[1] Delice, I. I., Sipahi, R.:
Delay-independent stability test for systems with multiple time-delays. IEEE Trans. Automat. Control 57 (2012), 4, 963-972.
DOI
[2] Gu, K. Q., Naghnaeian, M.:
Stability crossing set for systems with three delays. IEEE Trans. Automat. Control 56 (2011), 1, 11-26.
DOI
[3] Gu, K. Q., Niculescu, S.-I., Chen, J.:
On stability crossing curves for general systems with two delays. J. Math. Analysis Appl. 311 (2005), 231-253.
DOI
[4] Koh, M. H., Sipahi, R.:
Effects of edge elimination on the delay margin of a class of LTI consensus dynamics. IEEE Trans. Automat. Control 63 (2018), 12, 4397-4404.
DOI
[5] Li, Z. G., Chen, J. X., Niculescu, S.-I., Cela, A.:
New insights in stability analysis of delayed Lotka-Volterra systems. Franklin Inst. 355 (2018), 8683-8697.
DOI 10.1016/j.jfranklin.2018.09.011
[6] Li, Y. M., Gu, K. Q., Zhou, J. P., Xu, S. Y.:
Estimating stable delay intervals with a discretized Lyapunov-Krasovskii functional formulation. Automatica 50 (2014), 1691-1697.
DOI
[7] Louisell, J.:
Imaginary axis eigenvalues of matrix delay equations with a certain alternating coefficient structure. Systems Control Lett. 110 (2017), 49-54.
DOI
[8] Luo, G. W., Zhang, X. X.: Hopf Bifurcation of HR and FHN Neuron Systems with Time Delayed. Master Degree Thesis of Lanzhou Jiaotong University, 2018.
[9] Naghnaeian, M., Gu, K. Q.:
Stability crossing set for systems with two scalar-delay channels. Automatica 49 (2013), 2098-2106.
DOI
[10] Olgac, N., Sipahi, R.:
An exact method for the stability analysis of time-delayed linear time-invariant(LTI) systems. IEEE Trans. Automat. Control 47 (2002), 5, 793-797.
DOI
[11] Qi, T., Zhu, J., Chen, J.:
Fundamental limits on uncertain delays: when is a delay system stabilizable by LTI controllers?. IEEE Trans. Automat. Control 62(2017), 3, 1314-1328.
DOI
[12] Qi, T., Zhu, J., Chen, J.:
On delay radii and bounds of MIMO systems. Automatica 77 (2017), 214-218.
DOI
[13] Ruan, S. G., Wei, J. J.: On the zeros of transcendental functions with application to stability of delay differential equations with two delays. Dynamics Continuous Discrete Impulsive Systems Series A: Math. Analysis 10 (2003), 863-874.
[14] Sipahi, R., Delice, I. I.:
Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays. Automatica 45 (2009), 1449-1454.
DOI
[15] Sun, M., Jia, Q., Tian, L. X.:
A new four-dimensional energy resourses systems and its linear feedback control. Chaos Solitons Fractals 39 (2009), 101-108.
DOI
[16] Sun, M., Tian, L. X.:
An energy resources demand-supply system and its dynamical analysis. Chaos Solitons Fractals 32 (2007), 168-180.
DOI |
Zbl 1133.91524
[17] Sun, M., Tian, L. X.: The chaos control for a new four-dimensional energy demand-supply system. J. Jiangsu University 5 (2007), 25-30.
[18] Wang, Z., Hu, H. Y.:
Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vibration 233 (2000), 215-233.
DOI |
MR 1762567 |
Zbl 1237.93159
[19] Wang, X., Zhang, F. Q., Zhang, Y. J.:
Hopf bifurcation of three species system with time delays. J. Systems Sci. Math. Sci. 30 (2010), 530-540.
MR 2771905
[20] Wang, G. X., Zhou, Z. M., Zhu, S. M., Wang, S. S.: Oridinary Differential Equations. Higher Education Press, Beijing 2006.
[21] Wei, J. J., Wang, H. B., Jiang, W. H.: Theory and Application of Delay Differential Equations. Sciences Press, Beijing 2012.
[22] Yang, Y. H., Cao, G. H.: A hyperchaotic system of five-dimensional energy supply and demand under new energy constraints. J. Systems Engrg. 34 (2019), 159-169.
[23] Yang, K. Y., Zhang, L. L., Zhang, J.:
Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control. Kybernetika 51 (2015), 1084-1100.
DOI