Previous |  Up |  Next

Article

Title: The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures (English)
Author: Presoto, Adilson Eduardo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 3
Year: 2021
Pages: 235-249
Summary lang: English
.
Category: math
.
Summary: We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation \[ -\Delta u + {\rm e}^u({\rm e}^u-1) =\mu \quad \mbox {in}\ \Omega \] with the Dirichlet boundary condition. Approximating $\mu $ by a sequence $(\mu _n)_{n \in \mathbb N}$ of $L^1$ functions or finite signed measures such that this equation has a solution $u_n$ for each $n\in \mathbb {N}$, we are interested in establishing the convergence of the sequence $(u_n)_{n\in \mathbb {N}}$ to a function $u^{\#}$ and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by $u^{\#}$. (English)
Keyword: elliptic equation
Keyword: exponential nonlinearity
Keyword: scalar Chern-Simons equation
Keyword: signed measure
MSC: 35J25
MSC: 35J61
MSC: 35R06
DOI: 10.21136/MB.2020.0165-18
.
Date available: 2021-08-18T08:21:00Z
Last updated: 2021-08-18
Stable URL: http://hdl.handle.net/10338.dmlcz/149066
.
Reference: [1] Bartolucci, D., Leoni, F., Orsina, L., Ponce, A. C.: Semilinear equations with exponential nonlinearity and measure data.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 799-815. Zbl 1148.35318, MR 2172860, 10.1016/j.anihpc.2004.12.003
Reference: [2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext, Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [3] Brezis, H., Marcus, M., Ponce, A. C.: Nonlinear elliptic equations with measures revisited.Mathematical Aspects of Nonlinear Dispersive Equations Lectures of the CMI/IAS workshop on Mathematical aspects of nonlinear PDEs, Princeton, 2004. Ann. Math. Stud. 163. Princeton Univ. Press, Princeton 55-109 J. Bourgain et al. Zbl 1151.35034, MR 2333208, 10.1515/9781400827794.55
Reference: [4] Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions.Commun. Partial Differ. Equations 16 (1991), 1223-1253. Zbl 0746.35006, MR 1132783, 10.1080/03605309108820797
Reference: [5] Brezis, H., Strauss, W. A.: Semi-linear second-order elliptic equations in $L^{1}$.J. Math. Soc. Japan 25 (1973), 565-590. Zbl 0278.35041, MR 0336050, 10.2969/jmsj/02540565
Reference: [6] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions.Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660, 10.1201/b18333
Reference: [7] Lin, C.-S., Ponce, A. C., Yang, Y.: A system of elliptic equations arising in Chern-Simons field theory.J. Funct. Anal. 247 (2007), 289-350. Zbl 1206.35096, MR 2323438, 10.1016/j.jfa.2007.03.010
Reference: [8] Marcus, M., Ponce, A. C.: Reduced limits for nonlinear equations with measures.J. Funct. Anal. 258 (2010), 2316-2372. Zbl 1194.35483, MR 2584747, 10.1016/j.jfa.2009.09.007
Reference: [9] Ponce, A. C.: Elliptic PDEs, Measures and Capacities. From the Poisson Equation to Nonlinear Thomas-Fermi Problems.EMS Tracts in Mathematics 23. EMS, Zürich (2016). Zbl 1357.35003, MR 3675703, 10.4171/140
Reference: [10] Ponce, A. C., Presoto, A. E.: Limit solutions of the Chern-Simons equation.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 84 (2013), 91-102. Zbl 1282.35395, MR 3034574, 10.1016/j.na.2013.02.004
Reference: [11] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus.Ann. Inst. Fourier 15 (1965), 189-257 French. Zbl 0151.15401, MR 192177, 10.5802/aif.204
Reference: [12] Vázquez, J. L.: On a semilinear equation in $\Bbb R^{2}$ involving bounded measures.Proc. R. Soc. Edinb., Sect. A 95 (1983), 181-202. Zbl 0536.35025, MR 726870, 10.1017/S0308210500012907
.

Files

Files Size Format View
MathBohem_146-2021-3_1.pdf 253.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo