Previous |  Up |  Next

Article

Title: On magic joins of graphs (English)
Author: Ivančo, Jaroslav
Author: Polláková, Tatiana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 4
Year: 2012
Pages: 459-472
Summary lang: English
.
Category: math
.
Summary: A graph is called magic (supermagic) if it admits a labeling of the edges by pairwise different (and consecutive) integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we characterize magic joins of graphs and we establish some conditions for magic joins of graphs to be supermagic. (English)
Keyword: magic graph
Keyword: supermagic graph
Keyword: join of graphs
MSC: 05C78
idZBL: Zbl 1274.05420
idMR: MR3058276
DOI: 10.21136/MB.2012.143000
.
Date available: 2012-11-10T20:33:49Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143000
.
Reference: [1] Bezegová, Ľ., Ivančo, J.: An extension of regular supermagic graphs.Discrete Math. 310 (2010), 3571-3578. Zbl 1200.05199, MR 2734738, 10.1016/j.disc.2010.09.005
Reference: [2] Bose, R. C., Shrikhande, S. S., Parker, E. T.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture.Can. J. Math. 12 (1960), 189-203. Zbl 0093.31905, MR 0122729, 10.4153/CJM-1960-016-5
Reference: [3] Doob, M.: Characterizations of regular magic graphs.J. Combin. Theory, Ser. B 25 (1978), 94-104. Zbl 0384.05054, MR 0505855, 10.1016/S0095-8956(78)80013-6
Reference: [4] Drajnová, S., Ivančo, J., Semaničová, A.: Numbers of edges in supermagic graphs.J. Graph Theory 52 (2006), 15-26. Zbl 1088.05063, MR 2214438, 10.1002/jgt.20144
Reference: [5] Gallian, J. A.: A dynamic survey of graph labeling.Electron. J. Combin. 17 (2010), \#DS6. MR 1668059
Reference: [6] Ivančo, J.: On supermagic regular graphs.Math. Bohem. 125 (2000), 99-114. Zbl 0963.05121, MR 1752082
Reference: [7] Ivančo, J., Semaničová, A.: Some constructions of supermagic non-regular graphs.Austral. J. Comb. 38 (2007), 127-139. Zbl 1134.05094, MR 2324280
Reference: [8] Jeurissen, R. H.: Magic graphs, a characterization.Europ. J. Combin. 9 (1988), 363-368. Zbl 0657.05065, MR 0950055, 10.1016/S0195-6698(88)80066-0
Reference: [9] Jezný, S., Trenkler, M.: Characterization of magic graphs.Czech. Math. J. 33 (1983), 435-438. Zbl 0571.05030, MR 0718926
Reference: [10] Sedláček, J.: Problem 27. Theory of Graphs and Its Applications.Proc. Symp. Smolenice, Academia, Praha (1963), 163-164.
Reference: [11] Semaničová, A.: Magic graphs having a saturated vertex.Tatra Mountains Math. Publ. 36 (2007), 121-128. Zbl 1164.05060, MR 2378744
Reference: [12] Stewart, B. M.: Magic graphs.Canad. J. Math. 18 (1966), 1031-1059. Zbl 0149.21401, MR 0197358, 10.4153/CJM-1966-104-7
.

Files

Files Size Format View
MathBohem_137-2012-4_8.pdf 270.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo