Previous |  Up |  Next

Article

Title: Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set (English)
Author: Alas, Ofelia T.
Author: Wilson, Richard G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 641-652
.
Category: math
.
Summary: We obtain some new properties of the class of KC-spaces, that is, those topological spaces in which compact sets are closed. The results are used to generalize theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in the lattice of $T_1$-topologies on a set $X$. (English)
Keyword: KC-space
Keyword: $T_1$-complementary topology
Keyword: $T_1$-independent
Keyword: sequential space
MSC: 54A10
MSC: 54D10
MSC: 54D25
MSC: 54D55
idZBL: Zbl 1090.54015
idMR: MR2045786
.
Date available: 2009-01-08T19:25:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119353
.
Reference: [1] Anderson B.A.: A class of topologies with $T_1$-complements.Fund. Math. 69 (1970), 267-277. MR 0281140
Reference: [2] Anderson B.A., Stewart D.G.: $T_1$-complements of $T_1$-topologies.Proc. Amer. Math. Soc. 23 (1969), 77-81. MR 0244927
Reference: [3] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Fleissner W.G.: A $T_B$-space which is not Katětov $T_B$.Rocky Mountain J. Math. 10 3 (1980), 661-663. Zbl 0448.54021, MR 0590229
Reference: [5] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107-115. Zbl 0132.17802, MR 0180954
Reference: [6] Pelant J., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Pseudocompact Whyburn spaces need not be Fréchet.submitted.
Reference: [7] Shakhmatov D., Tkačenko M.G., Wilson R.G.: Transversal and $T_1$-independent topologies.submitted.
Reference: [8] Simon P.: On accumulation points.Cahiers Topologie Géom. Différentielle Catégoriques 35 (1994), 321-327. Zbl 0858.54008, MR 1307264
Reference: [9] Smythe N., Wilkins C.A.: Minimal Hausdorff and maximal compact spaces.J. Austral. Math. Soc. 3 (1963), 167-177. Zbl 0163.17201, MR 0154254
Reference: [10] Steen L.A., Seebach J.A.: Counterexamples in Topology.Second Edition, Springer Verlag, New York, 1978. Zbl 0386.54001, MR 0507446
Reference: [11] Steiner A.K.: Complementation in the lattice of $T_1$-topologies.Proc. Amer. Math. Soc. 17 (1966), 884-885. MR 0193033
Reference: [12] Steiner E.F., Steiner A.K.: Topologies with $T_1$-complements.Fund. Math. 61 (1967), 23-28. MR 0230277
Reference: [13] Tkačenko M.G., Tkachuk V.V., Wilson R.G., Yaschenko I.V.: No submaximal topology on a countable set is $T_1$-complementary.Proc. Amer. Math. Soc. 128 1 (1999), 287-297. MR 1616605
Reference: [14] Wilansky A.: Between $T_1$ and $T_2$.Amer. Math. Monthly 74 (1967), 261-266. MR 0208557
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_5.pdf 245.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo