Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
Summary:
Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
References:
[1] Axler, S., Chang, S. A., Sarason, D.: Products of Toeplitz operators. Integral Equations Oper. Theory 1 (1978), 285-309. DOI 10.1007/BF01682841 | MR 0511973 | Zbl 0396.47017
[2] Benhida, C., Fricain, E., Timotin, D.: Reducing subspaces of $C_{00}$ contractions. New York J. Math. 27 (2021), 1597-1612. MR 4359207 | Zbl 07474337
[3] Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math., Uppsala 81 (1949), 239-255. DOI 10.1007/BF02395019 | MR 0027954 | Zbl 0033.37701
[4] Câmara, M. C., Partington, J. R.: Multipliers and equivalences between Toeplitz kernels. J. Math. Anal. Appl. 465 (2018), 557-570. DOI 10.1016/j.jmaa.2018.05.023 | MR 3806717 | Zbl 1391.42010
[5] Câmara, M. C., Partington, J. R.: Toeplitz kernels and model spaces. The Diversity and Beauty of Applied Operator Theory Operator Theory: Advances and Applications 268. Springer, Cham (2018), 139-153. DOI 10.1007/978-3-319-75996-8_7 | MR 3793302
[6] Douglas, R. G.: Banach Algebra Techniques in the Theory of Toeplitz Operators. Regional Conference Series in Mathematics 15. AMS, Providence (1973). DOI 10.1090/cbms/015 | MR 0361894 | Zbl 0252.47025
[7] Fricain, E., Hartmann, A., Ross, W. T.: Multipliers between model spaces. Stud. Math. 240 (2018), 177-191. DOI 10.4064/sm8782-4-2017 | MR 3720929 | Zbl 1394.30043
[8] Garcia, S. R., Ross, W. T.: Model spaces: A survey. Invariant Subspaces of the Shift Operator Contemporary Mathematics 638. AMS, Providence (2015), 197-245. DOI 10.1090/conm/638 | MR 3309355 | Zbl 1353.47016
[9] Garnett, J. B.: Bounded Analytic Functions. Graduate Texts in Mathematics 236. Springer, New York (2007). DOI 10.1007/0-387-49763-3 | MR 2261424 | Zbl 1106.30001
[10] Hartmann, A., Mitkovski, M.: Kernels of Toeplitz operators. Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions Contemporary Mathematics 679. AMS, Providence (2016), 147-177. DOI 10.1090/conm/679 | MR 3589674 | Zbl 1375.30084
[11] Hayashi, E.: The kernel of a Toeplitz operator. Integral Equations Oper. Theory 9 (1986), 588-591. DOI 10.1007/BF01204630 | MR 0853630 | Zbl 0636.47023
[12] Martínez-Avendaño, R. A., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert Space. Graduate Texts in Mathematics 237. Springer, New York (2007). DOI 10.1007/978-0-387-48578-2 | MR 2270722 | Zbl 1116.47001
[13] Nikolski, N. K.: Operators, Functions, and Systems: An Easy Reading. Volume 1. Hardy, Hankel, and Toeplitz. Mathematical Surveys and Monographs 92. AMS, Providence (2002). DOI 10.1090/surv/092 | MR 1864396 | Zbl 1007.47001
[14] Sarason, D.: Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1 (2007), 491-526. DOI 10.7153/oam-01-29 | MR 2363975 | Zbl 1144.47026
[15] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Universitext. Springer, New York (2010). DOI 10.1007/978-1-4419-6094-8 | MR 2760647 | Zbl 1234.47001
[16] Yang, X.: The relationship between model spaces and the invariant subspaces of the unilateral shift operator. Contemp. Math. 5 (2024), 1474-1486. DOI 10.37256/cm.5220243835
[17] Yang, X., Li, R., Lu, Y.: The kernel spaces and Fredholmness of truncated Toeplitz operators. Turk. J. Math. 45 (2021), 2180-2198. DOI 10.3906/mat-2102-109 | MR 4316916 | Zbl 07578944
[18] Yang, X., Li, R., Yang, Y., Lu, Y.: Finite-rank and compact defect operators of truncated Toeplitz operators. J. Math. Anal. Appl. 510 (2022), Article ID 126032, 26 pages. DOI 10.1016/j.jmaa.2022.126032 | MR 4372793 | Zbl 07474373
[19] Yang, X., Lu, Y., Yang, Y.: Compact commutators of truncated Toeplitz operators on the model space. Ann. Funct. Anal. 13 (2022), Article ID 49, 21 pages. DOI 10.1007/s43034-022-00196-3 | MR 4446266 | Zbl 07548894
Partner of
EuDML logo