Previous |  Up |  Next

Article

Title: Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity (English)
Author: Krejčí, Pavel
Author: Sprekels, Jürgen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 3
Year: 1998
Pages: 173-205
Summary lang: English
.
Category: math
.
Summary: In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress $\sigma $ contains, in addition to elastic, viscous and thermic contributions, a plastic component $\sigma ^p$ of the form $\sigma ^p(x,t)={\mathcal P}[\varepsilon ,\theta (x,t)](x,t)$. Here $\varepsilon $ and $\theta $ are the fields of strain and absolute temperature, respectively, and $\lbrace {\mathcal P}[\cdot ,\theta ]\rbrace _{\theta > 0}$ denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum and energy balance equations governing the space-time evolution of the material forms a system of two highly nonlinearly coupled partial differential equations involving partial derivatives of hysteretic nonlinearities at different places. It is shown that an initial-boundary value problem for this system admits a unique global strong solution which depends continuously on the data. (English)
Keyword: thermoplasticity
Keyword: viscoelasticity
Keyword: hysteresis
Keyword: Prandtl-Ishlinskii operator
Keyword: PDEs with hysteresis
Keyword: thermodynamical consistency
MSC: 35G25
MSC: 73B05
MSC: 73B30
MSC: 73E60
MSC: 74N30
idZBL: Zbl 0940.35052
idMR: MR1620624
DOI: 10.1023/A:1023224507448
.
Date available: 2009-09-22T17:57:43Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134384
.
Reference: [BS1] Brokate, M., Sprekels, J.: Existence and optimal control of mechanical processes with hysteresis in viscous solids.IMA J. Appl. Math. 43 (1989), 219–229. MR 1042633, 10.1093/imamat/43.3.219
Reference: [BS] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Springer-Verlag, New York, 1996. MR 1411908
Reference: [D] Dafermos, C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity.SIAM J. Math. Anal. 13 (1982), 397–408. MR 0653464, 10.1137/0513029
Reference: [DH] Dafermos, C. M., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional thermoviscoelasticity.Nonlin. Anal. TMA 6 (1982), 435–454. MR 0661710, 10.1016/0362-546X(82)90058-X
Reference: [Is] Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies.Izv. AN SSSR, Techn. Ser. 9 (1944), 583–590.
Reference: [KP] Krasnosel’skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis.Springer-Verlag, Heidelberg, 1989. MR 0987431
Reference: [K1] Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations.Math. Z. 193 (1986), 247–264. MR 0856153, 10.1007/BF01174335
Reference: [K2] Krejčí, P.: A monotonicity method for solving hyperbolic problems with hysteresis.Apl. Mat. 33 (1988), 197–202. MR 0944783
Reference: [K] Krejčí, P.: Hysteresis, convexity and dissipation in hyperbolic equations.Gakuto Int. Series Math. Sci. & Appl., Vol. 8, Gakkōtosho, Tokyo, 1996. MR 2466538
Reference: [KS] Krejčí, P., Sprekels, J.: On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity.J. Math. Anal. Appl. 209 (1997), 25–46. MR 1444509, 10.1006/jmaa.1997.5304
Reference: [LC] Lemaitre, J., Chaboche, J.-L.: Mechanics of solid materials.Cambridge Univ. Press, 1990.
Reference: [L] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [M] Müller, I.: Thermodynamics.Pitman, New York, 1985.
Reference: [P] Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper.Z. Ang. Math. Mech. 8 (1928), 85–106. 10.1002/zamm.19280080202
Reference: [S] Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media.Springer, Berlin-Heidelberg, 1996. MR 1423807
.

Files

Files Size Format View
AplMat_43-1998-3_2.pdf 497.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo