Previous |  Up |  Next

Article

Title: Maple tools for the Kurzweil integral (English)
Author: Adams, Peter
Author: Výborný, Rudolf
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 4
Year: 2006
Pages: 337-346
Summary lang: English
.
Category: math
.
Summary: Riemann sums based on $\delta $-fine partitions are illustrated with a Maple procedure. (English)
Keyword: Kurzweil’s integral
Keyword: fine partition
Keyword: Riemann sum
MSC: 26-04
MSC: 26A39
MSC: 28-01
MSC: 28-02
MSC: 28-04
MSC: 28E99
idZBL: Zbl 1112.28015
idMR: MR2273926
DOI: 10.21136/MB.2006.133971
.
Date available: 2009-09-24T22:27:07Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133971
.
Reference: [1] P. Adams, K. Smith, R. Výborný: Introduction to Mathematics with Maple.World Scientific, Singapore, 2004.
Reference: [2] Robert G. Bartle: A Modern Theory of Integration.AMS, Graduate Studies in Mathematics, vol. 32, Providence, Rhode Island, 2001. MR 1817647
Reference: [3] Robert G. Bartle, Donald R. Sherbert: Introduction to Real Analysis.John Wiley & Sons, New York, 2000. MR 1135107
Reference: [4] J. D. DePree, C. Swartz: Introduction to Real Analysis.Wiley, New York, 1988. MR 1042294
Reference: [5] Russel A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.AMS, Graduate Studies in Mathematics, vol. 4, Providence, Rhode Island, 1991.
Reference: [6] R. Henstock: Definitions of Riemann type of the variational integrals.Proc. London Math. Soc. 11 (1961), 401–418. Zbl 0099.27402, MR 0132147
Reference: [7] R. Henstock: Theory of Integration.Butterworths, London, 1963. Zbl 0154.05001, MR 0158047
Reference: [8] R. Henstock: Linear Analysis.Butterworths, London, 1967. Zbl 0172.39001, MR 0419707
Reference: [9] R. Henstock: A Riemann integral of Lebesgue power.Canad. J. Math. 20 (1968), 79–87. MR 0219675, 10.4153/CJM-1968-010-5
Reference: [10] R. Henstock: Lectures on the Theory of Integration.World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [11] J. Kurzweil: Generalized ordinary differential equations.Czechoslovak Math. J. 7 (1957), 418–446. Zbl 0090.30002, MR 0111875
Reference: [12] J. Kurzweil: Nichtabsolut konvergente Integrale.Teubner, Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [13] P. Y. Lee, R. Výborný: The Integral: An easy approach after Kurzweil and Henstock.Cambridge University Press, Cambridge, UK, 2000. MR 1756319
Reference: [14] P. Y. Lee: Lanzhou Lectures on Henstock Integration.W.A. Benjamin, Inc, New York, Amsterdam, 1967.
Reference: [15] J. Mawhin: Introduction à l’Analyse.3rd edition, Cabay, Louvain-la-Neuve, 1983.
Reference: [16] Robert M. McLeod: The Generalized Riemann Integral, Carus Mathematical Monographs, vol. 20.Mathematical Association of America, Washington D.C., 1980. MR 0588510
Reference: [17] P. Muldowney: A General Theory of Integration in Function Spaces.Longmans, Harlow, 1987. Zbl 0623.28008
.

Files

Files Size Format View
MathBohem_131-2006-4_1.pdf 349.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo