Title:
|
H-anti-invariant submersions from almost quaternionic Hermitian manifolds (English) |
Author:
|
Park, Kwang-Soon |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
557-578 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems. (English) |
Keyword:
|
Riemannian submersion |
Keyword:
|
Lagrangian Riemannian submersion |
Keyword:
|
decomposition theorem |
Keyword:
|
totally geodesic |
MSC:
|
53C15 |
MSC:
|
53C26 |
idZBL:
|
Zbl 06738539 |
idMR:
|
MR3661061 |
DOI:
|
10.21136/CMJ.2017.0143-16 |
. |
Date available:
|
2017-06-01T14:33:41Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146776 |
. |
Reference:
|
[1] Altafini, C.: Redundant robotic chains on Riemannian submersions.IEEE Transactions on Robotics and Automation 20 (2004), 335-340. 10.1109/tra.2004.824636 |
Reference:
|
[2] Alekseevsky, D. V., Marchiafava, S.: Almost complex submanifolds of quaternionic manifolds.Steps in differential geometry Kozma, L. et al. Proc. of the colloquium on differential geometry, Debrecen, 2000, Inst. Math. Inform. Debrecen (2001), 23-38. Zbl 1037.53029, MR 1859285 |
Reference:
|
[3] Baird, P., Wood, J. C.: Harmonic Morphisms between Riemannian Manifolds.London Mathematical Society Monographs, New Series 29, Oxford University Press, Oxford (2003). Zbl 1055.53049, MR 2044031, 10.1093/acprof:oso/9780198503620.001.0001 |
Reference:
|
[4] Besse, A. L.: Einstein Manifolds.Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin (1987). Zbl 0613.53001, MR 0867684, 10.1007/978-3-540-74311-8 |
Reference:
|
[5] Bourguignon, J.-P.: A mathematician's visit to Kaluza-Klein theory.Conf. on Partial Differential Equations and Geometry, Torino, 1988, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163. Zbl 0717.53062, MR 1086213 |
Reference:
|
[6] Bourguignon, J. P., Jr., H. B. Lawson: Stability and isolation phenomena for Yang-Mills fields.Commum. Math. Phys. 79 (1981), 189-230. Zbl 0475.53060, MR 0612248, 10.1007/bf01942061 |
Reference:
|
[7] Chinea, D.: Almost contact metric submersions.Rend. Circ. Mat. Palermo II. Ser. 34 (1985), 89-104. Zbl 0572.53033, MR 0790818, 10.1007/BF02844887 |
Reference:
|
[8] Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry I. Vector multiplets.J. High Energy Phys. (electronic) 3 (2004), no. 028, 73 pages. MR 2061551, 10.1088/1126-6708/2004/03/028 |
Reference:
|
[9] Falcitelli, M., Ianus, S., Pastore, A. M.: Riemannian Submersions and Related Topics.World Scientific Publishing, River Edge (2004). Zbl 1067.53016, MR 2110043, 10.1142/5568 |
Reference:
|
[10] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions.J. Math. Mech. 16 (1967), 715-737. Zbl 0147.21201, MR 0205184 |
Reference:
|
[11] Ianuş, S., Mazzocco, R., lcu, G. E. Vî: Riemannian submersions from quaternionic manifolds.Acta. Appl. Math. 104 (2008), 83-89. Zbl 1151.53329, MR 2434668, 10.1007/s10440-008-9241-3 |
Reference:
|
[12] Ianus, S., Vişinescu, M.: Kaluza-Klein theory with scalar fields and generalised Hopf manifolds.Classical Quantum Gravity 4 (1987), 1317-1325. Zbl 0629.53072, MR 0905571, 10.1088/0264-9381/4/5/026 |
Reference:
|
[13] Ianus, S., Visinescu, M.: Space-time compactification and Riemannian submersions.The Mathematical Heritage of C. F. Gauss, Collect. Pap. Mem. C. F. Gauss, World Sci. Publ., River Edge (1991), 358-371. Zbl 0765.53064, MR 1146240, 10.1142/9789814503457_0026 |
Reference:
|
[14] Marrero, J. C., Rocha, J.: Locally conformal Kähler submersions.Geom. Dedicata 52 (1994), 271-289. Zbl 0810.53054, MR 1299880, 10.1007/BF01278477 |
Reference:
|
[15] Mémoli, F., Sapiro, G., Thompson, P.: Implicit brain imaging.NeuroImage 23 (2004), 179-188. 10.1016/j.neuroimage.2004.07.072 |
Reference:
|
[16] Mustafa, M. T.: Applications of harmonic morphisms to gravity.J. Math. Phys. 41 (2000), 6918-6929. Zbl 0974.58017, MR 1781415, 10.1063/1.1290381 |
Reference:
|
[17] O'Neill, B.: The fundamental equations of a submersion.Mich. Math. J. 13 (1966), 458-469. Zbl 0145.18602, MR 0200865, 10.1307/mmj/1028999604 |
Reference:
|
[18] Park, K.-S.: H-semi-invariant submersions.Taiwanese J. Math. 16 (2012), 1865-1878. Zbl 1262.53028, MR 2970690, 10.11650/twjm/1500406802 |
Reference:
|
[19] Park, K.-S.: H-slant submersions.Bull. Korean Math. Soc. 49 (2012), 329-338. Zbl 1237.53016, MR 2934483, 10.4134/BKMS.2012.49.2.329 |
Reference:
|
[20] Park, K.-S.: H-semi-slant submersions from almost quaternionic Hermitian manifolds.Taiwanese J. Math. 18 (2014), 1909-1926. Zbl 06693490, MR 3284038, 10.11650/tjm.18.2014.4079 |
Reference:
|
[21] Ponge, R., Reckziegel, H.: Twisted products in pseudo-Riemannian geometry.Geom. Dedicata 48 (1993), 15-25. Zbl 0792.53026, MR 1245571, 10.1007/BF01265674 |
Reference:
|
[22] Sahin, B. \d: Anti-invariant Riemannian submersions from almost Hermitian manifolds.Cent. Eur. J. Math. 8 (2010), 437-447. Zbl 1207.53036, MR 2653653, 10.2478/s11533-010-0023-6 |
Reference:
|
[23] Şahin, B.: Riemannian submersions from almost Hermitian manifolds.Taiwanese J. Math. 17 (2013), 629-659. Zbl 1286.53041, MR 3044527, 10.11650/tjm.17.2013.2191 |
Reference:
|
[24] Watson, B.: Almost Hermitian submersions.J. Differ. Geom. 11 (1976), 147-165. Zbl 0355.53037, MR 0407784, 10.4310/jdg/1214433303 |
Reference:
|
[25] Watson, B.: $G,G'$-Riemannian submersions and non-linear gauge field equations of general relativity.Global Analysis -- Analysis on Manifolds Teubner-Texte Math. 57, Teubner, Leipzig (1983), 324-349. Zbl 0525.53052, MR 0730623 |
. |