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Чехословацкий математический журнал, т. 4 (79) 1954 

WEAK COMPACTNESS IN CONVEX TOPOLOGICAL 
LINEAR SPACES 

VLASTIMIL PTÁK, Praha 

(Received May 8, 1953) 

The author proves the following theorem: Let X be a complete 
convex topological linear space. Let M c X be pseudocompact in the 
weak topology. In such a case, the bipolar set M** is weakly compact. 

I t is the purpose of the present paper to prove a theorem which generalizes 
two well known results of the theory of normed linear spaces. 

M. КвЕШ and V. ŠMULiAN have shown in [5] tha t the closed convex 
envelope of a weakly compact subset of a Banach (i. e. complete normed) 
space is weakly compact. In 1947, W. P . EBERLEIN [1] has obtained the follow­
ing important and beautiful result. Every weakly closed and weakly countably 
compact subset of a complete normed space is weakly compact.*) 

In the present remark the more general notion of a pseudocompact set is 
considered. We prove a theorem which represents a simultaneous generalizat­
ion of the results of Krein, Šmulian and Eberlein. 

Let X be a complete convex topological linear space. Let M C X be pseudo-
compact in the weak topology of the space X. In these conditions, the closed sym­
metrical convex envelope of M is weakly compact. 

The proof is based on the fact tha t pseudocompact spaces can be shown to 
possess an interesting property which does not seem to be quite superficial. 
[See lemma (1,2) of the present remark.] Usingthisresul t the theoremmentioned 
above can be proved without difficulties. 

§ i . 

First of all we are going to recapitulate some notations introduced in [6]. 
If T is a given completely regular topological space, we shall denote by C(T) 

*) Added while reading the proofs. Countable compactness in linear spaces has been 
discussed recently by A. Grothendiech, Critères de compacité dans les espaces fonction­
nels généraux, Am. Journ. of Math., 7é (1952), 168—186 and J. Dieudonné, Sur un théo­
rème de Šmulian, Archiv der Math., 3 (1952), 436 -440 . 
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the space of all realvalued continuous functions on T. Let K be an arbitrary 
compact subset of T, є an arbitrary positive number. P u t 

U(K, e) = E [x є C{T), \x{K)\ £ é] . 
x 

The topology of C(T) will be defined by the postulate tha t the system of aU 
sets U(K, є) be a complete system of neighbourhoods of zero. I t is easy to see 
that , for every t e T, the function which assigns to every x e G{T) its value a t 
the point t is a linear functional on C{T). We shall denote it by y(t). We have 
thus for every x e C(T) and every t e T 

x . q)(t) = x(t) . 

We have thus obtained a mapping 99 of T into the space Y dual to G(T). 
The space T being completely regular, the mapping y is one to one. Now let 
Y be taken in the weak topology. In this way, a topology is introduced into 
q){T) as well. I t is easy to see tha t the mapping q? is a homeomorphism. 

First of aU, let us show tha t for every M C T 

cp{T) n ЇСИ) C q>(M) . 

Let q)(t) є y(M) and suppose tha t t non e M. I t follows tha t there is an x є C(T) 
such tha t x(M) = 0 and x(t) = 1. We have then x . y(M) = 0 and x . y(t) = 1, 
which is a contradiction since q)(t) є y{M). 

Let us show now tha t 
.q>{M) C <p(M) 

for every M C T. To see tha t , let us take an arbitrary t є M and suppose tha t 
cp(t) non є q>(M). I t follows tha t there exist xl9 ..., жи e C(T) such tha t the fol­
lowing implication holds 

у є Y , ]Xi(y ~ p(t))\ £ 1 => y non e c>(Jf) . 

We see tha t for every m e M an index г can be found such tha t 

\Xi(q>(m) — <p(t))\ > 1 . 
Let us put for s e T 

n 
w(s) = 2 \Xi(s) — Xi(t)] . 

г = 1 

Clearly we have w(s) є C{T) and w{t) = 0. On the other hand, we have w(m) > 1 
for every m є M. I t follows tha t t non є M which is a contradiction. 

In this way the space T is homeomorphically mapped into Y. We shall 
adopt the usual convention of not distinguishing between a point t e T and its 
image in Y so tha t we shall be able to perform algebraic operations on points 
of T. 

176 



Now let us denote by L{T) the substace of Y consisting of all hnear combina­
tions 

^ih + • • • + ^rfn 
where ti є T. Clearly ЦТ) is dense in Y. I t is possible to show, however, t ha t 
L{T) is dense in every set U*. 

To see tha t , we note first tha t the closure of L(T) П U* is the set (L(T) П 
n £7*)**. The inclusion 

(L(T) n Č7*)** D U* 

is equivalent to the inclusion 
(L(T) n U*)* c U . 

Now let U = U(K, e). Clearly, for every t є K we have — t e ЦТ) П r7*. If 
є 

x є (ЦТ) n 17*)*, we have 

. l * | < i 
є J — 

for every t e K, so that x e U(K, e). This proves our assertion. 
First of all we shall need a remark concerning topological spaces. Following 

E. HEWiTT [2], we shaU say tha t a completely regular topological space is 
pseudocompact if every continuous function on T is bounded on T. In [2], 
Hewitt gives a simple characterization of pseudocompact spaces based on the 
properties of ßT. For our purpose it wiïl be convenient to use another character­
ization which will be formulated as a simple lemma. 

(1,1) A completely regular topological space T is pseudocompact if and only 
if the following condition is fulfilled: 

for every countable S C C(T) and every s є ßT there exists a point t e T such 
that 

x(t) = x(s) 
fór every x є 8. 

Proof : First ofall, let T be a pseudocompact space. Let us take an arbitrary 
countable S C C(T) and an arbitrary s є ßT. Let xn be a sequence which con­
tains all functions of the set S. For every t e T let us put 

v 1 , 
W(t) = Z^~\xii(t) - Xn{8)\ 

n ^ &п 
where 

ocn = 1 + sup \xn(t)\ . 
teT 

Clearly w(t) is a continuous function on T. Suppose tha t no point t e T exists 
such tha t x(t) = x(s) for every x e 8. I t follows tha t w(t) > 0 for every t e T. 

On the other hand we have clearly inf w(t) — 0. The function —— is thus 
UT w\4 
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a continuous function on T which is not bounded on T. The contradiction ob­
tained proves the existence of a point t еТ with the required properties. 

On the other hand, suppose tha t T is not pseudocompact. I n this case 
a continuous function v{t) can be found such tha t v{t) is not bounded on T, 
I t follows tha t the function 

'^'^ = T T W 
is a bounded continuous function on T which fulfills z{t) > 0 for every t e T, 
Since V is not bounded on T, we have inf 2;(̂ ) = 0. The function z{t), being 
bounded on T, can be extended over the whole of ßT, The function z attains 
its minimum value in some point s e ßT, We have thus z{s) = 0. The relation 
z{t) = z{s) cannot be fulfilled for any t еТ since z{t) is positive for every t еТ, 

Now we are coming to the proof of an important property of pseudocompact 
spaces. This property forms the most essential point in the proof of our theorem. 

(1,2) Let T be a pseudocompact completely regular topological space. Let Y 
be the space dual to C{ßT). Let us denote by L{T) the suhspace of Y consisting of 
all linear combinations Xit^ + • • • + ^Jn^ where t^ e T. The weak topology on 
C(T) corresponding to the space L{T) will be called the point topology of C{T). Let 
В CC(T) be symmetrical convex and compact in the point topology. Suppose 
that the set В is equibounded on T. Then В is compact in the weak topology cor­
responding to the space Y. 

