Title:
|
The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures (English) |
Author:
|
Presoto, Adilson Eduardo |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
235-249 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation \[ -\Delta u + {\rm e}^u({\rm e}^u-1) =\mu \quad \mbox {in}\ \Omega \] with the Dirichlet boundary condition. Approximating $\mu $ by a sequence $(\mu _n)_{n \in \mathbb N}$ of $L^1$ functions or finite signed measures such that this equation has a solution $u_n$ for each $n\in \mathbb {N}$, we are interested in establishing the convergence of the sequence $(u_n)_{n\in \mathbb {N}}$ to a function $u^{\#}$ and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by $u^{\#}$. (English) |
Keyword:
|
elliptic equation |
Keyword:
|
exponential nonlinearity |
Keyword:
|
scalar Chern-Simons equation |
Keyword:
|
signed measure |
MSC:
|
35J25 |
MSC:
|
35J61 |
MSC:
|
35R06 |
DOI:
|
10.21136/MB.2020.0165-18 |
. |
Date available:
|
2021-08-18T08:21:00Z |
Last updated:
|
2021-08-18 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149066 |
. |
Reference:
|
[1] Bartolucci, D., Leoni, F., Orsina, L., Ponce, A. C.: Semilinear equations with exponential nonlinearity and measure data.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 799-815. Zbl 1148.35318, MR 2172860, 10.1016/j.anihpc.2004.12.003 |
Reference:
|
[2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext, Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7 |
Reference:
|
[3] Brezis, H., Marcus, M., Ponce, A. C.: Nonlinear elliptic equations with measures revisited.Mathematical Aspects of Nonlinear Dispersive Equations Lectures of the CMI/IAS workshop on Mathematical aspects of nonlinear PDEs, Princeton, 2004. Ann. Math. Stud. 163. Princeton Univ. Press, Princeton 55-109 J. Bourgain et al. Zbl 1151.35034, MR 2333208, 10.1515/9781400827794.55 |
Reference:
|
[4] Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions.Commun. Partial Differ. Equations 16 (1991), 1223-1253. Zbl 0746.35006, MR 1132783, 10.1080/03605309108820797 |
Reference:
|
[5] Brezis, H., Strauss, W. A.: Semi-linear second-order elliptic equations in $L^{1}$.J. Math. Soc. Japan 25 (1973), 565-590. Zbl 0278.35041, MR 0336050, 10.2969/jmsj/02540565 |
Reference:
|
[6] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions.Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660, 10.1201/b18333 |
Reference:
|
[7] Lin, C.-S., Ponce, A. C., Yang, Y.: A system of elliptic equations arising in Chern-Simons field theory.J. Funct. Anal. 247 (2007), 289-350. Zbl 1206.35096, MR 2323438, 10.1016/j.jfa.2007.03.010 |
Reference:
|
[8] Marcus, M., Ponce, A. C.: Reduced limits for nonlinear equations with measures.J. Funct. Anal. 258 (2010), 2316-2372. Zbl 1194.35483, MR 2584747, 10.1016/j.jfa.2009.09.007 |
Reference:
|
[9] Ponce, A. C.: Elliptic PDEs, Measures and Capacities. From the Poisson Equation to Nonlinear Thomas-Fermi Problems.EMS Tracts in Mathematics 23. EMS, Zürich (2016). Zbl 1357.35003, MR 3675703, 10.4171/140 |
Reference:
|
[10] Ponce, A. C., Presoto, A. E.: Limit solutions of the Chern-Simons equation.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 84 (2013), 91-102. Zbl 1282.35395, MR 3034574, 10.1016/j.na.2013.02.004 |
Reference:
|
[11] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus.Ann. Inst. Fourier 15 (1965), 189-257 French. Zbl 0151.15401, MR 192177, 10.5802/aif.204 |
Reference:
|
[12] Vázquez, J. L.: On a semilinear equation in $\Bbb R^{2}$ involving bounded measures.Proc. R. Soc. Edinb., Sect. A 95 (1983), 181-202. Zbl 0536.35025, MR 726870, 10.1017/S0308210500012907 |
. |