Previous |  Up |  Next

Article

Title: Metric dimension and zero forcing number of two families of line graphs (English)
Author: Eroh, Linda
Author: Kang, Cong X.
Author: Yi, Eunjeong
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 3
Year: 2014
Pages: 467-483
Summary lang: English
.
Category: math
.
Summary: Zero forcing number has recently become an interesting graph parameter studied in its own right since its introduction by the “AIM Minimum Rank–Special Graphs Work Group”, whereas metric dimension is a well-known graph parameter. We investigate the metric dimension and the zero forcing number of some line graphs by first determining the metric dimension and the zero forcing number of the line graphs of wheel graphs and the bouquet of circles. We prove that $Z(G) \le 2Z(L(G))$ for a simple and connected graph $G$. Further, we show that $Z(G) \le Z(L(G))$ when $G$ is a tree or when $G$ contains a Hamiltonian path and has a certain number of edges. We compare the metric dimension with the zero forcing number of a line graph by demonstrating a couple of inequalities between the two parameters. We end by stating some open problems. (English)
Keyword: resolving set
Keyword: metric dimension
Keyword: zero forcing set
Keyword: zero forcing number
Keyword: line graph
Keyword: wheel graph
Keyword: bouquet of circles
MSC: 05C05
MSC: 05C12
MSC: 05C38
MSC: 05C50
idZBL: Zbl 06391466
idMR: MR3269369
DOI: 10.21136/MB.2014.143937
.
Date available: 2014-09-29T09:12:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143937
.
Reference: [1] Bailey, R. F., Cameron, P. J.: Base size, metric dimension and other invariants of groups and graphs.Bull. Lond. Math. Soc. 43 209-242 (2011). Zbl 1220.05030, MR 2781204, 10.1112/blms/bdq096
Reference: [2] F. Barioli, W. Barrett, S. Butler, S. M. Ciobă, D. Cvetković, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen, A. W. Wehe (AIM Minimum Rank-- Special Graphs Work Group): Zero forcing sets and the minimum rank of graphs.Linear Algebra Appl. 428 1628-1648 (2008). MR 2388646
Reference: [3] Barioli, F., Barrett, W., Fallat, S. M., Hall, H. T., Hogben, L., Shader, B., Driessche, P. van den, Holst, H. van der: Zero forcing parameters and minimum rank problems.Linear Algebra Appl. 433 401-411 (2010). MR 2645093
Reference: [4] Berman, A., Friedland, S., Hogben, L., Rothblum, U. G., Shader, B.: An upper bound for the minimum rank of a graph.Linear Algebra Appl. 429 1629-1638 (2008). Zbl 1144.05314, MR 2444348
Reference: [5] Buczkowski, P. S., Chartrand, G., Poisson, C., Zhang, P.: On $k$-dimensional graphs and their bases.Period. Math. Hung. 46 9-15 (2003). Zbl 1026.05033, MR 1975342, 10.1023/A:1025745406160
Reference: [6] Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., Wood, D. R.: On the metric dimension of Cartesian products of graphs.SIAM J. Discrete Math. 21 423-441 (2007). Zbl 1139.05314, MR 2318676, 10.1137/050641867
Reference: [7] Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R.: Resolvability in graphs and the metric dimension of a graph.Discrete Appl. Math. 105 99-113 (2000). Zbl 0958.05042, MR 1780464, 10.1016/S0166-218X(00)00198-0
Reference: [8] Chartrand, G., Zhang, P.: The theory and applications of resolvability in graphs: a survey.Proceedings of the Thirty-{F}ourth Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numerantium 160 47-68 (2003). Zbl 1039.05029, MR 2049102
Reference: [9] Chilakamarri, K. B., Dean, N., Kang, C. X., Yi, E.: Iteration index of a zero forcing set in a graph.Bull. Inst. Comb. Appl. 64 57-72 (2012). Zbl 1251.05149, MR 2919232
Reference: [10] Edholm, C. J., Hogben, L., Huynh, M., LaGrange, J., Row, D. D.: Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph.Linear Algebra Appl. 436 4352-4372 (2012). Zbl 1241.05076, MR 2917414
Reference: [11] Eroh, L., Kang, C. X., Yi, E.: A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs.arXiv:1408.5943.
Reference: [12] Eroh, L., Kang, C. X., Yi, E.: On zero forcing number of graphs and their complements.arXiv:1402.1962.
Reference: [13] Fallat, S. M., Hogben, L.: The minimum rank of symmetric matrices described by a graph: a survey.Linear Algebra Appl. 426 558-582 (2007). Zbl 1122.05057, MR 2350678
Reference: [14] Fallat, S. M., Hogben, L.: Variants on the minimum rank problem: a survey II.arXiv: 1102.5142v1.
Reference: [15] Feng, M., Xu, M., Wang, K.: On the metric dimension of line graphs.Discrete Appl. Math. 161 802-805 (2013). Zbl 1262.05069, MR 3027968, 10.1016/j.dam.2012.10.018
Reference: [16] Garey, M. R., Johnson, D. S.: Computers and Intractability. A Guide to the Theory of NP-completeness.A Series of Books in the Mathematical Sciences Freeman, San Francisco (1979). Zbl 0411.68039, MR 0519066
Reference: [17] Harary, F., Melter, R. A.: On the metric dimension of a graph.Ars Comb. 2 191-195 (1976). Zbl 0349.05118, MR 0457289
Reference: [18] Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Wood, D. R.: Extremal graph theory for metric dimension and diameter.Electron. J. Comb. (electronic only) 17 Research paper R30, 28 pages (2010). Zbl 1219.05051, MR 2595490
Reference: [19] Hogben, L., Huynh, M., Kingsley, N., Meyer, S., Walker, S., Young, M.: Propagation time for zero forcing on a graph.Discrete Appl. Math. 160 1994-2005 (2012). Zbl 1246.05056, MR 2927529, 10.1016/j.dam.2012.04.003
Reference: [20] Iswadi, H., Baskoro, E. T., Salman, A. N. M., Simanjuntak, R.: The metric dimension of amalgamation of cycles.Far East J. Math. Sci. (FJMS) 41 19-31 (2010). Zbl 1194.05033, MR 2682501
Reference: [21] Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs.Discrete Appl. Math. 70 217-229 (1996). Zbl 0865.68090, MR 1410574, 10.1016/0166-218X(95)00106-2
Reference: [22] Llibre, J., Todd, M.: Periods, Lefschetz numbers and entropy for a class of maps on a bouquet of circles.J. Difference Equ. Appl. 11 1049-1069 (2005). Zbl 1162.37303, MR 2179503, 10.1080/10236190500331230
Reference: [23] Massey, W. S.: Algebraic Topology: An Introduction. Graduate Texts in Mathematics 56.Springer, New York (1981). MR 0448331
Reference: [24] Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs.J. Comb. Math. Comb. Comput. 40 17-32 (2002). Zbl 0990.05040, MR 1887964
Reference: [25] Row, D. D.: A technique for computing the zero forcing number of a graph with a cut-vertex.Linear Algebra Appl. 436 4423-4432 (2012). Zbl 1241.05086, MR 2917419
Reference: [26] Sebö, A., Tannier, E.: On metric generators of graphs.Math. Oper. Res. 29 383-393 (2004). Zbl 1082.05032, MR 2065985, 10.1287/moor.1030.0070
Reference: [27] Shanmukha, B., Sooryanarayana, B., Harinath, K. S.: Metric dimension of wheels.Far East J. Appl. Math. 8 217-229 (2002). Zbl 1032.05044, MR 1944130
Reference: [28] Slater, P. J.: Dominating and reference sets in a graph.J. Math. Phys. Sci. 22 445-455 (1988). Zbl 0656.05057, MR 0966610
Reference: [29] Slater, P. J.: Leaves of trees.Proc. 6th Southeast. Conf. Comb., Graph Theor., Comput. F. Hoffman et al. Florida Atlantic Univ., Boca Raton, Congr. Numerantium 14 549-559 (1975). Zbl 0316.05102, MR 0422062
Reference: [30] Whitney, H.: Congruent graphs and the connectivity of graphs.Am. J. Math. 54 150-168 (1932). Zbl 0003.32804, MR 1506881, 10.2307/2371086
.

Files

Files Size Format View
MathBohem_139-2014-3_3.pdf 374.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo