Previous |  Up |  Next

Article

Title: Dynamics in a discrete predator-prey system with infected prey (English)
Author: Xu, Changjin
Author: Li, Peiluan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 3
Year: 2014
Pages: 511-534
Summary lang: English
.
Category: math
.
Summary: In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results. (English)
Keyword: predator-prey model
Keyword: periodic solution
Keyword: topological degree
Keyword: global asymptotic stability
MSC: 34C25
MSC: 34K20
MSC: 39A23
MSC: 39A30
MSC: 92D25
idZBL: Zbl 06391468
idMR: MR3269371
DOI: 10.21136/MB.2014.143939
.
Date available: 2014-09-29T09:19:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143939
.
Reference: [1] Agiza, H. N., Elabbasy, E. M., El-Metwally, H., Elsadany, A. A.: Chaotic dynamics of a discrete prey-predator model with Holling type II.Nonlinear Anal., Real World Appl. 10 116-129 (2009). Zbl 1154.37335, MR 2451695
Reference: [2] Apreutesei, N., Dimitriu, G.: On a prey-predator reaction-diffusion system with Holling type III functional response.J. Comput. Appl. Math. 235 366-379 (2010). Zbl 1205.65274, MR 2677695, 10.1016/j.cam.2010.05.040
Reference: [3] Dai, B., Zou, J.: Periodic solutions of a discrete-time diffusive system governed by backward difference equations.Adv. Difference Equ. 2005 263-274 (2005). Zbl 1128.39300, MR 2201685
Reference: [4] Ding, X., Lu, C.: Existence of positive periodic solution for ratio-dependent $N$-species difference system.Appl. Math. Modelling 33 2748-2756 (2009). Zbl 1205.39001, MR 2502144, 10.1016/j.apm.2008.08.008
Reference: [5] Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system.Math. Comput. Modelling 35 951-961 (2002). Zbl 1050.39022, MR 1910673, 10.1016/S0895-7177(02)00062-6
Reference: [6] Fazly, M., Hesaaraki, M.: Periodic solutions for a discrete time predator-prey system with monotone functional responses.C. R., Math., Acad. Sci. Paris 345 199-202 (2007). Zbl 1122.39005, MR 2352919, 10.1016/j.crma.2007.06.021
Reference: [7] Freedman, H. I.: Deterministic Mathematical Models in Population Ecology.Monographs and Textbooks in Pure and Applied Mathematics 57 Marcel Dekker, New York (1980). Zbl 0448.92023, MR 0586941
Reference: [8] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Lecture Notes in Mathematics 568 Springer, Berlin (1977). Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [9] Hilker, F. M., Malchow, H.: Strange periodic attractors in a prey-predator system with infected prey.Math. Popul. Stud. 13 119-134 (2006). Zbl 1157.92324, MR 2248300, 10.1080/08898480600788568
Reference: [10] Jiao, J., Cai, S., Chen, L.: Dynamical behaviors of a biological management model with impulsive stocking juvenile predators and continuous harvesting adult predators.J. Appl. Math. Comput. 35 483-495 (2011). Zbl 1216.34041, MR 2748380, 10.1007/s12190-009-0372-0
Reference: [11] Jiao, J., Meng, X., Chen, L.: Harvesting policy for a delayed stage-structured Holling II predator-prey model with impulsive stocking prey.Chaos Solitons Fractals 41 103-112 (2009). Zbl 1198.34153, MR 2533324, 10.1016/j.chaos.2007.11.015
Reference: [12] Kar, T. K., Misra, S., Mukhopadhyay, B.: A bioeconomic model of a ratio-dependent predator-prey system and optimal harvesting.J. Appl. Math. Comput. 22 387-401 (2006). MR 2248467, 10.1007/BF02896487
Reference: [13] Ko, W., Ryu, K.: Coexistence states of a nonlinear Lotka-Volterra type predator-prey model with cross-diffusion.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 e1109--e1115 (2009). Zbl 1238.35162, MR 2671903, 10.1016/j.na.2009.01.097
Reference: [14] Li, Y.: Positive periodic solutions of a discrete mutualism model with time delays.Int. J. Math. Math. Sci. 2005 499-506 (2005). Zbl 1081.92042, MR 2172389, 10.1155/IJMMS.2005.499
