Y — cucrema BceX orpaHMYeHHBIX U3MEpPH-

me muOKecTB A, mias Kotopweix ||4|| < co. Teopema 18 torma yrBep:xuaer:
IIycmv A € Y, nyemv D — epanuya muomcecmea A. Toeda mna cucmeme

B ecex bopeaesckuxr nodmmomcecms mHomcecmea I cywecmeyem mepa p U Ha
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mHo ncecmee D cywecmeyrom B-usmepumvle PYHEYUU vy, ..., v, MAKUE, YINC

> vi(x) = 1 0aa wancdozo x € D u wmo

figlvz‘(w)-” (x) . dp(x Z ’

D A

ov; 0V, OV,

ecall PYRKEYUR Uy, Vg, ...y Uy, y y evey = HENPEPuIBHbl 6 HEKOMOPOU OKpecm-
ox, 0x, ox,,

nocmu mro wcecmea A.*) Mepa p amum onpedeasemcs oanognaqno a PyHKEyuU

v, ,,NOYMU 00HO3HAYHO (N0 OMHOWEHU0 K Mepe p) u p(D HA[[

Ilanee mumem P(A4, v,, ..., v,) = P(4, v) va v, dp Teopema 20 co-
D
JIEPKUT AOCTATOYHOE YCJIOBHE JJIA TOTO, YTOOHBI IAHHOE MHOKECTBO TpWHAJJIe-
Kajo cucrteme 2A; KaK BHIHO M3 TeopeMbl 33, 3TO yCIOBHUE SIBIASAETCSA M HeOoOXO-
numbeiM. Teopemsr 9, 35, 37 moOKas3sIBAIOT HEKOTOpHle cBolicTBA cucTeMbl .
Han%nmep, TeopeMa 35 yTBep;RjaeT, Yro cOeJMHEeHUue W Pa3HOCTh ABYX dJje-
MeHTOB n3 Y mpmHaIIeKuT TaKKe .

ITycts Tenieps 4 € A m mycrh ¢ — B3aWMMHO OJHO3HAYHOE PEryJaspHOE OTO-
6paskenne Kakoi-HMOYIbL OKpecTHoCTH MHOkectBa A B mpocrpamcrso H,,. Wi
TeopeMbl 50 BeITeKaer, uTo B 3ToM cirydae ¢(4) e U u 4ro cupaBenamBo ciiejy-
101Tlee ITPeijloKeHne:

IIycmv vy, ..., v,, — HenpepvisHble GYHEYUW HA 2paHuye mHomwcecmea Aj;
nycmv M — gﬁyimquonaﬂbnaﬂ mMampuya omobpa ucenus ¢ U NYcmdv v — CMOA-
bey ¢ anemenmams vy, ..., v,. Hag Ka .%cc’?oeo Y, AEAHCAULE20 HA 2PAHULTE MHO HCe-
cmea @(A), nosowcum w(y) = |det M(z)|71. M(z) . v(x), ede y = @(x). Toeda
P(A,v) = P(p(4), w).

BakapiM creficTBrEeM OT/ieloB 38—43 ABiseTcA caeAyOIas TeopeMa:

ITycmy A — wuenycmoe oepanuuenmoe NodmHomcecmeo npocmpancmea I,,:
nycmv D — epanuya muo scecmea A. [das wancdozo ¢ > 0 nycmv Q(D, &) 6ydem
MHO Hcecmeom ecex mover us E,,, paccmoanue komopuvir om D menvuie wem e.
IIpednono mcun danee, umo gyuryus (mepa (D, €)). e~ nepemennozo & oeparii-

vena oan 0 < e < 1. Illyemv ynryuu vy, vy, ..., v,, HENPEPLIBHVL HA MHO-
— oV, 0V, 0V,

acecmee A u nycmdb PYHKYUU ——, ——3 -+ -y — HENPEPbIGHbL HA  MHO HCECINSE
.\ | 0x; 0%, 0%,

A°*) Toeda A € Y u pasercmeo

P(A, ’U) _ z 8’02(2‘}

=1

4
cnpasedauso, ecau cyuecmeyem umnmeepan Jlebeea ¢ npasoii wacmu,.
O mpelcraBlIeHHN TOBEPXHOCTHOIO MHTErpaJla P(A,v) ,,rRiIaccudecKuM CIO-
cobom** cm. [6].

¥ A =4 u D, A° = A — D.
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