Title:
|
Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity (English) |
Author:
|
Krejčí, Pavel |
Author:
|
Sprekels, Jürgen |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
1998 |
Pages:
|
173-205 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress $\sigma $ contains, in addition to elastic, viscous and thermic contributions, a plastic component $\sigma ^p$ of the form $\sigma ^p(x,t)={\mathcal P}[\varepsilon ,\theta (x,t)](x,t)$. Here $\varepsilon $ and $\theta $ are the fields of strain and absolute temperature, respectively, and $\lbrace {\mathcal P}[\cdot ,\theta ]\rbrace _{\theta > 0}$ denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum and energy balance equations governing the space-time evolution of the material forms a system of two highly nonlinearly coupled partial differential equations involving partial derivatives of hysteretic nonlinearities at different places. It is shown that an initial-boundary value problem for this system admits a unique global strong solution which depends continuously on the data. (English) |
Keyword:
|
thermoplasticity |
Keyword:
|
viscoelasticity |
Keyword:
|
hysteresis |
Keyword:
|
Prandtl-Ishlinskii operator |
Keyword:
|
PDEs with hysteresis |
Keyword:
|
thermodynamical consistency |
MSC:
|
35G25 |
MSC:
|
73B05 |
MSC:
|
73B30 |
MSC:
|
73E60 |
MSC:
|
74N30 |
idZBL:
|
Zbl 0940.35052 |
idMR:
|
MR1620624 |
DOI:
|
10.1023/A:1023224507448 |
. |
Date available:
|
2009-09-22T17:57:43Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134384 |
. |
Reference:
|
[BS1] Brokate, M., Sprekels, J.: Existence and optimal control of mechanical processes with hysteresis in viscous solids.IMA J. Appl. Math. 43 (1989), 219–229. MR 1042633, 10.1093/imamat/43.3.219 |
Reference:
|
[BS] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Springer-Verlag, New York, 1996. MR 1411908 |
Reference:
|
[D] Dafermos, C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity.SIAM J. Math. Anal. 13 (1982), 397–408. MR 0653464, 10.1137/0513029 |
Reference:
|
[DH] Dafermos, C. M., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional thermoviscoelasticity.Nonlin. Anal. TMA 6 (1982), 435–454. MR 0661710, 10.1016/0362-546X(82)90058-X |
Reference:
|
[Is] Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies.Izv. AN SSSR, Techn. Ser. 9 (1944), 583–590. |
Reference:
|
[KP] Krasnosel’skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis.Springer-Verlag, Heidelberg, 1989. MR 0987431 |
Reference:
|
[K1] Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations.Math. Z. 193 (1986), 247–264. MR 0856153, 10.1007/BF01174335 |
Reference:
|
[K2] Krejčí, P.: A monotonicity method for solving hyperbolic problems with hysteresis.Apl. Mat. 33 (1988), 197–202. MR 0944783 |
Reference:
|
[K] Krejčí, P.: Hysteresis, convexity and dissipation in hyperbolic equations.Gakuto Int. Series Math. Sci. & Appl., Vol. 8, Gakkōtosho, Tokyo, 1996. MR 2466538 |
Reference:
|
[KS] Krejčí, P., Sprekels, J.: On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity.J. Math. Anal. Appl. 209 (1997), 25–46. MR 1444509, 10.1006/jmaa.1997.5304 |
Reference:
|
[LC] Lemaitre, J., Chaboche, J.-L.: Mechanics of solid materials.Cambridge Univ. Press, 1990. |
Reference:
|
[L] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693 |
Reference:
|
[M] Müller, I.: Thermodynamics.Pitman, New York, 1985. |
Reference:
|
[P] Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper.Z. Ang. Math. Mech. 8 (1928), 85–106. 10.1002/zamm.19280080202 |
Reference:
|
[S] Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media.Springer, Berlin-Heidelberg, 1996. MR 1423807 |
. |