Previous |  Up |  Next

Article

Title: A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications (English)
Author: Satco, B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 1029-1047
Summary lang: English
.
Category: math
.
Summary: This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained. (English)
Keyword: Komlós convergence
Keyword: Henstock-Kurzweil integral
Keyword: Henstock-Kurzweil-Pettis set-valued integral
Keyword: selection
MSC: 26A39
MSC: 26E25
MSC: 28A20
MSC: 28B20
idZBL: Zbl 1164.28301
idMR: MR2261675
.
Date available: 2009-09-24T11:41:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128128
.
Reference: [1] E.  Balder: New sequential compactness results for spaces of scalarly integrable functions.J.  Math. Anal. Appl. 151 (1990), 1–16. Zbl 0733.46015, MR 1069442, 10.1016/0022-247X(90)90237-A
Reference: [2] E. Balder, C. Hess: Two generalizations of Komlós theorem with lower closure-type applications.J.  Convex Anal. 3 (1996), 25–44. MR 1422749
Reference: [3] E.  Balder, A. R.  Sambucini: On weak compactness and lower closure results for Pettis integrable (multi)functions.Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. MR 2070028, 10.4064/ba52-1-6
Reference: [4] C.  Castaing: Weak compactness and convergences in Bochner and Pettis integration.Vietnam J.  Math. 24 (1996), 241–286. MR 2010821
Reference: [5] C.  Castaing, P.  Clauzure: Compacité faible dans l’espace  $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation.Ann. Mat. Pura Appl. 140 (1985), 345–364. MR 0807644, 10.1007/BF01776856
Reference: [6] C.  Castaing, M.  Valadier: Convex Analysis and Measurable Multifunctions.Lect. Notes Math. Vol.  580, Springer-Verlag, Berlin, 1977. MR 0467310, 10.1007/BFb0087688
Reference: [7] T. S.  Chew, F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals.Differential Integral Equations 4 (1991), 861–868. MR 1108065
Reference: [8] M.  Cichón, I.  Kubiaczyk, A. Sikorska: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem.Czechoslovak Math.  J. 54 (2004), 279–289. MR 2059250, 10.1023/B:CMAJ.0000042368.51882.ab
Reference: [9] K.  El Amri, C.  Hess: On the Pettis integral of closed valued multifunctions.Set-Valued Analysis 8 (2000), 329–360. MR 1802239, 10.1023/A:1026547222209
Reference: [10] M.  Federson, R.  Bianconi: Linear integral equations of Volterra concerning Henstock integrals.Real Anal. Exchange 25 (1999/00), 389–417. MR 1758896
Reference: [11] M.  Federson, P.  Táboas: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals.Nonlinear Anal. Ser.  A: Theory Methods 50 (2002), 389–407. MR 1906469
Reference: [12] J. L.  Gamez, J.  Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals.Studia Math. 130 (1998), 115–133. MR 1623348
Reference: [13] R. A.  Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals].Studia Math. 92 (1989), 73–91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91
Reference: [14] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Grad. Stud. Math. Vol  4, AMS, Providence, 1994. Zbl 0807.26004, MR 1288751, 10.1090/gsm/004/09
Reference: [15] C.  Hess: On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence.J.  Multivariate Anal. 39 (1991), 175–201. Zbl 0746.60051, MR 1128679, 10.1016/0047-259X(91)90012-Q
Reference: [16] C.  Hess, H.  Ziat: Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications.Ann. Sci. Math. Québec 26 (2002), 181–198. MR 1980843
Reference: [17] J.  Komlós: A generalization of a problem of Steinhaus.Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. MR 0210177, 10.1007/BF02020976
Reference: [18] K.  Musial: Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May  1992.Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. MR 1248654
Reference: [19] L.  Di Piazza, K.  Musial: Set-valued Kurzweil-Henstock-Pettis integral.Set-Valued Analysis 13 (2005), 167–179. MR 2148134, 10.1007/s11228-004-0934-0
Reference: [20] S.  Schwabik: The Perron integral in ordinary differential equations.Differential Integral Equations 6 (1993), 863–882. Zbl 0784.34006, MR 1222306
.

Files

Files Size Format View
CzechMathJ_56-2006-3_22.pdf 401.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo