Previous |  Up |  Next

Article

Title: Distributional chaos on tree maps: the star case (English)
Author: Cánovas, Jose S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 583-590
.
Category: math
.
Summary: Let $\Bbb X =\{z\in \Bbb C:z^n\in [0,1]\}$, $n\in \Bbb N$, and let $f:\Bbb X \rightarrow \Bbb X$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive. (English)
Keyword: distributional chaos
Keyword: topological entropy
Keyword: star maps
MSC: 37B40
MSC: 37D45
MSC: 37E25
MSC: 54H20
idZBL: Zbl 1052.37032
idMR: MR1860247
.
Date available: 2009-01-08T19:16:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119273
.
Reference: [1] Adler R.L., Konheim A.G., McAndrew M.H.: Topological entropy.Trans. Amer. Math. Soc. 114 (1965), 309-319. Zbl 0127.13102, MR 0175106
Reference: [2] Alsedá L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One.World Scientific Publishing, 1993. MR 1255515
Reference: [3] Alsedá L., Moreno J.M.: Linear orderings and the full periodicity kernel for the $n$-star.J. Math. Anal. Appl. 180 (1993), 599-616. MR 1251878
Reference: [4] Alsedá L., Ye X.: Division for star maps with the branching point fixed.Acta Math. Univ. Comenian. 62 (1993), 237-248. MR 1270511
Reference: [5] Babilonová M.: Distributional chaos for triangular maps.Ann. Math. Sil. 13 (1999), 33-38. MR 1735188
Reference: [6] Baldwin S.: An extension of Sarkovskii's Theorem to the n-od.Ergodic Theory Dynamical Systems 11 (1991), 249-271. MR 1116640
Reference: [7] Block L.S., Coppel W.A.: Dynamics in one dimension.Lecture Notes in Math. Springer-Verlag, 1992. Zbl 0746.58007, MR 1176513
Reference: [8] Blokh A.: The spectral decomposition for one-dimensional maps.Dynamics Reported (Jones et al, eds.) 4, Springer-Verlag, Berlin, 1995. Zbl 0828.58009, MR 1346496
Reference: [9] Cánovas J.S., Ruíz-Marín M., Soler-López G.: Distributional chaos in duopoly games.preprint, 2000.
Reference: [10] Forti G.L., Paganoni L.: A distributionally chaotic triangular map with zero topological sequence entropy.Math. Pannon. 9 (1998), 147-152. MR 1620434
Reference: [11] Forti G.L., Paganoni L., Smítal J.: Dynamics of homeomorphisms on minimal sets generated by triangular mappings.Bull. Austral. Math. Soc. 59 (1999), 1-20. MR 1672771
Reference: [12] Hric R.: Topological sequence entropy for maps of the circle.Comment. Math. Univ. Carolinae 41 (2000), 53-59. Zbl 1039.37007, MR 1756926
Reference: [13] Li T.Y., Yorke J.A.: Period three implies chaos.Amer. Math. Monthly 82 (1975), 985-992. Zbl 0351.92021, MR 0385028
Reference: [14] Liao G., Fan Q.: Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy.Science in China 41 (1998), 33-38. Zbl 0931.54034, MR 1612875
Reference: [15] Málek M.: Distributional chaos for continuous mappings of the circle.Ann. Math. Sil. 13 (1999), 205-210. MR 1735203
Reference: [16] Llibre J., Misiurewicz M.: Horseshoes, entropy and periods for graph maps.Topology 32 (1993), 649-664. Zbl 0787.54021, MR 1231969
Reference: [17] Schweizer B., Smítal J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval.Trans. Amer. Math. Soc. 344 (1994), 737-754. MR 1227094
Reference: [18] Smítal J.: Chaotic functions with zero topological entropy.Trans. Amer. Math. Soc. 297 (1986), 269-282. MR 0849479
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_17.pdf 212.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo