Title:
|
A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications (English) |
Author:
|
Satco, B. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
1029-1047 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained. (English) |
Keyword:
|
Komlós convergence |
Keyword:
|
Henstock-Kurzweil integral |
Keyword:
|
Henstock-Kurzweil-Pettis set-valued integral |
Keyword:
|
selection |
MSC:
|
26A39 |
MSC:
|
26E25 |
MSC:
|
28A20 |
MSC:
|
28B20 |
idZBL:
|
Zbl 1164.28301 |
idMR:
|
MR2261675 |
. |
Date available:
|
2009-09-24T11:41:00Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128128 |
. |
Reference:
|
[1] E. Balder: New sequential compactness results for spaces of scalarly integrable functions.J. Math. Anal. Appl. 151 (1990), 1–16. Zbl 0733.46015, MR 1069442, 10.1016/0022-247X(90)90237-A |
Reference:
|
[2] E. Balder, C. Hess: Two generalizations of Komlós theorem with lower closure-type applications.J. Convex Anal. 3 (1996), 25–44. MR 1422749 |
Reference:
|
[3] E. Balder, A. R. Sambucini: On weak compactness and lower closure results for Pettis integrable (multi)functions.Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. MR 2070028, 10.4064/ba52-1-6 |
Reference:
|
[4] C. Castaing: Weak compactness and convergences in Bochner and Pettis integration.Vietnam J. Math. 24 (1996), 241–286. MR 2010821 |
Reference:
|
[5] C. Castaing, P. Clauzure: Compacité faible dans l’espace $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation.Ann. Mat. Pura Appl. 140 (1985), 345–364. MR 0807644, 10.1007/BF01776856 |
Reference:
|
[6] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions.Lect. Notes Math. Vol. 580, Springer-Verlag, Berlin, 1977. MR 0467310, 10.1007/BFb0087688 |
Reference:
|
[7] T. S. Chew, F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals.Differential Integral Equations 4 (1991), 861–868. MR 1108065 |
Reference:
|
[8] M. Cichón, I. Kubiaczyk, A. Sikorska: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem.Czechoslovak Math. J. 54 (2004), 279–289. MR 2059250, 10.1023/B:CMAJ.0000042368.51882.ab |
Reference:
|
[9] K. El Amri, C. Hess: On the Pettis integral of closed valued multifunctions.Set-Valued Analysis 8 (2000), 329–360. MR 1802239, 10.1023/A:1026547222209 |
Reference:
|
[10] M. Federson, R. Bianconi: Linear integral equations of Volterra concerning Henstock integrals.Real Anal. Exchange 25 (1999/00), 389–417. MR 1758896 |
Reference:
|
[11] M. Federson, P. Táboas: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals.Nonlinear Anal. Ser. A: Theory Methods 50 (2002), 389–407. MR 1906469 |
Reference:
|
[12] J. L. Gamez, J. Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals.Studia Math. 130 (1998), 115–133. MR 1623348 |
Reference:
|
[13] R. A. Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals].Studia Math. 92 (1989), 73–91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91 |
Reference:
|
[14] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Grad. Stud. Math. Vol 4, AMS, Providence, 1994. Zbl 0807.26004, MR 1288751, 10.1090/gsm/004/09 |
Reference:
|
[15] C. Hess: On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence.J. Multivariate Anal. 39 (1991), 175–201. Zbl 0746.60051, MR 1128679, 10.1016/0047-259X(91)90012-Q |
Reference:
|
[16] C. Hess, H. Ziat: Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications.Ann. Sci. Math. Québec 26 (2002), 181–198. MR 1980843 |
Reference:
|
[17] J. Komlós: A generalization of a problem of Steinhaus.Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. MR 0210177, 10.1007/BF02020976 |
Reference:
|
[18] K. Musial: Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May 1992.Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. MR 1248654 |
Reference:
|
[19] L. Di Piazza, K. Musial: Set-valued Kurzweil-Henstock-Pettis integral.Set-Valued Analysis 13 (2005), 167–179. MR 2148134, 10.1007/s11228-004-0934-0 |
Reference:
|
[20] S. Schwabik: The Perron integral in ordinary differential equations.Differential Integral Equations 6 (1993), 863–882. Zbl 0784.34006, MR 1222306 |
. |