Reference: [15] Li, Y., Zhao, K., Ye, Y.: Multiple positive periodic solutions of $n$ species delay competition systems with harvesting terms.Nonlinear Anal., Real World Appl. 12 1013-1022 (2011). Zbl 1225.34094, MR 2736189
Reference: [16] Liu, Q., Xu, R.: Periodic solutions for a delayed one-predator and two-prey system with Holling type-{II} functional response.Ann. Differential Equations 21 14-28 (2005). MR 2133880
Reference: [17] Liu, Z., Zhong, S., Liu, X.: Permanence and periodic solutions for an impulsive reaction-diffusion food-chain system with Holling type III functional response.J. Franklin Inst. 348 277-299 (2011). Zbl 1210.35278, MR 2771841, 10.1016/j.jfranklin.2010.11.007
Reference: [18] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay.Nonlinear Anal., Real World Appl. 7 1104-1118 (2006). Zbl 1104.92065, MR 2260902
Reference: [19] Pei, Y., Chen, L., Zhang, Q., Li, C.: Extinction and permanence of one-prey multi-predators of Holling type {II} function response system with impulsive biological control.J. Theoret. Biol. 235 495-503 (2005). MR 2158283, 10.1016/j.jtbi.2005.02.003
Reference: [20] Scheffer, M.: Fish and nutrients interplay determines algal biomass: a minimal model.Oikos 62 271-282 (1991). 10.2307/3545491
Reference: [21] Song, X., Li, Y.: Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect.Nonlinear Anal., Real World Appl. 9 64-79 (2008). Zbl 1142.34031, MR 2370163
Reference: [22] Wang, G.-Q., Cheng, S. S.: Positive periodic solutions for nonlinear difference equations via a continuation theorem.Adv. Difference Equ. 2004 311-320 (2004). Zbl 1095.39011, MR 2129756
Reference: [23] Wang, L.-L., Li, W.-T., Zhao, P.-H.: Existence and global stability of positive periodic solutions of a discrete predator-prey system with delays.Adv. Difference Equ. 2004 321-336 (2004). Zbl 1081.39007, MR 2129757
Reference: [24] Wiener, J.: Differential equations with piecewise constant delays.Trends in Theory and Practice of Nonlinear Differential Equations V. Lakshmikantham Proc. Int. Conf., Arlington/Tex. 1982. Lecture Notes in Pure and Appl. Math. 90 Dekker, New York 547-552 (1984). Zbl 0557.34059, MR 0741544
Reference: [25] Xu, R., Chen, L., Hao, F.: Periodic solutions of a discrete time Lotka-Volterra type food-chain model with delays.Appl. Math. Comput. 171 91-103 (2005). Zbl 1081.92043, MR 2192861, 10.1016/j.amc.2005.01.027
Reference: [26] Zhang, J., Fang, H.: Multiple periodic solutions for a discrete time model of plankton allelopathy.Adv. Difference Equ. (electronic only) 2006 Article ID 90479, 14 pages (2006). Zbl 1134.39008, MR 2209678
Reference: [27] Zhang, R. Y., Wang, Z. C., Chen, Y., Wu, J.: Periodic solutions of a single species discrete population model with periodic harvest/stock.Comput. Math. Appl. 39 77-90 (2000). Zbl 0970.92019, MR 1729420, 10.1016/S0898-1221(99)00315-6
Reference: [28] Zhang, W., Zhu, D., Bi, P.: Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses.Appl. Math. Lett. 20 1031-1038 (2007). Zbl 1142.39015, MR 2344777, 10.1016/j.aml.2006.11.005
Reference: [29] Zhang, Z., Hou, Z.: Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms.Nonlinear Anal., Real World Appl. 11 1560-1571 (2010). Zbl 1198.34081, MR 2646569
Reference: [30] Zhang, Z., Luo, J.: Multiple periodic solutions of a delayed predator-prey system with stage structure for the predator.Nonlinear Anal., Real World Appl. 11 4109-4120 (2010). Zbl 1205.34111, MR 2683859
Reference: [31] Zhuang, K., Wen, Z.: Dynamics of a discrete three species food chain system.Int. J. Comput. Math. Sci. 5 13-15 (2011). MR 2659270
.

Files

Files Size Format View
MathBohem_139-2014-3_5.pdf 304.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo