Error estimation for finite element solutions on meshes that contain thin elements.
(English).Applications of Mathematics,
vol. 69
(2024),
issue 5,
pp. 571-588
Keywords: finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles
Summary: In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
[1] Apel, T.: Anisotropic Finite Element: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Leipzig (1999). MR 1716824 | Zbl 0934.65121
[2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462 | Zbl 0324.65046
[3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227-2233. DOI 10.1016/j.camwa.2007.11.010 | MR 2413688 | Zbl 1142.65443
[6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North Holand, Amsterdam (1978). DOI 10.1137/1.9780898719208 | MR 0520174 | Zbl 0383.65058
[7] Duprez, M., Lleras, V., Lozinski, A.: Finite element method with local damage of the mesh. ESAIM, Math. Model. Numer. Anal. 53 (2019), 1871-1891. DOI 10.1051/m2an/2019023 | MR 4019760 | Zbl 1434.65250
[10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79-88. DOI 10.1007/s00211-011-0403-2 | MR 2885598 | Zbl 1255.65196
[13] Kobayashi, K., Tsuchiya, T.: Error analysis of Lagrange interpolation on tetrahedrons. J. Approx. Theory 249 (2020), Article ID 105302, 20 pages. DOI 10.1016/j.jat.2019.105302 | MR 4017412 | Zbl 07135029