Proof : First of all it is easy to see tha t the set В is closed in the weak 
topology corresponding to Y. Since В is convex, it follows tha t В is closed as 
a subset of the (normed) space C{ßT). The space C{ßT) being complete, it is 
sufficient to prove tha t every sequence x^e В has a t least one limit point in 
В taken in the weak topology of C{ßT). Our assertion will then follow from the 
theorem of Eberlein [1]. Let us take an arbitrary sequence x^ e B. Then there 
exists Sb и € В such tha t '^ is a limit point of the sequence x^ in the point topo­
logy. For every natural m and every s e ßT let us take the set 

E[, 0(m,s) =E\t€ßT, \Xi{t) - Xi{s) I < ~ , i = 1,2, 

For every natural m the sets G{m, s) form a covering of the compact space 
ßT. This covering contains a finite subcovering consisting of sets G(m, p) 
where p runs over a finite set P^ С ßT. For ел^егу p e P^ let us choose a point 
q € T n G(m, p). We have thus obtained a finite set Q^ С T. The union of all 
sets Q^ is a countable set Q С T. By means of the diagonal process we form 
now a subsequence x^ of a;̂  such tha t 

lim 4(g) = u{q) 
n 

for every q e Q . 
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We are going to show that , in these conditions, 

lim x'n(s) = u(s) 
n 

for every s € ßT . 

For this purpose, we shall prove first the following proposition. 

Let z be a limit point of xn in the point topology. Suppose that , for some 
points tm, t0 of the space T the relation 

lim Xi{tJ = Xi{to) 
m 

holds for every i. Then 
lim z(tm) = z(i0) . 
m 

In fact, suppose we have a sequence £w є T and a point £0 є T such tha t 
lim Xi(tm) = Xi(to) for every i while |z(£m) — z(£0)| ^> a > 0 for infinitely many 

m 

m. Clearly we can suppose tha t \z(tm) — z(t0)\ ^> a for all m. The sequence tm 

has a limit point 5 є ßT. Clearly we shall have 

lim Xi(tm) = жДв) 
m 

for every i, and at the same time 

N*)-*(*e) |^<r. 
According to the preceding lemma, there exists a point t є T such tha t 

z{t) = z(s) and Xi(t) = Xi(s) for every i. We have thus 

Xi\4 == %iVQ) 

for every i and at the same time 

\z(t) — z(t0)\ >a. 

Now z is a limit point of xn in the point topology. I t follows that , for a 
suitable xn, we have simultaneously 

\xn(t) — z(t)\ <{a 
\xn{t0) — z{t0)\ < \a . 

Since xn(t) = жп(^0) we obtain a contradiction. The proof of our proposition 
is this concluded. 

Using the preceding results, we shall show now tha t the point u is the 
unique limit point of x'n in the point topology. First of all it is easy to see 
that , if z is an arbitrary limit point of xn in the point topology, we have 
z(q) = u(q) for every q є Q. 

Now let z be an arbitrary limit of xn in the point topology and let t be an 
arbitrary point of the space T. For every natural m there exists a pm e Pm 
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such tha t t € G(m, pm). If we take the corresponding qm € T n G(m, pm), we 
obtain the fonowing estimates valid for m ^> i 

ЫЯт) — Ъ(рт)\ < — ? fît 

]Xi{t) — Xi(pJ] < — • 
Ilb 

I t follows tha t , for a fixed i, we have 
2 

m ^> г => \Xi(qm) — &,(i)| < — 

so tha t 
И т ж<(дт) = Xi(t) 

m 
for every i. 

The point z being a limit point of xn in the point topology, we shall have 

lim z(qJ = г(*) 
w 

according to the proposition proved above. For the same reason, we have 

И т u(qm) = u(t) . 
îW 

At the same time, we know tha t z(qm) = n(tm) for every m. I t follows t ha t 
z(t) = гб(̂ ) for every ř є T. 

Now we are able to show tha t 
lim x'n(s) = ^(5) 

for every s є ßT. 

To see that , let us take a fixed s є ßT. First of all, we find a t є T such t ha t 
u(s) = ^(i) and at the same time Xi(s) = a?ť(ř) for every i. I t will be sufficient 
to prove tha t 

lim xJt) = u{t) . 
n 

Suppose t ha t this is not t rue. Then it is possible to define a subsequence 
x'n such tha t 

lim x"jt) = ос Ф u{t) . 
n 

Since all x"n є B, there exists a point v є B such t ha t v is a limit point of the 
sequence x"n in the point topology. Clearly we have v(t) = oc, so tha t v is 
different from u. The point v, being a limit point of x"n, is at the same time 
a limit point of xn. We have just proved, however, tha t the sequence xn has 
only one firnit point in the point topology. This contradiction proves tha t the 
sequence xn converges to u in every point of ßT. Now we are going to show 
tha t for every y e Y 

И т xny = uy . 
n 

X80 



To see tha t it is sufficient to recall the weU known result of Kakutani [3] 
according to which every у є Y can be expressed as an integral over ßT. The 
assertion mentioned above follows immediately from the convergence of the 
functions xn to u by means of well known properties of the integral. We have 
thus shown tha t the point u is a limit point of the sequence xn also in the 
weak topology corresponding to the space Y. This concludes the proof. 

The question arises how far the assumption tha t T is pseudocompact is 
essential. In fact, if T is an arbitrary completely regular topological space, 
space, we can form the space C(ßT). In the space Y dual to G(ßT) the space 
L(T) consisting of all linear combinations Xxtx + . . . + Xntn, (íť € T) can be 
defined in the same manner as in the preceding lemma. We can define the point 
topology in C(ßT) as the weak topology corresponding to L(T). We can ask 
now whether every equibounded symmetrical convex and pointcompact 
subset B of C(ßT) is already weakly compact. We are going to show tha t this 
question has to be answered in the negative. 

Let us denote by B the normed space of all continuous functions r(p) defined 
on <0, 1). Let us denote by T the closed unit sphere of the space B. The space 
T is thus completely regular. Take G(ßT). Let us denote by 8 the space of all 
hnear functionals on B. Every element s e 8 is continuous and bounded on T 
and can be therefore considered as an element of C(ßT). We have thus 8 C 
C C(ßT). Let us denote by B the intersection of the closed unit sphere of C(ßT) 
with the space S. Since the norm of an element s є 8 as a functional on B 
coincides with its norm as an element of C(ßT), we see tha t B is equal to the 
closed unit sphere of the space S. According to a wellknown theorem the set 
B is compact in the weak topology corresponding to B, so tha t B as a subset 
of C(ßT) is pointcompact in the sense of our definition. 

I t is easy to see tha t , for every p e <0, 1>, the mapping p(t) which assigns to 
the function t є T its value at the point p, is an element of B. I t follows tha t 
B contains all linear combinations 

Kvi + • • • + Kvn 
where pi are points of the interval <(0, 1> and Z|A$| <^ 1. On the other hand, 
if a linear combination 

b = ^iPi + • • • + KVn 
(where the points Pi are differentfromeachother) belongs to B} we must have 
S|A<| ^ 1. This is an easy consequence of the fact tha t a t є T exists so tha t 

Vi(t) = t(pi) = sign Xi . 

Since t e T, b e B, we must have \b(t)\ <^ 1. Now 
b(t) = ZXiPi(t) = ЪЩРі) - 2A, sign Xi = S|A,i . 

The subspace of 8 consisting of all linear combinations AiPi + ••• + Xnpn 

(Pi e <0, 1 » wiU be denoted by P . 
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Let Y be the space dual to C(ßT). Take a p0 є <0, 1>. Let us define a linear 
function z on P by the postulate t h a t zp0 = 1 and zp = 0 for all p e <0, 1>. 
p Ф p0 . I t follows from the above remark t ha t the norm of z on P is exactly 
1. Now z can be extended to the whole of C(ßT) without disturbing its norm, 
so t ha t z becomes an element of the space Y. 

Suppose now tha t the set B is compact in the weak topology corresponding 
to Y. I t follows t ha t z is continuous on B in the point topology. Clearly, if z 
is taken as a linear function од the space S dual to R, it becomes an almost 
continuous linear functional on 8. Since R is complete, there exists an r e R 
such t ha t 

zs = rs 

for every s e 8. Especially, for every p є <0, 1), we obtain 

z(p) = r(p) . 

Now r is a continuous function on <0, 1> and a t the same time we have 
r(p) = 0 for every p Ф p0. I t follows tha t r(p0) = 0. On the other hand, we 
have z(p0) = 1. The contradiction obtained proves tha t the set B cannot be 
compact in the weak topology of the space C(ßT). 

§ 2. 

Now we are able to prove the main theorem. The most essential par t of the 
proof is contained in the preceding lemma. 

(2Д) Let X be a complete convex topological linear space. Let В С X be pseudo-
compact in the weak topology. Then B** is weakly compact. 

Proof : According to a well-known theorem*) it is sufficient to show tha t the 
set J5* is a neighbourhood of zero in the minimal topology of the space Y dual 
to X. To see tha t , let us take a linear function r defined on Y and such tha t 

|rJ8*| £ 1 . 

Our assertion will be proved if we show tha t r is a linear functional on Y. Since 
X is complete, it is sufficient to show tha t r is almost continuous. Let us take 
an arbitrary U and an arbitrary positive number є. Consider the space C(B), 
the set B being taken in the weak topology so tha t B is pseudocompact. For 
every y e Y, denote by y(y) its restriction on B, so tha t y{y) e O(B). 

Let us denote by M(B) the space dual to C(B). Let us take the subspace 
L(B) of M{B). 

Consider the set <p(U*) C C(B). Since r7* is compact in the weak topology 
of Y, it is easy to see tha t <p(TJ*) is compact in the weak topology of C(B) 

*) See, e. g. theorem (3,5) of [4]. 
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corresponding to L(B), in other words, that c?(ř7*) is compact in the point 
topology. 

The set B C X is pseudocompact in the weak topology. I t follows that the 
set By is bounded for every y, so that B is bounded. I t follows that a positive 
number a can be found such tha t B C oU. In other words, for every b є B 
and every y e U*, we have \by\ <S o. This inequality clearly asserts tha t the 
set q)(U*) is equibounded on B. 

Since q>(U*) is clearly symmetrical and convex, we infer from (1,2) tha t 
q)(U*) is compact in the weak topology of the (normed) space C(ßB). Let us 
denote by Z the space dual to G(ßB). I t follows tha t the polar set {(p{U*)Y 
will be a neighbourhood of zero in the minimal topology of the space Z. 

Let us show now that , for every y e Y, the following inequality holds: 

Ы й W(y)\ • 
Here, of course, \q>{y)\ means the usual norm in the space G(ßB). 

To see that , suppose tha t \y(y)\ < \ry\ for some y e Y. I t follows that , for 

a suitable y' = oc'y, the following relations would be fulfilled simultaneously 

W(y')l й i , 
\ryr\ > 1 . 

This is, however, a contradiction, since the inequality \<p(y')\ 5^ 1 is equiva­
lent to the inclusion y' ç B*. Now let yx and y2 be two elements of Y such tha t 
q)(y^ = q){y^)- We obtain the following estimate 

VVi — ry2\ = \г(уг — y2)| <; \q>{yx — yB)| = \q>(yx) ~~ cp(y2)\ = 0 

so tha t ry± = ry2. 
I t is therefore possible to define a linear function r on the space y{Y) C G(ßB) 

by means of the relation 

My) = fy • 
At the same time, the estimate \ry\ <^ |c^(y)| shows tha t r is a continuous 
functional on qp(Y) and tha t its norm does not exceed 1. Hence it is possible to 
extend r to the whole of G(ßB) without disturbing its norm. In this way r 
becomes a functional on C(ßB) in other words, a point of Z. 

Since L(B) is dense in Z, a point q e L{B) can be found so tha t q — 
— r є e{q)(U*))z. We have q = Л ^ + . . . + Ànbn, where b{ e J5. I t follows tha t 

l(AA + ... + хпъп ~r) y\ <; г 
for every y e Í7* . 

We have thus shown tha t r can be approximated on £7* by means of a con­
tinuous functional with an error <^ e. This proves tha t r is an almost continuous 
functional. 
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§3. 
Added, January 16, 1954. The assumption tha t B is equibounded is not 

necessary in (1,2). In fact we have the following simple lemma. 

(ЗД) Let T be a pseudocompact completely regular topological space. Let 
BcC(T) be symmetrical convex and compact in the point topology. Then there 
exists a number a < 0 such that \b(t)\ <^ a for every b є B and every t e T. 

Proof : We shall use the following abbreviations. For any xeG(T), let 
\x\ + = max x(t). For any t e T, let ß(t) = max b(t). 

UT beB 

To prove our theorem, it is sufficient to show tha t 

sup \b\+ < oo . 
ЫВ 

Suppose tha t sup \b\+ = oo. Then the reex i s t s a b± e B and a point tx є T 
beB 

such tha t bxtx > 1. We shall denote by B1 the set 

Вг = E [b є В, Ыг > 1] . 
b 

We have thus Вг Ф 0. Suppose now tha t the points tl9 . . . , tn have been akeady 
constructed so tha t the set 

Bn = E [b e B, bti > i, 1 <; i <£ n] 
b 

contains at least one point bn. 

Suppose tha t \Bn\+ <^ n + 1. Choose a real number X so tha t 

i ^ a ^ i + ßM 1 > A > max . 
bJi+ ß(ti) 

Take an arbitrary b e B. We have then 

Àbn + (l-A)beB 

and at the same time, for every i (1 <^ i <^ n) 

lbnti + (1 — X) Ыі > lbnti — (1 — A) ß(tt) > і 

so tha t Àbn + (1 — A) b e Bn. I t follows tha t 

\Ѣп + (l~À)b\+£n+ 1 . 

On the other hand, we have 

b = Y ^ ({Xbn + (1 - A) b) — Xbn) 

whence 

\b\+uj^{n+l + \bn\+). 
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Now Ъ was an arbitrary element of B. This contradiction shows that the 
inequality \Bn\ + <̂  n + 1 is impossible. We have thus proved the existence of 
a point bn+i є Bn and a point tn+1 such that bn+1tn+1 > n + 1. We have then 

bn+i є Bn+1 = E [ò e Б, 6̂ - > г, 1 <̂  i fg ?г + 1] . 
b 

Put 
Cn - E [Ď e B, Ui >̂ г, 1 ^ i £ n] . 

6 

Clearly the sets Gn are closed in the point topology and Cn Э Cn+1 for every n. 
The sets Cn are not empty since Gn Э Bn. It follows that there exists a point 
6 e B which lies in every Cn. For such a point b, we have bt{ >̂ г for every i, 
which is a contradiction, the function b being bounded on T. 

This concludes the proof. 
We need not emphasise that the convexity of B is essential in the preceding 

lemma. The most trivial examples show that the lemma does not remain true 
if this assumption is dropped. 

Some of the results of the present paper admit further interesting generali­
zations. We intend to return to these questions in another communication. 
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Резюме 

СЛАБАЯ КОМПАКТНОСТЬ В ТОПОЛОГИЧЕСКИХ ЛИНЕЙНЫХ 
ПРОСТРАНСТВАХ 

ВЛАСТИМИЛ ПТАК (Vlastimil Pták) , Прага. 
(Поступило в редакцию 8/ІѴ 1953 г.) 

/ 
Целыо настоящей работы является доказательство теоремы, которая 

представляет собой обобщение двух известных теорем теории нормиро­
ванных пространств. 

185 



M. Крейн и В. Шмульян показали в [5], что замкнутая выпуклая 
обоЛочка слабо компактного подмножества любого пространства Банаха 
является слабо компактной. В 1947 г. В. Ф. Эберлейн [1] получил сле­
дующий важный результат. Пусть M слабо замкнутое и слабо счетно 
компактное подмножество некоторого пространства Банаха. Тогда M 
является слабо компактным. 

В настоящей заметке мы занимаемся более общим понятием псевдоком­
пактного множества. Мыдоказываемтеорему, которая является одновре­
менно обобщением результатов Крейна, ПІмульяна и Эберлейна. 

Пусть X — полное топоЛогическое линейное пространство. Пусть M — 
псевдокомпактно в слабой топологии пространства X. Тогда замкнутая 
симметричная выпуклая оболочка множества M является слабо комдакт-
ной. 

Доказательство основывается на том обстоятельстве, что псевдокомпакт-
ные пространства обладают одним замечантельным свойством, которое не 
кажется вполне поверхностным. [См. лемму (1,2) настоящей заметки.] 
Пользуясь этим результатом, высказанную сверху теорему можем 
доказать без трудностей. 
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